

Guide to

UNIX Using Linux
FOURTH EDITION

Michael Palmer

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

Guide to UNIX Using Linux, Fourth Edition

Michael Palmer

Acquisitions Editor: Nick Lombardi

Publisher, Senior Vice President:
Kristen Duerr

Senior Editor: Lisa Egan

Senior Product Manager: Alyssa Pratt

Product Managers: Molly Belmont and
Alyssa Pratt

Development Editor: Deb Kaufmann

Technical Editor: John Bosco

Executive Editor: Steve Helba

Content Project Manager: Philippa Lehar

Editorial Assistant: Claire Jeffers

Marketing Manager: Gayathri Baskaran

Cover Design: Course Technology Design
Department

Text Designer: GEX Publishing Services

Compositor: GEX Publishing Services

© 2008 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored or used in any form or by
any means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the publisher.

ISBN-13: 978-1-4188-3723-5

ISBN-10: 1-4188-3723-7

Course Technology

25 Thomson Place
Boston, Massachusetts 02210

USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit course.cengage.com

Purchase any of our products at your local college store or at our preferred
online store www.ichapters.com

Printed in the United States of America
2 3 4 5 6 7 8 9 TW 12 11 10 09 08

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all
requests online at cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

www.ichapters.com

TABLE OF

Contents
PREFACE XV

CHAPTER ONE
The Essence of UNIX and Linux 1

Understanding Operating Systems 2
PC Operating Systems 2
Server Operating Systems and Networks 3

Introducing the UNIX and Linux Operating Systems 5
A Brief History of UNIX 5
UNIX Concepts 6
Linux and UNIX 7

Introducing UNIX/Linux Shells 8
Choosing Your Shell 8
Switching from Shell to Shell 9

Choosing User Names and Passwords 10
Connecting to UNIX/Linux Using Telnet or SSH 11

Logging In to UNIX/Linux 13
Using Commands 14

The date Command 15
The cal Command 16
The who Command 18
The clear Command 18
The man Program 18
The whatis Command 21
Command-line Editing 22
Multiple Command Entries 23
The Command-line History 23
Logging Out of UNIX/Linux 23

Understanding the Role of the UNIX/Linux System Administrator 24
The System Administrator’s Command Line 24
The Ordinary User’s Command Line 24

Changing Passwords 25
Viewing Files Using the cat, more, less, head, and tail Commands 26
Redirecting Output 26
Chapter Summary 27
Command Summary: Review of Chapter 1 Commands 28
Key Terms 29
Review Questions 32
Hands-On Projects 36
Discovery Exercises 51

iv Guide to UNIX Using Linux, Third Edition

CHAPTER TWO
Exploring the UNIX/Linux File Systems and File Security 53

Understanding UNIX/Linux File Systems 54
Understanding the Standard Tree Structure 58

Using UNIX/Linux Partitions 59
Setting Up Hard Disk Partitions 60
Using Inodes 63

Exploring the Root Hierarchy 63
The /bin Directory 64
The /boot Directory 64
The /dev Directory 64
The /etc Directory 66
The /home Directory 68
The /lib Directory 68
The /mnt Directory 68
The /media Directory 69
The /proc Directory 69
The /root Directory 69
The /sbin Directory 69
The /tmp Directory 69
The /usr Directory 69
The /var Directory 70

Using the mount Command 70
Using Paths, Pathnames, and Prompts 72

Using and Configuring Your Command-Line Prompt 72
The pwd Command 74

Navigating the File System 75
Using Dot and Dot Dot Addressing Techniques 76
Listing Directory Contents 77
Using Wildcards 79

Creating and Removing Directories 80
Copying and Deleting Files 81
Configuring File Permissions for Security 82
Chapter Summary 88
Command Summary: Review of Chapter 2 Commands 89
Key Terms 90
Review Questions 93
Hands-On Projects 97
Discovery Exercise 109

CHAPTER THREE
Mastering Editors 111

Understanding UNIX/Linux Files 112
ASCII Text Files 112
Binary Files 112
Executable Program Files 113

Using Editors 114
Using the vi Editor 114

Creating a New File in the vi Editor 115
Inserting Text 116
Repeating a Change 116
Moving the Cursor 116
Deleting Text 117

Undoing a Command 118
Searching for a Pattern 118
Searching and Replacing 119
Saving a File and Exiting vi 120
Adding Text from Another File 120
Leaving vi Temporarily 121
Changing Your DisplayWhile Editing 121
Copying or Cutting and Pasting 122
Printing Text Files 122
Canceling an Editing Session 123
Getting Help in vi 123

Using the Emacs Editor 123
Creating a New File in Emacs 125
Navigating in Emacs 127
Deleting Information 127
Copying, Cutting, and Pasting Text 127
Searching in Emacs 127
Reformatting a File 128
Getting Help in Emacs 128

Chapter Summary 128
Command Summary: Review of Chapter 3 Commands 129
Key Terms 130
Review Questions 131
Hands-On Projects 136
Discovery Exercises 153

CHAPTER FOUR
UNIX/Linux File Processing 157

UNIX and Linux File Processing 158
Reviewing UNIX/Linux File Types 158
Understanding File Structures 158

Processing Files 160
Using Input and Error Redirection 161

Manipulating Files 161
Creating Files 162
Deleting Files 163
Removing Directories 163
Copying Files 164
Moving Files 166
Finding Files 166
Combining Files 167
Combining Files with the paste Command 168
Extracting Fields Using the cut Command 170
Sorting Files 171

Creating Script Files 172
Using the join Command on Two Files 174
A Brief Introduction to the Awk Program 176
Chapter Summary 178
Command Summary: Review of Chapter 4 Commands 179
Key Terms 181
Review Questions 182
Hands-On Projects 186
Discovery Exercises 210

vi Guide to UNIX Using Linux, Third Edition

CHAPTER FIVE
Advanced File Processing 213

Advancing Your File-Processing Skills 214
Using the Selection Commands 215

Using the Pipe Operator 215
Using the grep Command 216
Using the uniq Command 218
Using the comm Command 220
Using the diff Command 221
Using the wc Command 222

Using Manipulation and Transformation Commands 223
Introducing the sed Command 223
Translating Characters Using the tr Command 224
Using the pr Command to Format Your Output 225

Designing a New File-Processing Application 226
Designing Records 227
Linking Files with Keys 227
Creating the Programmer and Project Files 229
Formatting Output 231
Using a Shell Script to Implement the Application 232
Running a Shell Script 233
Putting It All Together to Produce the Report 234

Chapter Summary 234
Command Summary: Review of Chapter 5 Commands 235
Key Terms 236
Review Questions 237
Hands-On Projects 241
Discovery Exercises 268

CHAPTER SIX
Introduction to Shell Script Programming 271

Previewing the Application 272
The Program Development Cycle 273

Using High-Level Languages 273
Using UNIX/Linux Shell Scripts 275
Prototyping an Application 277
Using Comments 277

The Programming Shell 278
Variables 279

Environment and ConfigurationVariables 279
ShellVariables 283

Shell Operators 285
Defining Operators 285
Evaluating Operators 286
Arithmetic and Relational Operators 286

Redirection Operators 288
Exporting Shell Variables to the Environment 289
Modifying the PATH Variable 289

More About Wildcard Characters 291

Table of Contents vii

Shell Logic Structures 291
Sequential Logic 292
Decision Logic 293
Looping Logic 295
The While Loop 297
Case Logic 298

Using Shell Scripting to Create a Menu 299
Debugging a Shell Script 300
Customizing Your Personal Environment 301
The trap Command 302
Putting it All Together in an Application 303
Chapter Summary 304
Command Summary: Review of Chapter 6 Commands 305
Key Terms 306
Review Questions 308
Hands-On Projects 313
Discovery Exercises 337

CHAPTER SEVEN
Advanced Shell Programming 339

Understanding Program Design and Analysis 340
Flowcharting 340
Writing Pseudocode 343

Ensuring the Correct Shell Runs the Script 344
Setting the Default Shell 345
Using Bash Login and Logout Scripts 346
Setting Defaults for Using the vi Editor 348
Using the test Command 348

Performing Relational Integer Tests with the test Command 350
Performing String Tests with the test Command 351
Testing Files with the test Command 352
Performing Boolean Tests with the test Command 352

Formatting Record Output 353
Deleting Phone Records 354
Clearing the Screen 355
Creating an Algorithm to Place the Cursor 356
Protecting Against Entering Duplicate Data 358
Using Shell Functions 359

Defining a Function from the Command Line 360
Creating Functions Inside Shell Scripts 361

Troubleshooting a Shell Script 362
Chapter Summary 363
Command Summary: Review of Chapter 7 Commands 364
Key Terms 364
Review Questions 365
Hands-On Projects 369
Discovery Exercises 396

viii Guide to UNIX Using Linux, Third Edition

CHAPTER EIGHT
Exploring the UNIX/Linux Utilities 399

Understanding UNIX/Linux Utilities 400
Classifying UNIX/Linux Utilities 401
Using the dd Command 405
Checking Hard Disk Usage 407

Using the df Utility 407
Using the du Utility 408
Removing Garbage Files 410

Using System Status Utilities 410
Using the top Command 411
Using the uptime Command 411
Using the free Command 412
Forwarding top and free Output 413

Managing Processes 413
Running Processes in the Background 414
Monitoring Processes 414
Killing Processes 415

Checking the Spelling of a Document 416
Comparing Files 417
Formatting Text in UNIX/Linux 418
Archiving and Backing Up Files 420

Using the dump Command 420
Using the restore Command 422

Using mail to Send Mail 423
Using Networking Utilities 424

Using the ifconfig Utility 425
Using the ping Utility 426
Using the traceroute Utility 426
Using the netstat Utility 427

Sharing Resources Using Network File System 428
Accessing MicrosoftWindows Systems Through Samba 429
Chapter Summary 430
Command Summary: Review of Chapter 8 Commands 431
Key Terms 431
Review Questions 432
Hands-On Projects 436
Discovery Exercises 454

CHAPTER NINE
Perl and CGI Programming 457

Introduction to Perl 458
Identifying Data Types 463

Variables and Constants 463
Scalars 463
Numbers 464
Strings 464
Arrays 465
Hashes 467

Perl Versus the Awk Program 467
How Perl Accesses Disk Files 471

Table of Contents ix

Using Perl to Sort 473
Using Perl to Sort Alphanumeric Fields 473
Using Perl to Sort Numeric Fields 475

Setting Up a Web Page 478
Creating a SimpleWeb Page 479
CGI Overview 481
Chapter Summary 483
Command Summary: Review of Chapter 9 Commands 483
Key Terms 483
Review Questions 485
Hands-On Projects 489
Discovery Exercises 502

CHAPTER TEN
Developing UNIX/Linux Applications in C and C++ 505

Introducing C Programming 506
Creating a C Program 507
C Keywords 508
The C Library 509
Program Format 509
Including Comments 510
Using the Preprocessor #include Directive 510
Specifying Data Types 511
Character Constants 512
Using Strings 512
Including Identifiers 513
Declaring Variables 513
Understanding the Scope of Variables 514
Using Math Operators 514
Generating Formatted Output with printf() 516
Using the C Compiler 517
Using the if Statement 518
Using C Loops 519
Defining Functions 520
Using Function Arguments 521
Using Function ReturnValues 522
Working with Files in C 523
Using the make Utility to Maintain Program Source Files 524

DebuggingYour Program 528
Creating a C Program to Accept Input 529
Introducing C++ Programming 530
Creating a Simple C++ Program 531
Creating a C++ Program That Reads a Text File 532
How C++ Enhances C Functions 533
Chapter Summary 534
Command Summary: Review of Chapter 10 Commands 535
Key Terms 536
Review Questions 537
Hands-On Projects 542
Discovery Exercises 560

x Guide to UNIX Using Linux, Third Edition

CHAPTER ELEVEN
The X Window System 563

What Is the XWindow System? 564
XWindow Clients and Servers 566
Using Window Managers 567
Using a Desktop 568

Using GNOME 568
Using KDE 569

Starting the XWindow System 569
Configuring Linux to Automatically Start the XWindow System 570

Interacting with the XWindow System Using GNOME 571
Interacting with Windows 572
More About the Window Menu Button 574
Interacting with the Panel 575

Using Nautilus 577
Configuring the Desktop 578

Changing the Background 578
Changing the Screensaver 578
Configuring the Panel 578
Adding a Menu to the Panel 579
Adding a New Panel 579

Shutting Down from the GNOME Desktop 580
Interacting with the XWindow System Using KDE 580

Interacting with Konqueror 581
Interacting with Kicker 583
Configuring the KDE Desktop 585
Changing the Background in KDE 585
Configuring the Screensaver 585
Configuring Additional Desktops 586
Shutting Down from the KDE Desktop 586

OpenOffice.org and Open Source Software 586
Chapter Summary 587
Command Summary: Review of Chapter 11 Commands 588
Key Terms 588
Review Questions 589
Hands-On Projects 594
Discovery Exercises 611

APPENDIX A
HOW TO ACCESS A UNIX/LINUX OPERATING SYSTEM 613

Accessing UNIX/Linux Computers from an Attached Terminal 614
Using Telnet 614
Using SSH 615
Accessing a UNIX/Linux System from a MicrosoftWindows Computer 616

Configuring the Telnet Service 617
Starting a Telnet Session 618

Using a UNIX/Linux Computer to Provide Access or to Access Another Computer 618
Where Is My Telnet or SSH Client Program? 618
Enabling Telnet and SSH 619
Connecting via Telnet or SSH 622

Using Mac OS X and SSH to Access a Remote Computer 622
Enabling Remote Login as a Service and Through the Firewall 622
Using SSH via a TerminalWindow 623

Table of Contents xi

APPENDIX B
SYNTAX GUIDE TO UNIX/LINUX COMMANDS 625

APPENDIX C
HOW TO INSTALL FEDORA AND HOW TO USE THE KNOPPIX CD 641

How to Install Fedora 642
Preparing for Installation 642
Installing Fedora 643

Using the Knoppix CD 646
System Requirements for the Knoppix CD 647
Loading the Knoppix CD 647
Saving Your Files on Removable Media 648
Useful Knoppix Tips 651

APPENDIX D
UNIX/LINUX VARIANTS 653

PopularVersions of UNIX/Linux 654
UNIX/Linux Command Differences 656
UNIX/Linux Hardware Platforms 657

Choosing a UNIX/LinuxVariant 658

APPENDIX E
UNIX/LINUX SECURITY: NETWORK AND INTERNET CONNECTIVITY 661

Security Hardening 662
Implementing Physical System Security 662
Defining and Publishing the Security Policy 662
Ensuring Password Security 663
Managing Unnecessary Services 664
Viewing Log Files on a Regular Basis 665
Keeping Up with Security Fixes and Patches 666
Monitoring Your System Automatically 667
Securing Your Folders and Files 668

Using Kerberos Authentication 669

Glossary 671

Index 683

xii Guide to UNIX Using Linux, Third Edition

Preface
Guide to UNIX Using Linux, Fourth Edition is updated to include new UNIX/Linux dis-

tributions, networking utilities, new UNIX/Linux capabilities, and coverage of both the
GNOME and KDE desktops.The large array of commands, utilities, file systems, and other
information you learn here applies to any Linux system and most UNIX systems.Within the
book four modern Linux operating systems are spotlighted as examples: Fedora, Red Hat
Enterprise Linux, SUSE, and Knoppix.

Today UNIX and Linux operating systems are popularly used on all types of computers
including desktops, portables, and servers. UNIX was the first popular operating system used
with the extensive computer network that has become the Internet, and remains a staple of
computing. Linux is a UNIX-like operating system first released in 1991 and has become
immensely popular for all types of computing applications. Chances are that the next time
you access an Internet server it will be running UNIX or Linux.Also, because of strong cus-
tomer demand, many computer manufacturers offer pre-installed Linux versions on desktop
and server computers.

A huge range of software is available for UNIX and Linux systems, including many free or
low-cost applications. Through the X Window System and desktop software such as
GNOME and KDE, UNIX and Linux provide a graphical user interface that is as versatile
and easy to use as on any operating system. At the same time, UNIX and Linux have
retained powerful capabilities that can be accessed through time-tested command line inter-
faces. In short, UNIX and Linux give you the best of two worlds, comprehensive command
features and unbeatable graphical interface options.

The concepts you learn in this book help prepare you to use UNIX and Linux on all types
of computer systems, including PCs, workstations, servers, and mainframe computers.
Through this book you learn to use command-line features, run utilities, create your own
applications, and use the GNOME and KDE desktops—giving you a comprehensive foun-
dation in UNIX and Linux.

Taking a hands-on, practical approach, this book guides you through UNIX and Linux sys-
tem and programming concepts.You practice what you learn through self-guided Hands-On
Projects, Review Questions, and Discovery Exercises.Your learning is facilitated by a proven
combination of tools that powerfully reinforce both concepts and real-world experience.

This book includes:
■ Fedora Core 6 (on the DVD bundled with this book), which is a full-featured

Linux operating system along with installation instructions

■ Knoppix 5.1.1, which is a Linux operating system with the KDE desktop that you
can run from the CD bundled with this book (there is nothing to install)

■ Step-by-step hands-on projects to learn UNIX/Linux commands and utilities,
shell programming, data management, text editing, Perl scripts, CGI scripts, Web
programming, and C and C++ programming

■ Comprehensive review and end-of-chapter materials, including point-by-point
summaries, command summaries, review questions, and discovery exercises—all of
which reinforce your learning and enable you to practice and master skills

■ Presentation of the X Window graphical user interface, with a focus on the popu-
lar GNOME and KDE desktops and open source applications

■ Review of UNIX/Linux security for all types of situations

■ Extensive screen captures and graphics to visually reinforce the text and hands-on
exercises

Intended Audience

This book is designed to serve anyone who wants to learn UNIX/Linux and how to use
the command, desktop, and programming features built into UNIX/Linux. It provides a
solid beginning for general UNIX/Linux users, programmers, and system administrators.
General users will appreciate learning how to use UNIX/Linux utilities, how to employ
command-line commands, and how to use the X Window-based GNOME and KDE
interfaces. Programmers and system administrators will be interested in learning how to
use all types of powerful programming capabilities in UNIX/Linux.When you finish this
book, you will have a valuable foundation in UNIX/Linux skills on which to build for
general, personal, or professional use.

Chapter Descriptions

The chapter coverage is balanced, with each chapter building on the skills and knowledge
acquired in the preceding chapters. Here is a summary of what you will learn in each chapter:

Chapter 1: The Essence of UNIX and Linux gives you a basic introduction to
UNIX and Linux, including how to access a UNIX/Linux system, how to use
basic UNIX/Linux commands, and how to choose a shell in which to work.You
also learn about the roles of general users and system administrators and how to
protect your account through password configuration.

xiv Guide to UNIX Using Linux, Third Edition

Chapter 2: Exploring the UNIX/Linux File Systems and File Security introduces
you to the standard tree structure of files and directories, how to navigate the file
system, and how partitions are deployed.You also gain hands-on experience with
basic UNIX/Linux utilities to create files and directories, manage them, and make
them secure.

Chapter 3: Mastering Editors enables you to learn the most commonly used
UNIX/Linux editors, vi and Emacs. After you learn how to use these editors, you
employ them in later chapters to process data, create scripts, and write programs.

Chapter 4: UNIX/Linux File Processing gives you basic techniques for handling
data stored in files and for manipulating files.You use file creation and manipulation
utilities, including the following: input, output, and error redirection utilities; utili-
ties for creating, finding, moving, and deleting files; utilities for cutting, pasting, and
sorting file contents; and the join and awk utilities for file processing.

Chapter 5: Advanced File Processing builds on the knowledge you learned in
Chapter 4, while introducing a more advanced range of file processing utilities that
include selection commands, manipulation and transformation commands, and file
processing commands.

Chapter 6: Introduction to Shell Script Programming gives you an introduction to
using shell scripts,which are powerful files containing commands that can be executed
as a group.You begin creating shell scripts that use different forms of programming
logic. Next, you progress to create a menu, a simple database, and a report—all steps
to building your own application.You also learn how to debug scripts.

Chapter 7:Advanced Shell Programming builds on the skills you learned in Chapter
6 and enables you to add more functionality to the scripts you have created.You
learn advanced techniques for managing data files, testing scripts, formatting screens,
and creating shell functions.

Chapter 8: Exploring the UNIX/Linux Utilities summarizes many of the utilities
you have already learned and introduces you to new utilities for processing files,
managing disk usage, monitoring the system status, working with text files, backing
up a system, using mail, and using a network.You also create your own manual doc-
umentation page for a script-based application you created in Chapters 6 and 7.

Chapter 9:Perl and CGI Programming gives you a taste of how to program in Perl,CGI,
and HTML to manipulate data, access disk files, and create an interactive Web page.

Chapter 10: Developing UNIX/Linux Applications in C and C++ is an introduc-
tion to writing C and C++ programs in UNIX/Linux.You build on knowledge of
data and logic structures that you have learned earlier in the book and put it to work
creating C and C++ programs.

Preface xv

■ Chapter 11:The X Window System enables you to learn about the UNIX/Linux X
Window graphical interface. In this chapter, you discover how to use and customize
the X Window GNOME and KDE desktops.

■ Appendix A: How to Access a UNIX/Linux Operating System shows you how to
remotely access a UNIX/Linux system using a terminal, a Microsoft Windows oper-
ating system, or a computer running UNIX/Linux, including a computer running
Mac OS X.

■ Appendix B: Syntax Guide to UNIX/Linux Commands provides a quick reference
and review of the utilities and commands you have learned in this book, including
the commands for the vi and Emacs editors.

■ Appendix C: How to Install Fedora and How to Use the Knoppix CD shows you,
step-by-step, how to successfully install the Fedora Linux operating system from
scratch using the DVD provided with this book.You also learn how to boot from
and use the Knoppix CD included with this book.

■ Appendix D:UNIX/Linux Variants provides an overview of some of the most pop-
ular UNIX and Linux variants, including the different free and commercial versions
of UNIX and Linux.

■ Appendix E: UNIX/Linux Security: Network and Internet Connectivity focuses on
security measures you can take to protect your UNIX or Linux operating system.

Features

To ensure a successful learning experience, this book includes the following learning features:

■ Chapter Objectives. Each chapter in this book begins with a detailed list of the
concepts to be mastered within that chapter.This list provides you with a quick ref-
erence to the contents of that chapter, as well as a useful study aid.

■ Screen Captures, Illustrations, and Tables. Numerous reproductions of screens
and illustrations of concepts aid you in the visualization of theories, concepts, and
how to use commands and desktop features. In addition, many tables provide details
and comparisons of both practical and theoretical information and can be used for
a quick review of topics.

■ Syntax Boxes. Commands are summarized in Syntax boxes that provide the for-
mat of a command and a dissection of the command’s purpose plus useful options
for that command.

■ End of Chapter Material. The end of each chapter includes the following fea-
tures to reinforce the material covered in the chapter:

- Chapter Summary. A bulleted list gives a point-by-point summary of the chap-
ter, which can be used as a valuable study aid.

xvi Guide to UNIX Using Linux, Third Edition

- Command Summary. A summary table is provided that lists the commands,
their purpose, and any command options covered in the chapter. If a chapter
includes a large number of tables for commands, then the Command Summary
provides a reference to the appropriate tables for review.

- Key Terms. Key terms are placed in bold within each chapter and at the end of
the chapter, a summary of each key term is provided.

- Review Questions. A list of review questions tests your knowledge of the most
important concepts covered in the chapter.

- Hands-On Projects. One of the best ways to reinforce learning about
UNIX/Linux is to practice the commands, utilities, and programming features.
Each chapter in this book contains many Hands-On Projects that give you expe-
rience implementing what you have learned.

- Discovery Exercises. Each chapter concludes with Discovery Exercises, which
provide you with additional hands-on practice using the skills and concepts you
have learned in the chapter.

Text and Graphic Conventions

Wherever appropriate, additional information and exercises have been added to this book
to help you better understand what is being discussed in the chapter. Icons throughout the
text alert you to additional materials.The icons used in this book are as follows:

The Note icon is used to present additional helpful material related to the sub-
ject being described.

Each Hands-On Project in this book is preceded by the Hands-On icon.

Tips are used to present extra information about how to use a command or how
to address a particular need.

The Cautions are provided to help you anticipate potential problems or mistakes
so that you can prevent them from happening.

Preface xvii

INSTRUCTOR’S MATERIALS

The following supplemental materials are available when this book is used in a classroom
setting.All of the supplements available with this book are provided to the instructor on a
single CD, and are also available online at www.course.com.

Electronic Instructor’s Manual. The Instructor’s Manual that accompanies this text-
book includes:

■ Additional instructional material to assist in class preparation, including suggestions
for classroom activities, discussion topics, quizzes, and additional exercises.

■ Solutions to all end-of-chapter materials, including the Review Questions and
Discovery Exercises.

ExamView®. This textbook is accompanied by ExamView, a powerful testing software pack-
age that allows instructors to create and administer printed, computer (LAN-based), and
Internet exams. ExamView includes hundreds of questions that correspond to the topics cov-
ered in this text,enabling students to generate detailed study guides that include page references
for further review.The computer-based and Internet testing components allow students to take
exams at their computers and save the instructor time by grading each exam automatically.

PowerPoint presentations. This book comes with Microsoft PowerPoint slides for each
chapter.These are included as a teaching aid for classroom presentation, to make available
to students on the network for chapter review, or to be printed for classroom distribution.
Instructors, please feel at liberty to add your own slides for additional topics you introduce
to the class.

Figure files. All of the figures and tables in the book are reproduced on the Instructor’s
Resource CD, in bitmap format. Similar to the PowerPoint presentations, these are
included as a teaching aid for classroom presentation, to make available to students for
review, or to be printed for classroom distribution.

Script and program files. Files of the scripts and programs used in this book are pro-
vided on the Instructor’s Resource CD.

System Requirements

The following system requirements are recommended to install Fedora Core 6 which
comes with this book:

■ A high-end Intel/AMD-class computer that operates at 500 MHz or faster

■ 128 MB of RAM or more (more is preferred for faster response)

■ At least 5 GB of disk space (to install X Window interfaces and applications)

www.course.com

xviii Guide to UNIX Using Linux, Third Edition

■ CD or CD/DVD drive

■ Mouse or pointing device

The requirements to use the Knoppix CD which comes with this book are:

■ An Intel/AMD-class computer

■ A bootable CD, DVD, or CD/DVD drive

■ 96 MB of RAM to run the operating system and the X Window interface

■ Mouse or pointing device

To access a UNIX/Linux host on a local area network to which your computer is con-
nected, you need the following software and information:

■ Telnet or SSH installed

■ Either an IP address or the host and domain name of the remote UNIX/Linux system

To access a UNIX/Linux host via the Internet, you need the following software and
information:

■ Connection to an Internet service provider (ISP)

■ Telnet or SSH installed

■ Either an IP address or the host and domain name of the remote UNIX/Linux system

Read This Before You Begin
There are several ways to set up a lab for the hands-on projects in this text. One is to pro-
vide students with their own PCs equipped with a Linux operating system, such as
Fedora.This enables students to have the full experience of working with UNIX/Linux,
including access to the X Window interface and the GNOME or KDE desktops.

Another way to perform the hands-on activities in this book is to provide students with
access to a computer running Linux, such as Fedora, Red Hat Enterprise Linux, or SUSE
that is configured as a server and connected to a network. Students can access the server
remotely from a networked lab equipped with computers running a Microsoft Windows
operating system, UNIX/Linux, or Mac OS X, and using the Telnet or SSH capabilities
built into these systems. Students can also use computers with any of these operating sys-
tems and access the server over an Internet connection from a lab or from home.

Yet another way to perform the hands-on activities is for students and readers to install
on their own computers the Fedora Core 6 operating system that accompanies this book
on a DVD. The book also comes with the Knoppix CD that requires no installation,
because it runs from a CD/DVD drive. Students can conveniently use the Knoppix CD
on their own computers or on computers in a lab, without installing anything—so the
computer is not altered in any way. A few projects cannot be completed via the Knoppix
CD, which are those in Chapter 3 involving the Emacs editor and the GNOME desktop
projects in Chapter 11.The Knoppix CD does, however, enable students and readers to
complete the projects in Chapter 11 for the KDE desktop.

A C K N O W L E D G M E N T S

It has been a great experience to update this book and to work with the people at
Delmar/Course Technology who take publications to the highest level. I am grateful to
Nick Lombardi, the Acquisitions Editor, for his interest in and support of this book. Deb
Kaufmann, with whom I have worked on many books, has been outstanding as the
Development Editor. Deb lights up a project with encouragement, wisdom, good will,
and unfailing masterful editing. I’m also very grateful to the Product Managers Molly
Belmont and Alyssa Pratt for their support and for ably guiding the teams that have pro-
duced this book. Philippa Lehar is the Content Product Manager who has skillfully
worked to ensure the success of each step through the production process. Further, I am
grateful to Sandra Mitchell, the Product Manager for GEX Publishing Services.

Preface xix

xx Guide to UNIX Using Linux, Third Edition

On a technical level, special thanks go to John Bosco of Greenpen Quality Assurance, the
Technical Editor for this book. John has been amazing in his close reading and thorough
testing (two complete passes) of all text, projects, review questions, and discovery exercises—
a process that takes hours of work. I am also very indebted to the four peer reviewers
Desmond Chun (Chabot College), Robert Guess (Tidewater Community College),
Bradley Rounding (Clayton State University), and Diana Stinson (Southwest Virginia
Community College) who have conscientiously examined and evaluated this book provid-
ing vital insights for improvements and additions. Further, the Copyeditor Dan Marinis has
done fine work to tune the language for clearer presentation.

Finally, and very importantly, my thanks go to you the reader for using this book and for
your interest in UNIX and Linux.

D E D I C AT I O N

I dedicate this book to my family who are a constant source of joy and support.

— Michael Palmer

THE ESSENCE OF UNIX AND

LINUX
After reading this chapter and completing the

exercises, you will be able to:
♦ Explain operating systems, including PC and server operating systems

♦ Describe the UNIX and Linux operating systems

♦ Explain the purpose of UNIX/Linux shells

♦ Understand how to select user names and passwords

♦ Connect to UNIX/Linux using Telnet or SSH

♦ Use basic UNIX/Linux commands and command-line editing features

♦ Explain the role of a system administrator

♦ Change your password for security

♦ Use multiple commands to view the contents of files

♦ Redirect output to a file

UNIX and the UNIX look-alike system Linux both have something for
everyone. For the everyday user, these are friendly systems that offer a

huge array of commercial and free software, including a free office suite.For the
programmer, UNIX and Linux are ideal for collaborative development of
software because they offer powerful tools and utilities. For the system admin-
istrator, UNIX and Linux contain time-tested and leading-edge tools for
networking and multiuser management. In this book,you learn UNIX through
the eyes of Linux. Linux is a modern operating system that has generated
significant interest among all kinds of computer users—from general users to
computer professionals. Also, it is a popular server system on the Web and in
businesses. If you use Google to find something on the Internet, you are using
a Linux Web server.

This chapter introduces you to operating systems in general and then explains
the UNIX and Linux operating systems in particular. You also get an intro-
duction to UNIX/Linux commands and command-line editing. As a variant of
UNIX, Linux runs on PCs with Intel-type processors, but uses the same file

CHAPTER

1

1

systems and commands as other UNIX versions. Linux can be run from an individual PC
workstation or as a server operating system that is accessed through a network. When you
access it through a network, you might use an old-fashioned UNIX terminal, a modern
UNIX or Linux workstation,or aWindows-based workstation.Several versions of Linux are
available, but this book uses Fedora, Red Hat Enterprise Linux, SUSE Linux, and Knoppix
as examples (Knoppix examples are mentioned in the Hands-on Projects). These are among
the most popular versions of Linux. Red Hat Enterprise Linux is a commercial version of
Linux, and Fedora is a Red Hat-sponsored development project offering a free Linux
version. SUSE Linux is sponsored by Novell in the commercial SUSE Linux Enterprise
version and in the free openSUSE version.Knoppix is a free version of Linux that can be run
from a CD/DVD and is well suited for educational use, but is also used in home and
production environments. The commands and programming techniques you learn in this
book can be applied to other UNIX and Linux versions.

You can learn more about Fedora at fedora.redhat.com. To find out more about
Red Hat Enterprise Linux, go to www.redhat.com, and you can learn more
about openSUSE Linux at en.opensuse.org/Welcome_to_openSUSE.org. For
information about SUSE Linux Enterprise, visit www.novell.com.

UNDERSTANDING OPERATING SYSTEMS

An operating system (OS) is the most important program that runs on a computer.
Operating systems enable you to store information, process raw data, use application
software, and access all hardware attached to a computer, such as a printer or keyboard. In
short, the operating system is the most fundamental computer program. It controls all the
computer’s resources and provides the base upon which application programs can be used or
written. Figure 1-1 shows the relationship between an operating system and other parts of
a computer system.

Different computer systems can have different operating systems. For example, the most
common operating systems for desktop personal computers are Microsoft Windows, Mac OS,
and Linux.Popular network andWeb server computer operating systems are MicrosoftWindows
Server, UNIX/Linux, Novell NetWare, Novell Open Enterprise Server (which combines
Netware and SUSE Linux Enterprise), and Mac OS X Server. Very large servers that are
mainframe-class computers might use UNIX/Linux or the IBM z/OS operating system.

PC Operating Systems
A personal computer system, or PC, is usually a stand-alone machine, such as a desktop
or laptop computer. A PC operating system conducts all the input, output, processing, and
storage operations on a single computer. Figure 1-2 identifies some popular PC operating
systems.

2 Chapter 1 The Essence of UNIX and Linux

www.redhat.com
www.novell.com

Server Operating Systems and Networks
Server operating systems are at the heart of a computer network. A computer network
combines the convenience and familiarity of the personal computer with the ability to share
files and other computer resources. With a network, you can share resources and exchange
information with someone in the next room or on the other side of the world. Networked
computers are connected by cables and through wireless communications.The Internet is
one of the best examples of a network.

A server operating system controls the operations of a server computer, sometimes
called a host computer, which accepts requests from user programs running on other
machines, called clients. A server provides multiuser access to network resources, including
shared files, hard disks, and printers. Figure 1-3 shows the relationship of a server and its
clients on a network. Servers can be PC-type computers, clusters of PC-type computers
working as one or several units, or mainframes. A mainframe is a large computer that has

Programmers Application programs Users

Printer

Hardware

Monitor Keyboard Mouse Disk driveCPU

Operating system

Figure 1-1 Operating system model

Mac OSLinuxMicrosoft Windows

Figure 1-2 Common PC operating systems

Understanding Operating Systems 3

1

historically offered extensive processing, mass storage, and client access for industrial-
strength computing. Mainframes are still in use today, but many have been replaced by
PC-type computers that are designed as servers with powerful processing and disk storage
capabilities—and cost considerably less than mainframes.

A server can be on a private or public network. For example, a server that stores legal files
and accounting information in a law office is on a private network. AWeb server, such as the
one at www.redhat.com for Red Hat’sWeb site, is an example of a server on a public network.

In a centralized approach, the users’ data and applications reside on the server. This type of
network is called a server-based network. The system administrator secures all the
information on the network by securing the server. The system administrator easily
maintains the users’ applications and performs backup operations directly on the server. If
the server fails, however, clients cannot do their work until the server is returned to service.

Peer-to-peer networks,which are often used on small networks, are more distributed than
server-based networks. In a peer-to-peer configuration, each system on the network is both
a server and a client. There is no central server to manage user accounts; instead, each peer
offers its own shared resources and controls access to those resources, such as through a
workgroup of designated members or through accounts created on that peer workstation.
Data and applications reside on the individual systems in the network. Software upgrades
and backup operations must be performed locally at each computer. Security, which is
implemented on each computer, is not uniform. Each user of the network is, to some
degree, responsible for administering his or her own system. Despite the disadvantages a
peer-to-peer network presents to the system administrator, the individual users do not
depend on a central server. If one computer in the network fails, the other systems continue
to operate.

Server

Client Client Client Client

Figure 1-3 Relationship of a server and clients on a network

4 Chapter 1 The Essence of UNIX and Linux

www.redhat.com

INTRODUCING THE UNIX AND LINUX OPERATING SYSTEMS

UNIX and Linux are multiuser, multitasking operating systems with built-in networking
functions. UNIX/Linux can be used on systems functioning as:

■ Dedicated servers in a server-based network

■ Client workstations connected to a server-based network

■ Client/server workstations connected to a peer-to-peer network

■ Stand-alone workstations not connected to a network

UNIX/Linux are multiuser systems, which let many people simultaneously access and
share the resources of a server computer. Users must log in by typing their user name and
a password before they are allowed to use a multiuser system. This validation procedure
protects each user’s privacy and safeguards the system against unauthorized use. UNIX and
Linux are multitasking systems that allow one user to execute more than one program at
a time. For example, you can update records in the foreground while your document prints
in the background.

UNIX/Linux are also portable operating systems. Portability means these systems can be
used in a variety of computing environments. In fact, they run on a wider variety of
computers than any other operating system. They connect to the Internet, executing
popular programs such as File Transfer Protocol (FTP), an Internet protocol used for
sending files, and Telnet, an Internet terminal emulation program. A terminal emulation
program is one that enables a PC to respond like a terminal (sometimes called a dumb
terminal), which is a device that has a monitor and keyboard, but no CPU.

In addition toTelnet, most UNIX/Linux systems now employ Secure Shell (SSH), which is
a form of authentication (a process of verifying that a user is authorized to access a
computer) developed for UNIX/Linux systems to provide security for communications
over a network, including FTP applications. You learn about SSH later in this chapter.

Many organizations choose UNIX and Linux because these operating systems:

■ Enable employees to work on a range of computers (portability)

■ Are stable, reliable, and versatile

■ Have thousands of applications written for them, both commercial and free

■ Offer many security options

■ Are well suited for networked environments (UNIX was one of the first server
operating systems to be used on a network in the late 1960s.)

A Brief History of UNIX
A group of programmers at AT&T Bell Labs originally developed UNIX in the late 1960s
and early 1970s. Bell Labs distributed UNIX in its source code form, so anyone who used

Introducing the UNIX and Linux Operating Systems 5

1

UNIX could customize it as needed. Attracted by its portability and low cost, universities
began to modify the UNIX code to make it work on different machines. Eventually, two
standard versions of UNIX evolved:AT&T Bell Labs produced SystemV (SysV), and the
University of California at Berkeley developed Berkeley Software Distribution (BSD).
Using features of both versions, Linux might be considered a more integrated version of
UNIX than its predecessors. Currently, the Portable Operating System Interface for
UNIX (POSIX) project, a joint effort of experts from industry, academia, and government,
is working to standardize UNIX.

At this writing, Bell Labs is now part of Alcatel Lucent. For a review of the Bell
Labs inventions that have had a profound impact on the world, including the
UNIX operating system and the transistor, go to www.alcatel-lucent.com/wps/
portal/BellLabs/Top10Innovations. You can also learn more about Bell Labs
and its discoveries at en.wikipedia.org/wiki/Bell_Labs.

For a more complete look at the history of UNIX, visit www.unix.org/what_is_
unix/history_timeline.html. You can also read an historic paper about UNIX by
Dennis Ritchie at cm.bell-labs.com/cm/cs/who/dmr/hist.html. Dennis Ritchie
has played key roles in the development of UNIX and the C programming
language.

UNIX Concepts
UNIX pioneered concepts that have been applied to other operating systems. For example,
Microsoft DOS (Microsoft’s early PC operating system) and Microsoft Windows adopted
original UNIX design concepts, such as the idea of a shell,which is an interface between the
user and the operating system, and the hierarchical structure of directories and
subdirectories.

The concept of layered components that make up an operating system also originated with
UNIX. Layers of software surround the computer system’s inner core to protect its vital
hardware and software components and to manage the core system and its users. Figure 1-4
shows how the layers of a UNIX system form a pyramid structure.

At the bottom of the pyramid is the hardware. At the top are the users. The layers between
them provide insulation, ensuring system security and user privacy. The kernel is the base
operating system, and it interacts directly with the hardware, software services, application
programs, and user-created scripts (which are files containing commands to execute). It is
accessible only through Kernel mode, which is reserved for the system administrator. This
prevents unauthorized commands from invading basic operating system code and hardware,
resulting in actions that might hang or disrupt smooth operating system functions. User
mode provides access to higher layers where all application software resides.

This layered approach, and all other UNIX features, were designed by programmers for use
in complex software development. Because the programmers wrote UNIX in the C

6 Chapter 1 The Essence of UNIX and Linux

www.alcatel-lucent.com/wps/portal/BellLabs/Top10Innovations
www.alcatel-lucent.com/wps/portal/BellLabs/Top10Innovations
www.unix.org/what_is_unix/history_timeline.html
www.unix.org/what_is_unix/history_timeline.html

programming language, this operating system can be installed on any computer that has a C
compiler. This portability, flexibility, and power make UNIX a logical choice for a network
operating system. In addition, with the growth in popularity of Linux, more and more
organizations are moving from UNIX and Windows to Linux.

Linux and UNIX
Linux is a UNIX-like operating system because it is not written from the traditional UNIX
code. Instead, it is original code (the kernel) created to look and act like UNIX, but with
enhancements that include the POSIX standards. Linus Torvalds, who released it to the
public free of charge in 1991, originally created Linux. A number of organizations and
companies now offer free and commercial distributions or versions of Linux. The following
list is a sampling of Linux distributions:

■ Debian GNU/Linux (free, see www.debian.org)

■ Fedora (free, see fedoraproject.org)

■ Knoppix (free, see www.knoppix.org)

■ Mandriva (commercial and free versions, see www.mandriva.com)

■ Red Hat Enterprise Linux (commercial, see www.redhat.com)

■ openSUSE Linux (free, see en.opensuse.org/Welcome_to_openSUSE.org)

■ SUSE Linux Enterprise (commercial, see www.novell.com)

UNIX operating system (kernel)

Hardware

Shells

Access through
Kernel mode

Users
Access
through
User mode

Figure 1-4 Layers of a UNIX system

Introducing the UNIX and Linux Operating Systems 7

1

www.debian.org
www.knoppix.org
www.mandriva.com
www.redhat.com
www.novell.com

■ Turbo Linux (commercial and free versions, see www.turbolinux.com)

■ Ubuntu (free, see www.ubuntu.com)

Linux offers all the complexity of UNIX and can be obtained at no cost;or, for a relatively small
amount of money,you can purchase commercial versions that have specialized tools and features.
With all the networking features of commercial UNIX versions, Linux is robust enough to
handle large tasks. You can install Linux on your PC,where it can coexist with other operating
systems, and test your UNIX skills. All these features make Linux an excellent way to learn
UNIX, even when you have access to other computers running UNIX.

INTRODUCING UNIX/LINUX SHELLS

The shell is a UNIX/Linux program that interprets the commands you enter from the keyboard.
UNIX/Linux provide several shells, including the Bourne shell, the Korn shell, and the C shell.
Stephen Bourne at AT&T Bell Labs developed the Bourne shell as the first UNIX command
processor. Another Bell employee,David Korn,developed the Korn shell.Compatible with the
Bourne shell, the Korn shell includes many extensions, such as a history feature that lets you use
a keyboard shortcut to retrieve commands you previously entered. The C shell is designed for
C programmers’ use. Linux uses the freeware Bash shell as its default command interpreter. Its
name is an acronym for “Bourne Again Shell,” and it includes the best features of the Korn and
Bourne shells.No matter which shell you use, your initial communications with UNIX/Linux
always take place through a shell interpreter. Figure 1-5 shows the role of the shell in
UNIX/Linux.

If you use a graphical user interface (GUI) desktop (similar to Microsoft Windows with
graphics and icons),which you learn about later in this chapter and in Chapter 11, then your
communications occur through the GUI desktop. To use commands, you open a special
window, called a terminal window, and your communications with the operating system
occur through a shell interpreter within the terminal window. Most versions of UNIX and
Linux that support using a GUI desktop offer a terminal window. This is a powerful feature
because it is literally your window to using commands.

All of the commands that you learn in this book can be used in a terminal window or
directly from the command line on a system that does not use a GUI desktop.

Choosing Your Shell
Before working with a UNIX/Linux system, you need to determine which shell to use as
your command interpreter. Shells do much more than interpret commands: Each has
extensive built-in commands that, in effect, turn the shells into first-class programming
languages. (You pursue this subject in depth in Chapter 6, “Introduction to Shell Script
Programming,” and Chapter 7,“Advanced Shell Programming.”) A default shell is associated
with your account when it is created, but you have the option to switch to a different shell

8 Chapter 1 The Essence of UNIX and Linux

www.turbolinux.com
www.ubuntu.com

after you log in. Bash is the default shell in Linux, and it is the shell many users prefer. The
following is a list of shells:

■ Bourne

■ Korn (ksh)

■ C shell (csh)

■ Bash

■ ash (a freeware shell derived from the Bourne and C shells)

■ tcsh (a freeware shell derived from the C shell)

■ zsh (a freeware shell derived from the Korn shell)

Switching from Shell to Shell
After you choose your shell, the system administrator stores your choice in your account
record, and it becomes your assigned shell. UNIX/Linux use this shell any time you log in.
However, you can switch from one shell to another by typing the shell’s name (such as tcsh,

input
output

Shell

UNIX/Linux
operating system

users

Figure 1-5 Shell’s relationship to the user, operating system, and computer

Introducing UNIX/Linux Shells 9

1

bash, or ash) on your command line. You work in that shell until you log in again or type
another shell name on the command line. Users often use one shell for writing shell scripts
(programs) and another for interacting with a program. (In Hands-on Project 1-8 later in
this chapter, you learn how to switch shells, and in Chapter 7,you learn how to set your own
default shell.)

CHOOSING USER NAMES AND PASSWORDS

Before you can work with UNIX/Linux, you must log in by providing a unique user name
and password. Decide on a name you want to use to identify yourself to the UNIX/Linux
system, such as “aquinn.”This is the same name others on the UNIX/Linux system use to
send you electronic mail. Some UNIX versions recognize only the first eight characters of
a user name, but most versions of Linux, such as Fedora, Red Hat Enterprise Linux, and
SUSE, recognize up to 32 characters.

You must also choose a password, which must contain six or more characters when using
newer versions of UNIX/Linux, such as Fedora, Red Hat Enterprise Linux, and SUSE. The
password should be easy for you to remember but difficult for others to guess, such as a
concatenation of two or more words that have meaning to you—a combination of hobbies or
favorite places, for example—written in a mix of uppercase and lowercase letters,numbers,and
other characters. The password can contain letters,numbers, and punctuation symbols,but not
control characters, such as Ctrl+x. (Control characters are codes that are a combination of the
Control key and a letter, such as x, and that offer services to perform a specific action on a
computer.)

The default minimum password length depends on your version of UNIX/Linux.
Some earlier versions of Linux have a minimum length of five characters, but
Fedora, Red Hat Enterprise Linux, and SUSE require a minimum length of six
characters, which is the practice used in this book.

You can log in to any UNIX or Linux system as long as you have a user account and
password on the workstation or host (server) computer. A UNIX/Linux system adminis-
trator creates your account by adding your user name (also called a login name or user ID)
and your password. You can change your password at any time by using the passwd
command. You’ll learn how to use the passwd command later in this chapter.

To use this book and the Hands-on Projects, you must have an account on a UNIX or Linux
system along with some means to connect to that system. Some of the common ways to
connect or to access a UNIX/Linux system are:

■ Through aTelnet or SSH connection to a remote computer, such as from another
UNIX/Linux or aWindows-based operating system (Not all versions of Windows
implement SSH, but you can obtain SSH from a third-party source, such as SSH
Communications Security at www.ssh.com.)

10 Chapter 1 The Essence of UNIX and Linux

www.ssh.com

■ Through client software on a UNIX/Linux client/server network

■ As a peer on a peer-to-peer, local area network in which each computer has the
UNIX/Linux operating system installed

■ On a stand-alone PC that has the UNIX/Linux operating system installed

■ Through a dumb terminal connected to a communications port on a UNIX/
Linux host

Appendix A, “How to Access a UNIX/Linux Operating System,” describes
several access methods, including how to set up and use Telnet or SSH. Also, see
Appendix C, “How to Install Fedora and How to Use the Knoppix CD” for
instructions on how to install the Fedora version of Linux on your computer and
how to run Knoppix from the CD included with this book.

The steps you take to connect to a UNIX/Linux system vary according to the kind of
connection you use. Connecting via a dumb terminal or accessing the OS through a
stand-alone system are two of the easiest methods. In both cases, you need to log in to your
account. Connecting by using client software for a client/server network might take special
instructions or training from a network administrator.

If you connect on a peer-to-peer network, you can useTelnet or SSH. Connecting through
Telnet or SSH are common methods and are described in the next section. You can use
Telnet or SSH to access a UNIX/Linux peer or server computer over a local area network
and through the Internet. Appendix A also discusses how to connect over a network using
different methods.

CONNECTING TO UNIX/LINUX USING TELNET OR SSH
Telnet is a terminal emulation program. It runs on your computer and connects your PC to
a server, or host, on the network. The PC from which you connect can be running UNIX,
Linux, a Windows-based operating system, or Mac OS. You can then log in to a UNIX/
Linux host and begin working. Most UNIX/Linux versions include Telnet, as do most
versions of Microsoft Windows and later versions of Mac OS.

Each computer on the Internet has an Internet Protocol (IP) address. An IP address is
a set of four numbers (in the commonly used IP version 4) separated by periods, such as
172.16.1.61.Most systems on the Internet also have a domain name,which is a name that
identifies a grouping of computer resources on a network. Internet-based domain names
consist of three parts: a top-level domain (such as a country or organization type), a
subdomain name (such as a business or college name), and a host name (such as the name of
a host computer). An example using the three-part identification is research.campus.edu, in
which “research” is the host name, “campus” is the subdomain name, and “edu” is the

Connecting to UNIX/Linux Using Telnet or SSH 11

1

top-level domain. Both the IP address and the domain name identify a system on the
network. Programs such as Telnet use IP addresses or domain names to access remote
systems.

The general steps used to access a UNIX/Linux host via Telnet are:

1. Determine the remote host’s IP address or domain name.

2. Connect to your network or the Internet.

3. Start your Telnet program, and connect to the UNIX/Linux system. For example,
to start Telnet in Windows XP orVista, open a Command Prompt window, type
telnet, and press Enter. To connect to Telnet in Fedora, Red Hat Enterprise Linux,
or SUSE, open a terminal window, type telnet, and press Enter.

4. Follow the instructions in your Telnet program to connect to a remote host.
Usually, you must provide the host name or IP address to connect to a
UNIX/Linux system. For example, after the command prompt in a Windows
2000/XP/Server 2003/Vista Command Prompt window or at the UNIX/
Linux command line to access the system lunar.campus.edu, you can type the
following command:
telnet lunar.campus.edu

Press Enter after you type the command.

5. Provide a user name and password to log in to the remote UNIX/Linux
computer.

Secure Shell (SSH) was developed for UNIX/Linux systems to provide authentication
security forTCP/IP applications, such as FTP andTelnet.Historically, the authentication for
these applications has largely consisted of providing an unencrypted account and password,
making both extremely vulnerable. SSH applies modern security techniques to ensure the
authentication of a communications session. SSH can encrypt communications as they go
across a network or the Internet.

In Fedora, Red Hat Enterprise Linux, SUSE, and other versions of UNIX/Linux, the ssh
command can be used instead of telnet to establish a secure connection to a remote computer
also running UNIX/Linux and that is compatible with openSSH. openSSH is a version of
SSH that includes protocols and software intended for free distribution and which can be
used on many UNIX/Linux systems.

To use ssh, you open a terminal window (or access the command line) and enter ssh -l on the
command line along with the user account name and the name of the host computer. Two
other options are to enter ssh with user@hostname or ssh with the IP address.

Hands-on Project 1-1 shows you how to useTelnet inWindows 2000/XP/Vista,and Hands-on
Project 1-2 shows you how to access a terminal window in Fedora,Red Hat Enterprise Linux,
or SUSE and use ssh to access a remote computer.

12 Chapter 1 The Essence of UNIX and Linux

To use Telnet or SSH, you need to enable them on your system. See the note
with Hands-on Project 1-1 to learn how to enable Telnet or SSH in different
UNIX/Linux systems.

Logging In to UNIX/Linux
After you boot or connect to a UNIX/Linux system,you must log in by specifying your user
name and password. You should see either a command line or a login dialog box if you are
using a graphical user interface (GUI). For security, the password does not appear on the
screen as you type it.

When you connect through the network or a dumb terminal, you log in and execute
commands using a command-line screen. If you are on a stand-alone PC, the system might
be configured to use only the command-line (text) mode, or it might be configured using
a GUI. In UNIX/Linux, the foundation of a GUI is called the XWindow interface. The X
Window interface can have a different look and feel depending on what desktop environ-
ment is used with it. The Fedora examples and figures in this book use the popular (and free)
GNU Network Object Model Environment (GNOME) desktop. GNU stands for “Gnu’s
Not Unix,” which was an endeavor started in 1983 to develop a free, open-standards,
UNIX-like operating system (and additional operating system utilities). In the beginning,
they were typically written in the C language.

To learn more about the GNOME Project, visit the Web site at www.gnome.org.
Also, you learn more about the X Window interface and GNOME desktop in
Chapter 11, “The X Window System.”

You cannot log in without an authorized user account. If your password fails, or if you wait
too long before entering your user name and password, contact your system administrator
for help.

After you log in, you are ready to begin using the system. If you access UNIX/Linux
through a network or a dumb terminal—or if your stand-alone system is configured for the
command-line text mode—you can immediately enter commands at the command prompt.
However, if you are using a stand-alone computer and an X Window desktop such as
GNOME, you must open a terminal window (see Figure 1-6) to access the command
prompt. Hands-on Project 1-2 demonstrates how to access a terminal window in Fedora,
Red Hat Enterprise Linux, or SUSE (to execute the ssh command).

Connecting to UNIX/Linux Using Telnet or SSH 13

1

www.gnome.org

USING COMMANDS

To interact with UNIX/Linux, you enter a command, which is text you type after the
command prompt. When you finish typing the command, press Enter. UNIX/Linux are
case sensitive; that is, they distinguish between uppercase and lowercase letters, so John
differs from john. You type most UNIX/Linux commands in lowercase.

Commands are divided into two categories: user-level commands that you type to perform
tasks, such as retrieve information or communicate with other users, and system-
administration commands, which the system administrator uses to manage the system.

You must know a command’s syntax to enter it properly. Syntax refers to a command’s
format and wording, as well as the options and arguments you can use to extend and
modify its functions. Most commands are single words, such as the command clear. If you
enter a command using correct syntax, UNIX/Linux execute the command. Otherwise,
you receive a message that UNIX/Linux cannot interpret your command.

Appendix B, “Syntax Guide to UNIX/Linux Commands,” alphabetically lists all
the commands in this book and tells you how to enter each command and use
its options.

Figure 1-6 Terminal window in Fedora

14 Chapter 1 The Essence of UNIX and Linux

The place on the screen where you type the command is called the command line (refer
to Figure 1-6). Commands use the following syntax:

Syntax command_name [-option] [argument]

Dissection

■ The command_name specifies what operation to perform. In the syntax illustrations in
this book, command names appear in boldface. (In regular text, command names appear
in italic.)

■ Command options are ways to request that UNIX/Linux carry out a command in a
specific style or variation. Options follow command names, separated by a space. They
usually begin with a hyphen (-). Options are also case sensitive. For example, -R differs
from -r. You do not need to type an option after every command; however, some
commands do not work unless you specify an option. The syntax illustrations in this book
list options in square brackets ([]) when the command does not require them.

■ Command arguments follow command options, separated by white space (blank space).
Command arguments are usually file and directory names. In the syntax illustrations in
this book, arguments appear in italic.Square brackets surround arguments if the command
does not require them.

In the following sections, you start your journey learning UNIX/Linux with an introduc-
tion to the following basic commands:

■ date

■ cal

■ who

■ clear

■ man

■ whatis

You also learn command-line editing techniques,how to enter multiple commands,and how to
recall commands you’ve used previously. And, you learn how to log out of an active session.

The date Command
The UNIX/Linux date command displays the system date, which the system administrator
maintains (see Figure 1-7). Because the date and time on a multiuser system are critical for
applications, only the system administrator can change the date. For example, the Accounting
Department might need to associate a date with a specific file used for reporting tax information,
or the Publications Department might have to date stamp a document to ensure a specific
copyright date.

Using Commands 15

1

The date command has an option,-u,which displays the time in Greenwich MeanTime (GMT).

GMT is also known as Greenwich Meridian Time and Coordinated Universal
Time (UTC). UTC is considered the international time standard. To learn more
about UTC, visit NASA’s Web page at www.ghcc.msfc.nasa.gov/utc.html.

Hands-on Project 1-3 enables you to use the date command.

Syntax date [-option]

Dissection

■ Displays the system date and time

■ Commonly used options include:
-u view Greenwich Mean Time
-s to reset the date or time

The cal Command
Use the cal command to show the system calendar. This command can be useful for
scheduling events or determining a specific date of a project you completed in the past or

Figure 1-7 Using the date command

16 Chapter 1 The Essence of UNIX and Linux

www.ghcc.msfc.nasa.gov/utc.html

intend to complete in the future. The cal command can also be used to determine the Julian
date, by using cal -j at the command line. The Julian date is the number of the date from the
beginning of the year, and is a value between 1 and 366 (including leap year). Programmers
sometimes use the Julian date for specific programming functions, such as determining the
number of days an employee has worked in an organization for the current year. Figure 1-8
shows the results of the command cal -j 2009, showing the Julian date for monthly calendars
in 2009. Hands-on Project 1-4 enables you to use the cal command.

Syntax cal [-option]

Dissection

■ Generates a calendar for the current year or for a year specified by the user

■ Commonly used options include:
-j for Julian date
-s to show Sunday as the first day in the week
-m to show Monday as the first day in the week
-y to show all of the months for the current year

Figure 1-8 Using the cal command to determine the Julian date

Using Commands 17

1

The who Command
To determine information about who is logged in, use the who command. In a multiuser
system, knowing who is logged in to the system is important for the administrator, so the
administrator can periodically verify authorized users and levels of use. Knowing who is
logged in is also valuable for ordinary users,who can use that information to judge how busy
the system is at a given time or who might want to contact another user.

Syntax who [-option]

Dissection

■ Provides a listing of those logged in to the operating system

■ Commonly used options include:

am i (type who in front, as in who am i) for information about your own session

whoami (type whoami as all one word) to see what account you are using
-H to show column headings
-u to show idle time for each user (the older -i is being retired from the who options)
-q for a quick list and total of users logged in
-b used by system administrators and others to verify when the system was last booted

Try Hands-on Project 1-5 to learn how to use the who command.

The clear Command
As you continue to enter commands, your screen might become cluttered. Unless you need
to refer to commands you previously entered and to their output, you can use the clear
command to clear your screen. It has no options or arguments.

You use the clear command in Hands-on Project 1-6.

Syntax clear

■ Clears the terminal screen, display, or terminal window

The man Program
For reference, UNIX/Linux include an online manual that contains all commands, including
their options and arguments. The man program in UNIX/Linux displays this online manual,
called the man pages, for command-line assistance. Although the man pages for some
commands contain more information than others, most man pages list the following items:

■ Name—The name of the command and a short statement describing its purpose

18 Chapter 1 The Essence of UNIX and Linux

■ Synopsis—A syntax diagram showing the usage of the command

■ Description—A more detailed description of the command than the name item
gives as well as a list of command options and their descriptions

■ Author—The name or names of the author or authors who developed the
command or program (if available)

■ Reporting Bugs—The information about how to report bugs or problems

■ History—The information that is sometimes included to show where the com-
mand originated

■ Other Versions—The information that is sometimes included to indicate there are
other versions of the command available

■ See Also—The other commands or man pages that provide related information

The man program usually accepts only one argument—the name of the command about
which you want more information. The online manual shows the valid command formats
that your system accepts. To close the online manual, type q.

Syntax man [-option] argument

Dissection

■ Shows information from the online documentation

■ Example options include:
-d to print information for debugging
-f displays a short description of a command (produces the same information as using the
whatis command described in the next section)
-K to find a certain string by searching through all of the man information

■ The argument is to supply the name of the command or program you want to learn more
about, such as man who

As an example, consider the man pages for the cal command, as shown in Figures 1-9 and 1-10.
In this example, the top line shows the name of the command, which is cal, and a brief
description,which is“displays a calendar.”Next,the Synopsis section provides information about
the way in which the command is used, showing that it can be used with options, such as any of
-smjyl3, as well as specifying the month or year as arguments. The Description section provides
more information about the purpose of the cal command and explains the default usage, such as
that the current month is displayed if there are no arguments used. The Description section also
shows the options, such as -s to display the calendar starting with Sunday.

In Figure 1-10, more information about the use of the cal command appears at the end of the
Description section. The History section shows that this command appeared inVersion 6AT&T
UNIX. Finally, the OtherVersions section contains information about other versions of cal that
you can obtain and use,and at the end a date shows when this man page was written or updated.

Using Commands 19

1

Figure 1-9 man page for the cal command

Figure 1-10 Additional information from the man documentation for the cal command

20 Chapter 1 The Essence of UNIX and Linux

Many systems also offer info pages in addition to the man pages. Sometimes
the info pages provide more information about commands, and sometimes the
man pages do. Further, a new command might only be covered in man or info.
If you need help with a particular command, consider checking both sources.
For example, to find out about the who command, enter info who.

The whatis Command
Sometimes you find that the man pages contain more information than you want to see. To
display a brief summary of a command, use the whatis command (see Figure 1-11). The
whatis command shows only the name and brief description that appears near the top of a
command’s man page.

The whatis command relies on information stored in a database. On some
UNIX/Linux systems, the administrator must execute the whatis command,
which creates the database, before the whatis command operates properly. In
Fedora and Red Hat Enterprise Linux, log in to the root account and type
/usr/sbin/makewhatis to create the database—although recent versions of
these operating systems and of SUSE Linux already come with the database.
(SUSE Linux does not include makewhatis in the /usr/sbin directory.)

Figure 1-11 Using whatis for a quick summary of the cal command

Using Commands 21

1

Syntax whatis argument

Dissection

■ Displays the short descriptions of commands as obtained from a whatis database

■ In many UNIX/Linux versions, including Fedora and Red Hat Enterprise Linux, the
whatis command only takes an argument (the name of a command or program) and there
are no options. In SUSE, whatis offers several options. One important option is -w to
search the whatis database using a wildcard in the spelling, such as * and ? when using the
Bash shell (for example, enter whatis -w ma? when searching for man). Another useful
option is -m system to enable SUSE to search the whatis database on a different
UNIX/Linux system on the same network, such as on a BSD UNIX computer.

Hands-on Project 1-7 enables you to use the man and whatis commands.

Command-line Editing
Shells support certain keystrokes for performing command-line editing. For example, Bash
(which is the default Linux shell) supports the left and right arrow keys,which move the cursor
on the command line.For instance, if you misspell a command or argument,you can use the left
and right arrows to move around on the active command line to the misspelling, correct it, and
then execute the command—all without retyping it.Other keys, used in combination with the
Alt or Ctrl key,are used for other editing operations,and the Del key is used to delete a character.
Table 1-1 illustrates common Alt, Ctrl, and Del key combinations you can use for command-
line editing. Also, try Hands-on Project 1-8 to practice editing on the command line.

Table 1-1 Common Alt, Ctrl, and Del key combinations for command-line editing
Key Combination Description
Ctrl+b Moves the cursor to the previous letter
Alt+d Deletes a word or consecutive characters
Alt+l Moves the cursor to the position just before the first character of

the next word
Ctrl+a Moves the cursor to the beginning of the command line
Ctrl+k Deletes the content of the command line from the current cursor

position to the end of the command line
Del Deletes a character

Not all shells support command-line editing in the same manner. Table 1-1
applies to the Bash shell in Linux.

22 Chapter 1 The Essence of UNIX and Linux

Hands-on Project 1-8 enables you to practice command-line editing, and to determine
whether you are employing the Bash shell.

Multiple Command Entries
You can type more than one command on the command line by separating commands with
a semicolon (;). When you press Enter, the commands execute in the order in which you
entered them. For example, if you type date ; cal, you see today’s date and then the calendar
for the current month. As you learn in later chapters, this is an important capability for
completing several operations at a time, such as working on the data in a file and then
printing or displaying specific data. Try Hands-on Project 1-9 to execute multiple com-
mands from a single command-line entry.

The Command-line History
Often, you find yourself entering the same command several times within a short period of
time. Most shells keep a list of your recently used commands and allow you to recall a
command without retyping it. You can access the command history with the up and down
arrow keys.Pressing the up arrow key once recalls the most recently used command.Pressing
the up arrow key twice recalls the second most recently used command.Each time you press
the up arrow key, you recall an older command. Each time you press the down arrow key,
you scroll forward in the command history. When you locate the command you want to
execute, press Enter. This capability can save time and frustration when you need to enter
the same or similar commands in one session.Hands-on Project 1-10 enables you to use the
command-line history capability.

Logging Out of UNIX/Linux
When you finish your day’s work or leave your computer or terminal for any reason, log out
of the UNIX/Linux system to ensure security. Logging out ends your current process and
indicates to the OS you are finished. How you log out depends on the shell you are using.
For the Bourne,Korn, or Bash shells, enter exit on the command line or press Ctrl+d. In the
C shell, enter logout on the command line. These commands log you out of your system, if
you are not using a desktop environment.

If you are working in an XWindow desktop environment, such as GNOME, typing exit and
pressing Enter or using Ctrl+d only closes the terminal window. To log out,use the Log Out
option for the desktop. For example, if you are using GNOME in Fedora or Red Hat
Enterprise Linux, click the System menu in the Panel at the top of the screen, click Log Out
username, and click Log Out to verify that is what you want to do. In openSUSE version 10.2
and higher, click the Computer menu in the Panel at the bottom of the screen, click Log
Out, click Log out on the next menu, and click OK. In SUSE versions up through 10.0 with
the GNOME desktop, click the Desktop menu in the Panel at the top of the screen, click
Log Out, click Log out on the next menu, and click OK.

Using Commands 23

1

UNDERSTANDING THE ROLE OF THE UNIX/LINUX SYSTEM ADMINISTRATOR

There are two types of users on a UNIX/Linux system: system administrators and ordinary
users. As the name suggests, a system administrator manages the system by adding new
users, deleting old accounts, and ensuring that the system performs services well and
efficiently for all users. Ordinary users are all other users. The system administrator is also
called the superuser, because the system administrator has unlimited permission to alter the
system. UNIX/Linux grant this permission when the operating system is initially installed.
The system administrator grants privileges and permissions to ordinary users.

The system administrator has a unique user name: root. This account has complete access
to a UNIX/Linux system. The password for the root account is confidential;only the system
administrator and a backup person know it. If the root’s password is lost or forgotten, the
system administrator uses an emergency rescue procedure to reset the password.

The System Administrator’s Command Line
Although ordinary users type their commands after the $ (dollar sign) command prompt, the
system administrator’s prompt is the # (pound) symbol. The UNIX/Linux system generates a
default setting for the command prompt for the system administrator in the following format:

[root@hostname root]#

In the prompt, hostname is the name of the computer the system administrator logged in to.
On some computers the hostname is simply localhost to refer to the local computer, or
localhost is used when the computer does not have a name.Besides the reference to the root
account, there are two other meanings of root which you learn more about later in this
book. One meaning is the base level for all directories and another is the default home
directory for the root account.

When you use the GNOME terminal window in SUSE, the user’s prompt is a
right-pointing arrow with the account name and computer name (or operating
system name) appearing before the arrow, such as mpalmer@aspen: → (where
mpalmer is the user name and aspen is the computer name). Also, the system
administrator’s prompt in SUSE consists of the computer name, a colon, a tilde
(for the current directory), and the pound sign, such as aspen: ~ #.

The Ordinary User’s Command Line
The $ (dollar sign) (or the right-pointing arrow in SUSE) is traditionally associated with
ordinary users. The UNIX/Linux system generates a default setting for the command
prompt for ordinary users. The following formats are common on Linux systems:

[username@hostname username] $
[username@hostname ~] $
username@hostname: →

In the prompt,username is the user’s login name, such as jean, and hostname is the name of the
computer to which the user is logged in (or localhost is used). In the first example of the

24 Chapter 1 The Essence of UNIX and Linux

prompt shown above, the second instance of username refers to the name of the user’s home
directory (which by default has the same name as the user name). When a tilde (~) is used,
this also refers to the user’s home directory (in this instance); and if you change directories,
the name of the directory you change to is shown instead of the tilde.

CHANGING PASSWORDS

Your user name, or login name, identifies you to the system. You can choose your own user
name and give it to the system administrator, who then adds you as a new user. As mentioned
earlier, some UNIX/Linux versions recognize up to eight characters,while other versions, such
as Fedora,Red Hat Enterprise Linux,SUSE,and Knoppix,recognize up to 32 characters in your
user name—which is often your first initial and last name,your last name and first initial,your last
name, or sometimes a nickname.

A user name is unique but not confidential, and can be provided to other users. The
password, on the other hand, is confidential and secures your work on the system. You can
change your password, if necessary, by using the passwd command, but you must know your
current password to change it. If your account does not have a password, use the passwd
command to create one.

Syntax passwd [-option] [argument]

Dissection

Used by an account owner or system administrator to change a password.

-e used by the system administrator to expire a password so the user has to create a new
password the next time she logs in
-l locks an account and is used by the system administrator
-S typically used by a system administrator to view the password status of an account, such
as to ensure that an account has a password

UNIX/Linux system administrators can apply rules for passwords, such as they must have a
minimum number of characters, contain a combination of letters, numbers, and other
characters, or cannot be the same as recent passwords you have used.Hands-on Project 1-11
enables you to change your password.

After changing your password, you should log out and log in again to make certain
UNIX/Linux recognizes your new password.

Remember your password! You need your password every time you log in to
UNIX/Linux. For more information about the passwd command and for tips
about keeping your password secure, enter the man passwd command.

Changing Passwords 25

1

VIEWING FILES USING THE CAT, MORE, LESS, HEAD, AND TAIL COMMANDS

Three UNIX/Linux commands allow you to view the contents of files: cat, more, and less.
The more and less commands display a file one screen at a time. The more command scrolls
only down, whereas less enables you to scroll down and up. The cat command displays the
whole file at one time. Two other commands, head and tail, allow you to view the first few
or last few lines of a file (ten lines by default).

The cat command gets its name from the word concatenate, which means to link. You can
display multiple files by entering their file names after the cat command and separating them with
spaces. UNIX/Linux then display the files’ contents in the order in which you entered them.

Try Hands-on Projects 1-12, 1-13, and 1-14 to use the cat command, the more and less
commands, and, finally, the head and tail commands.

REDIRECTING OUTPUT

In UNIX/Linux, the greater-than sign (>) is called an output redirection operator.You
can use this redirection operator to create a new file or overwrite an existing file by attaching
it to a command that produces output. In effect, you redirect the output to a disk file instead
of to the monitor. For example, if you type who > current_users and press Enter, this creates
a file called current_users that contains the information from the who command.

Redirecting output is useful in many circumstances. For example, when you monitor a
system, you might redirect output to a file that you can examine later. Or, you might have
a program or report-generating utility that manipulates data so that you can redirect the
results to a file instead of to the screen. You learn about other redirection operators later in
this book, but, for now, the > operator is a good starting point.

Try Hands-on Projects 1-15 and 1-16 to use the > output redirection operator.

You can also use the cat command combined with the output redirection operator to create
files from information you type at the keyboard. Type cat > filename after the command
prompt, where filename is the name of the file you are creating. Enter the data in the file, and
then press Ctrl+d to end data entry from the keyboard. Hands-on Project 1-17 enables you
to use the cat command with the > redirection operator.

Use the output redirection operator (>) to send output to a file that already
exists only if you want to overwrite the current file. To append output to an
existing file, use two redirection operators (>>). This adds information to the
end of an existing file without overwriting that file.

26 Chapter 1 The Essence of UNIX and Linux

CHAPTER SUMMARY

The operating system is the most fundamental computer program. It controls all computer
resources and provides the base upon which application programs can be used or written.

In a centralized server-based network, all the users’ data and applications reside on the
server, which is secured, maintained, and backed up by the system administrator. Each
computer in a server-based network relies on the server. All systems in a peer-to-peer
network function as both server and client. The security and maintenance of the network
are distributed to each system. If one of the systems in a peer-to-peer network fails, the
other systems continue to function.

UNIX/Linux operating systems are multiuser systems, enabling many people to access
and share the computer simultaneously. These are also multitasking operating systems,
which means they can perform more than one task at one time.

UNIX/Linux systems can be configured as dedicated servers in a server-based network,
client workstations in a server-based network, client/server workstations in a peer-to-
peer network, or stand-alone workstations not connected to a network.

The concept of the layered components that make up an operating system originated
with UNIX.Layers of software surrounding the computer system’s inner core protect the
vital hardware and software components and manage the core system for users.

Linux is a UNIX-like operating system that you install on your PC. It can run alone or
it can coexist with other operating systems such as Windows. Like UNIX, Linux is
portable, which means it runs on computers from PCs to mainframes.

In UNIX/Linux, you communicate with the operating system programs through an
interpreter called the shell, which interprets the commands you enter from the keyboard.
UNIX/Linux provide several shell programs, including the Bourne, Korn, and C shells.
The Bash shell provides enhanced features from the Bourne and the Korn shells. It is the
most popular shell on the Linux system.

In UNIX/Linux, the system administrator sets up accounts for ordinary users. To set up
your account and to protect the privacy and security of the system,you select and give the
system administrator your user name and password. You can log in to any UNIX or Linux
system anywhere as long as you have a user account and password on the host (server)
computer. You can also use UNIX/Linux, Microsoft Windows, and Mac OS Telnet or
SSH programs to log in to a remote UNIX/Linux system.

The commands you type to work with UNIX/Linux have a strict syntax that you can learn
by referring to the online manual called the man pages. Use the man program to display the
syntax rules for a command. Use the whatis command to see a brief description of a
command.Use the who command to list who is logged in and where they are located.Use the
cal command to display the system calendar for all or selected months. Use the passwd
command to change your account’s password. To log out when you decide to stop using
UNIX/Linux,use the exit or logout command from a system that does not use a GUI.Or,on
a GUI-based system, use the Log Out option that you access from the menus.

Chapter Summary 27

1

Most shells provide basic command-line editing capabilities and keep a history of your
most recently used commands. Use the up and down arrow keys to scroll backward and
forward through the list of recently used commands. You can enter multiple commands
on a single command line by separating them with a semicolon. UNIX/Linux execute
the commands in the order in which you enter them.

You can use the“view”commands to examine the contents of files.Use the cat command
to create a file by typing information from the keyboard. Use the less and more commands
to display multipage documents. Use the head and tail commands to view the first or last
few lines of a file.

COMMAND SUMMARY: REVIEW OF CHAPTER 1 COMMANDS

Command Purpose Options Covered in This Chapter
cal Shows the system calendar -j displays the Julian date format.

-s shows Sunday as the first day in
the week.
-m shows Monday as the first day in
the week.
-y shows all of the months for the
current year.

cat Displays multiple files -n displays line numbers.
clear Clears the screen
date Displays the system date -u displays the time in Greenwich

Mean Time.
-s resets the date and time.

exit or
logout

Exits UNIX/Linux when a GUI is
not used

head Displays the first few lines of
a file

-n displays the first n lines of the
specified file.

less Displays a long file one screen
at a time, and you can scroll up
and down

man Displays the online manual for
the specified command

-d prints information for debugging.
-f gives a short description of the
command (same as using the whatis
command)
-K finds a certain string by searching
through all of the man information.

more Displays a long file one screen
at a time, and you can
scroll down

passwd Changes your UNIX/Linux
password

-e expires a password causing the
user to have to re-create it
-l locks an account
-S displays the password status of an
account

28 Chapter 1 The Essence of UNIX and Linux

Command Purpose Options Covered in This Chapter
tail Displays the last few lines of

a file
-n displays the last n lines of the
specified file.

whatis Displays a brief description of a
command

who Allows you to see who is logged
in (also whoami shows the
account currently logged in and
who am i displays information
about the account session)

-H displays column headings.
-u displays session idle times.
-q displays a quick list of users.
-b verifies when the system was last
booted.

KEY TERMS

argument —Text that provides UNIX/Linux with additional information for executing a
command. On the command line, an argument name follows an option name, and a space
separates the two. Examples of arguments are file and directory names.
authentication — The process of verifying that a user is authorized to access a particular
computer, server, network, or network resource, such as Telnet or FTP.
Bash shell — A UNIX/Linux command interpreter (and the default Linux shell).
Incorporates the best features of the Bourne shell and the Korn shell. Its name is an acronym
for “Bourne Again Shell.”
Berkeley Software Distribution (BSD) — A distribution of UNIX developed through the
University of California at Berkeley, which first distributed the BSD UNIX version in 1975.
Bourne shell — The first UNIX/Linux command interpreter, developed at AT&T Bell
Labs by Stephen Bourne.
C shell — A UNIX/Linux command interpreter designed for C programmers.
case sensitive — A property that distinguishes uppercase letters from lowercase letters—for
example, John differs from john. UNIX is case sensitive.
client — A computer on a network running programs or accessing files from a mainframe,
network server, or host computer.
command —Text typed after the command-line prompt which requests that the computer
take a specific action.
command line — The onscreen location for typing commands.
domain name — A name that identifies a grouping of computer resources on a network.
Internet-based domain names consist of three parts: a top-level domain (such as a country or
organization type), a subdomain name (such as a business or college name), and a host name
(such as the name of a host computer).
File Transfer Protocol (FTP) — An Internet protocol for sending and receiving files.
graphical user interface (GUI) — Software that transforms bitmaps into an infinite
variety of images, so that when you use an operating system you see graphical images.
host — See server.
Internet Protocol (IP) address — A set of four numbers (for the commonly used IP
version 4) separated by periods—for example, 172.16.1.61—and used to identify and access
remote computers on a network or over the Internet.

Key Terms 29

1

kernel — The basic operating system, which interacts directly with the hardware and
services user programs.
Kernel mode — A means of accessing the kernel. Its use is limited to the system
administrator to prevent unauthorized actions from interfering with the hardware that
supports the entire UNIX/Linux structure.
Korn shell — A UNIX/Linux command interpreter that offers more features than the
original Bourne shell. Developed by David Korn at AT&T Bell Laboratories.
log in —A process that protects privacy and safeguards a multiuser system by requiring each
user to type a user name and password before using the system.
mainframe — A large computer that has historically offered extensive processing, mass
storage, and client access for industrial-strength computing.Mainframes are still in use today,
but many have been replaced by PC-type computers that are designed as servers with
powerful processing and disk storage capabilities.
man pages — The online manual pages for UNIX/Linux commands and programs that
can be accessed by entering man plus the name of the command or program.
multitasking system — An operating system that enables a computer to run two or more
programs at the same time.
multiuser system — A system in which many people can simultaneously access and share
a server computer’s resources. To protect privacy and safeguard the system, each user must
type a user name and password in order to use, or log in to, the system.UNIX and Linux are
multiuser systems.
network — A group of computers connected by network cable or wireless communica-
tions to allow many users to share computer resources and files. It combines the convenience
and familiarity of the personal computer with the processing power of a mainframe.
operating system (OS) — The most fundamental computer program, it controls all the
computer’s resources and provides the base upon which application programs can be used or
written.
options — The additional capabilities you can use with a UNIX/Linux command.
ordinary user — Any person who uses the system, except the system administrator or
superuser.
output redirection operator —The greater-than sign (>) is one example of a redirection
operator. Typing > after a command that produces output creates a new file or overwrites
an existing file and then sends output to a disk file, rather than to the monitor.
peer-to-peer network — A networking configuration in which each computer system on
the network is both a client and a server. Data and programs reside on individual systems, so
users do not depend on a central server. The advantage of a peer-to-peer network is that if
one computer fails, the others continue to operate.
personal computer (PC) — A single, stand-alone machine, such as a desktop or laptop
computer, that performs all input, output, processing, and storage operations.
portability — A characteristic of an operating system that allows the system to be used in
a number of different environments, particularly on different types of computers.UNIX and
Linux are portable operating systems.

30 Chapter 1 The Essence of UNIX and Linux

Portable Operating System Interface for UNIX (POSIX) — Standards developed by
experts from industry, academia, and government through the Institute of Electrical and
Electronics Engineers (IEEE) for the portability of applications, including the standardiza-
tion of UNIX features.
root — The system administrator’s unique user name; a reference to the system adminis-
trator’s ownership of the root account and unlimited system privileges. Also, root has two
other meanings: (1) the basis of the treelike structure of the UNIX/Linux file system and the
name of the file (root directory) located at this level and (2) the home directory for the root
account.
Secure Shell (SSH) — A form of authentication developed for UNIX/Linux systems to
provide authentication security for TCP/IP applications, including FTP and Telnet.
server —The computer that has a network operating system and, as a result, can accept and
respond to requests from user programs running on other computers (called clients) in the
network. Also called a host.
server-based network — A centralized approach to networking, in which client com-
puters’ data and programs reside on the server.
server operating system — An operating system that controls the operations of a server
or host computer, which accepts and responds to requests from user programs running on
other computers (called clients) on the network.
shell — An interface between the user and the operating system.
superuser — See system administrator.
System V (SysV) — A version of UNIX originating from AT&T Bell Labs and first
released as System 3 in the early 1980s as a commercial version of UNIX. Today,commercial
and free versions based on SystemV are available.
syntax — A command’s format, wording, options, and arguments.
system administrator —A user who has an account that can manage the system by adding
new users, deleting old accounts, and ensuring that the system performs services well and
efficiently for all users.
Telnet — An Internet terminal emulation program.
terminal — A device that connects to a server or host, but consists only of a monitor and
keyboard and has no CPU. Sometimes called a dumb terminal.
terminal window — A special window that is opened from a UNIX or Linux GUI
desktop and that enables you to enter commands using a shell, such as the Bash shell.
User mode — A means of accessing the areas of a system where program software resides.

Key Terms 31

1

REVIEW QUESTIONS

1. Your boss drops by your office in a hurry to ask you to attend a meeting at 10:30 on
Friday morning and you can’t find a pen to make a note as a reminder. What Linux
command can you use to make a quick note to store in a file called Meeting?
a. note: Meeting
b. cat > Meeting
c. Meeting >> note
d. record = Meeting

2. Before you make the note in Question 1, you decide to determine Friday’s date, so
that you can include it in your note. What Linux command can you use to quickly
determine Friday’s date?
a. cal
b. date -cal
c. weekday
d. time -d

3. While you are typing a command, you misspell the name of a file you want to
specify with the command. Which of the following command-line key combinations
enables you to go back and fix your error?
a. Ctrl+b
b. Alt+End
c. Ctrl+2
d. Shift+Alt+m

4. You haven’t changed your user account password for several months and now decide
to create a new password. Which of the following commands should you use?
a. changepass
b. newpass
c. cat -p
d. passwd

5. You have forgotten the purpose of the -n option in the cat command. Which of the
following can you enter at the Linux command line to find out what the -n option
does when used with cat?
a. what’s cat -n
b. ? cat
c. man cat
d. find -n for cat

32 Chapter 1 The Essence of UNIX and Linux

6. Which of the following is the UNIX distribution originally developed through
AT&T Bell Labs?
a. SUSE
b. BSD
c. TurboUNIX
d. SystemV

7. Which shell is used by Linux as the default command interpreter?
a. Bash shell
b. Korn shell
c. Bourne shell
d. C shell

8. You need to type in a line of text to the end of a file called Annual_Report. Which
of the following commands enables you to add the text?
a. add = Annual_Report
b. append < Annual_Report
c. cat >> Annual_Report
d. append @ Annual_Report

9. SSH can be used to .
a. analyze the security on a UNIX or Linux computer
b. log in remotely to another computer on a network
c. quiet the volume of the sound card
d. quickly switch to another user account on the local computer

10. This is your first day on the job as a Linux server administrator and your boss gives
you the password for root. What is root?
a. the name of a practice user account
b. a program used to determine the users on a Linux server and what they are doing
c. the lowest layer or branch of security, because you must work your way up in levels

of security to prove to a UNIX/Linux system that you have the skills to be an
administrator

d. the administrative account that has complete access to a UNIX/Linux system

11. In your document files, you often put the date you created the file and the date you
last modified it in the last two lines of the file. What command can you use to look
at only the last two lines of the file, called project?
a. show -l 2 project
b. display project -2
c. tail -n 2 project
d. less/2 project

Review Questions 33

1

12. You are working with a new colleague who has entered the man command, but who
does not know how to end the man session to return to the regular command
prompt. What keystrokes do you show your colleague to end the man session?
(Choose all that apply.)
a. q
b. Alt+s
c. Shift+Spacebar
d. Ctrl+Alt+Del

13. Which of the following are examples of Linux distributions? (Choose all that apply.)
a. SUSE Linux Enterprise
b. Mandriva
c. Fedora
d. Red Hat Enterprise Linux

14. Which of the following commands enable you to view the contents of a file?
(Choose all that apply.)
a. less
b. cat
c. grok
d. whatis

15. When you enter the who command, what information do you see? (Choose all that
apply.)
a. the users on the local system
b. the owner of the local system
c. a listing of all authorized users on a system, regardless of whether or not they are

logged in
d. a listing of all computers on your local network

16. You have been entering lots of commands and now your terminal window is clut-
tered will all kinds of activity. What command can you use to clear your window of
the clutter?
a. clean
b. freshstart
c. new
d. clear

34 Chapter 1 The Essence of UNIX and Linux

17. You share a Linux computer with a coworker. What is the best way to exit your
UNIX or Linux session when you are done?
a. Turn off the computer using the on/off switch.
b. Use the Shut Down option even though your coworker may want to access the

computer after you, because this is the best way to fully reinitialize security for the
next user session.

c. Use the over >> out command.
d. Use a GUI menu option to log out or enter an appropriate command for the shell

you are using, such as exit or logout (if there is no GUI desktop in use).

18. You work at a law firm with eight other people. All of the eight computers on the
firm’s network use wireless connections to communicate with one another without a
server. This is an example of which of the following?
a. a central network
b. a peer-to-peer network
c. a stand-alone serial network
d. a Telnet spoke network with no hub

19. On which of the following types of computers might you find a UNIX or Linux
operating system? (Choose all that apply.)
a. a mainframe computer
b. a desktop PC
c. a server
d. a workstation used for scientific research

20. You’re in a hurry and have just executed a command to print the contents of a file,
and you decide you want another copy of the printout. What key sequence can you
use to repeat the last command, which was used to print the file?
a. Press Alt+P.
b. Press the Backspace key.
c. Press the up arrow key one time.
d. Press Shift+R.

21. Your international company is scheduling a meeting among managers in Canada, the
United States, Spain, Sweden, and Hong Kong on the basis of Greenwich Mean
Time (GMT). What command enables you to display the current time in GMT?
a. time -g
b. date -u
c. cal -t
d. hour -g

22. How would you describe the purpose of the more command?

Review Questions 35

1

23. What is the purpose of Telnet?

24. You enter Cal on the command line to view a calendar but only see an error
message. Explain why you got the error message.

25. Explain how you can run more than one command on a single command line.

HANDS-ON PROJECTS

A valuable way to enhance your understanding of the UNIX and Linux operating systems
is to experience them through Hands-on Projects. Each chapter in this book offers many
Hands-on Projects to give you a variety of ways to practice what you learn. For these
projects, you need your own user account. Also, for a few projects, you need access to the
root account, which is the administrative account used in UNIX and Linux. Unless the
introduction to a project specifies that you need to be logged in as root, you should use your
own account by default. This follows the practice of UNIX/Linux administrators, who
typically only use the root account when necessary.

Project 1-1
You can remotely access a computer running UNIX/Linux from another computer by
using Telnet. In this project, you learn how to access a UNIX/Linux computer from a
Windows 2000, Windows XP (Home, Professional, or Media Center), or Windows Vista
computer using Telnet. The Telnet service should be started on your Windows 2000/XP/
Vista computer. (See the following Tip or check with your instructor for help, if it is not.)
Also, if your computer has firewall software, this should be configured to enable Telnet.
(Check the documentation for your firewall.) Further, Telnet should be enabled on the
UNIX/Linux computer you access. (See the following note.) Appendix A explains more
about using and configuring Telnet. Ask your instructor for the name and domain desig-
nation or the IP address for the remote UNIX/Linux computer. You also need an account
and password on a computer running Windows 2000/XP/Vista and an account and
password on the remote UNIX/Linux computer.

To use Telnet to access a UNIX/Linux computer remotely:

1. Click Start, point to Programs (in Windows 2000) or All Programs (in
Windows XP/Vista), point to Accessories, and click Command Prompt.

2. In Windows 2000/XP/Vista, type telnet and the name and domain or IP address of
the remote UNIX/Linux computer, such as telnet 169.254.42.2 (see Figure 1-12).
Press Enter.

3. Type the account name and press Enter.

4. Type the password and press Enter.

36 Chapter 1 The Essence of UNIX and Linux

5. After you are logged in, close the session. Depending on the system you access, you
might need to log out in one of two ways. One way is by typing c and pressing
Enter to close the connection. Next, type exit and press Enter to exit Telnet. The
second way to end the session is to type logout and press Enter. Then, if necessary,
type c and press Enter, and then type exit and press Enter.

6. Close the Command Prompt window.

Telnet is disabled by default in Windows Vista. To enable Telnet in Windows
Vista, log on to an account with administrator privileges, click Start, click Control
Panel, click Programs (from Control Panel Home display mode), under Programs
and Features click Turn Windows features on or off, click Continue, check the
box for Telnet Client, and click OK.

On the UNIX/Linux host server, Telnet should also be enabled, such as by
editing the /etc/xinetd.d/telnet file and changing disable=yes to disable=no.
On many UNIX/Linux systems, you can also log in to the root and enter ~/
.telnetrc to configure Telnet parameters. Further, you may need to start the
Telnet or SSH service. On many UNIX/Linux systems, to start Telnet or SSH
services, log in to root and enter either service telnet start or telnet start for
Telnet, or to start the SSH service, enter service sshd start or sshd start. Keep in
mind that Telnet is not very secure and so, if possible, it is better to use SSH.

Figure 1-12 Using Telnet from Windows Vista

Hands-On Projects 37

1

In terms of firewall security on the host server, you can enable Telnet and SSH
communications through the firewall in Fedora and Red Hat Enterprise Linux
(with the GNOME desktop installed) by using these steps: Click the System
menu, point to Administration, click Security Level and Firewall, enter the root
password (if requested) and click OK, check the boxes for Telnet and SSH, click
OK, and click Yes. If you are using SUSE Linux 10.0 or earlier (with GNOME),
click the Desktop menu, click Yast, enter the root password (if requested) and
click Continue, click Security and Users in the left pane, click Firewall in the right
pane, click Allowed Services in the left pane, and ensure that SSH is listed under
the Allowed Service column. If SSH is not listed, open the Service to Allow list
box, select SSH (Telnet is not listed as an option), click the Add button, click
Next, and click Accept. In SUSE Linux 10.2 and later, click the Computer menu
in the Panel at the bottom of the desktop, click Control Center, click Yast, enter
the root password (if requested), and click Continue. Click Security and Users in
the left pane, click Firewall in the right pane, click Allowed Services in the left
pane, and ensure that SSH is listed under the Allowed Service column. If SSH is
not listed, open the Service to Allow list box, select SSH (Telnet is not listed as an
option), click the Add button, click Next, and click Accept. If none of these steps
work, consult Appendix A.

Project 1-2
In this project, you use SSH from Fedora,Red Hat Enterprise Linux,or SUSE.For this project,
you need the name of the remote account and host name of the remote computer. You also need
the password for the remote account. Further, SSH should be enabled via the Fedora, Red Hat
Enterprise Linux, or SUSE firewall software (see the preceding note). Step 1 provides instruc-
tions for opening a terminal window on systems using the GNOME desktop. If your system
does not use a desktop, such as GNOME, go to Step 2.

To use SSH from Fedora, Red Hat Enterprise Linux, or SUSE to access another
UNIX/Linux computer remotely:

1. On newer Fedora and Red Hat Enterprise Linux systems (such as Fedora Core 2
and later), click Applications, point to Accessories, and click Terminal. On older
Fedora or Red Hat Enterprise Linux systems, click Main Menu, point to System
Tools, and click Terminal. In SUSE Linux 10.0 and earlier, click Applications,
point to System, point to Terminal, and click Gnome Terminal (or you can click
other terminal window options, such as Konsole or X Terminal). In SUSE Linux
10.2 and later, click the Computer menu in the Panel, click More Applications,
click System in the left pane (or scroll to the System section in the right pane), and
click Gnome Terminal.

2. At the command prompt, type ssh -l plus the account name and IP address or host
name, such as ssh -l trbrown 192.168.0.5, and press Enter. (If this is a first-time con-
nection and you are asked whether you want to continue connecting, type yes and
press Enter.)

38 Chapter 1 The Essence of UNIX and Linux

3. Type the account’s password and press Enter to view a terminal window, as shown
in Figure 1-13. (Depending on the configuration of the network and SSH, you
might see the following message after entering the password:“No xauth data; using
fake authentication data for X11 forwarding.”)

4. Type logout and press Enter to log out of the remote computer.

5. Type exit and press Enter to exit the terminal window.

To open a terminal window and use SSH from Knoppix, click the Konsole icon in
the Panel or click the K Menu (the left-most icon on the Panel in the bottom of
the screen), point to Utilities, and click Terminal. Use the ssh command as
described in Steps 2 through 5. To use SSH from a Mac OS X Panther or Tiger
computer, click the Go menu, click Utilities, and double-click Terminal. Use the
ssh command as you did in Steps 2 through 4. To close the terminal window,
click the Terminal menu and click Quit Terminal.

Figure 1-13 Using SSH from a GNOME terminal window to access another account on a
remote UNIX/Linux computer

Hands-On Projects 39

1

Project 1-3
This project shows you how to use the date command. You should already be at the
command line or have a terminal window open for the project. (See Project 1-2, Step 1, for
instructions to open a terminal window.)

To display your system date:

1. Type date in the command line, and press Enter.

A date similar to the following appears:

Sat Nov 21 21:30:09 EST 2009

You might see the abbreviation EDT (Eastern Daylight Time) instead of EST (Eastern
Standard Time), or another time zone abbreviation, such as PDT (Pacific Daylight
Time) or CST (Central Standard Time). Notice also that UNIX/Linux use a 24-hour
clock.

2. Type Date in the command line, and press Enter. You see the following system
error message:

bash: Date: command not found

The system error message appears because you must enter the date command, like most
UNIX/Linux commands, in lowercase letters.

To display your system date in UTC:

1. Type date -u in the command line, and press Enter.

A date similar to the following appears:

Sat Nov 21 23:43:148 UTC 2009

Project 1-4
In this project, you use the cal command to display the current calendar, a Julian date
calendar, and the historical calendar for July 1776.

To use the cal command:

1. Type cal in the command line, and press Enter. What calendar do you see?

2. Type cal -j 2009 in the command line, and press Enter. What type of calendar
appears?

3. To determine the day of the week when the Declaration of Independence was
signed, type cal 7 1776 in the command line, and press Enter. You should see a
calendar similar to the one in Figure 1-14. In this case, the month and year are the
command arguments.

40 Chapter 1 The Essence of UNIX and Linux

If you type cal july 1776, you see an error message similar to the following
because you must use numbers, such as 7, to indicate months, such as July.
cal: illegal month value: use 1-12

Project 1-5
The who command is valuable for determining who is currently logged in to a system. In this
project, you try out the who command using several options.

To use the who command to determine who is logged in to the system:

1. Type who in the command line, and press Enter.

2. You see a list showing user names, the terminals (lines) they are using, and the dates
and the times they logged in. For example, for your connection you will likely see
the lines pts/1, :0, or both, which show you are logged on locally. Users who are
logged on remotely will have lines that begin with tty, such as tty1, tty2, and so on.

3. To display a line of column headings with the who command’s output, type who -H
and press Enter.

If any current users are logged in from a remote host, the COMMENT column shows
the name of the host.

Figure 1-14 Using the cal command to show the calendar for July,1776

Hands-On Projects 41

1

4. Idle time is the amount of time that has elapsed with no activity in a user’s session.
Type who -u and press Enter to see each user’s idle time. The following is a sample
listing of who information. (The final value is the process ID, but you might also see a
comment after the process ID.)

mpalmer pts/1 2009-11-22 08:15 4230 (:0.0)
sjones tty1 2009-11-22 07:56 4229 (:29.0)
rsanchez tty3 2009-11-22 08:21 4238 old

The output shows that the person logged in as mpalmer has been active in the last
minute. The account sjones has no activity in the last 29 minutes. The word “old” on
rsanchez’s line indicates no activity in the past 24 hours.

5. If you want to use multiple options on the same command line, type them all after a
single hyphen. For example, type who -uH and press Enter to see a list of users
with idle times and column headings.

6. Type who -q and press Enter to see a quick list of current users. You see a list simi-
lar to the following, which shows only login names and the total number of users on
the system.

mpalmer sjones rsanchez
users=3

7. To determine which terminal you are using or what time you logged in, type who
am i in the command line, and press Enter (see Figure 1-15). What information
appears? If you are not certain, type who am i -H and press Enter to view column
headings. (Another option is to type whoami as one word, which only displays your
account name or user ID, in case you are not certain which account you are cur-
rently using; this option is often used by system administrators. Also try entering who
mom likes to see what you find out.)

If you provide two arguments to the who command, you see the output
described in Step 7. For example, you can type who are you or who x x to see
the same information. Traditionally, UNIX/Linux users type who am i to see
information describing their session.

Another command that is similar to who is the w command. System adminis-
trators often use the w command to see not only who is logged in, but also what
system resources, such as CPU resources, are being used.

42 Chapter 1 The Essence of UNIX and Linux

Project 1-6
At this point, your screen might seem filled with commands and their results. Use the clear
command anytime you want a clean slate. This project enables you to clear the screen now.

To clear the screen:

1. Type clear on the command line, and press Enter. The command prompt is now in
the upper-left corner of your screen.

Project 1-7
You can use the manual pages to learn more about a command or program (if the program
is documented in the manual pages). In addition, the whatis command provides a quick
summary of specific commands and programs. You use both the man and whatis commands
in this project. The database for the whatis command should already be created prior to
using the command.

To display online help using man:

1. Type man who in the command line, and press Enter. You see the explanation of
the who command illustrated in Figure 1-16.

2. Press Enter one or more times to view additional lines of text. Next press the
Spacebar to view additional pages of documentation.

3. Type q to exit the man program.

Figure 1-15 Using who am i

Hands-On Projects 43

1

4. Type man man and press Enter. You see the man pages describing the man
command. What is the purpose of the -M option?

5. Type q to exit the man program.

To display a brief description of a command with the whatis command:

1. Type whatis who and press Enter.

2. You see a summary of the who command, as follows:

who (1p) – display who is on the system
who (1) - show who is logged on

Project 1-8
When you type a command and make a spelling or other mistake, you do not need to retype
the entire command. You can use the command-line edit functions instead. In this project,
you practice using the edit functions.

To edit a command typed on the command line:

1. Begin by determining the shell you are using. To determine the shell, type echo
$SHELL and press Enter. If you are using the Bash shell, you see the following output:

/bin/bash

If you are not using the Bash shell, type bash and press Enter.

2. Type who am I, but do not press Enter.

Figure 1-16 Using man to find out more about the who command

44 Chapter 1 The Essence of UNIX and Linux

3. Press the left arrow key to move the cursor to the letter a in the word “am.”

4. Press Alt+d to delete the word “am.”

5. Press Ctrl+k to delete the command line from the current cursor position.

6. Press Ctrl+a to move the cursor to the beginning of the command line.

7. Press Ctrl+k again to delete the command line.

8. Retype the command who am I but do not press Enter.

9. Press Ctrl+b eight times or until the cursor is positioned at the beginning of the line.

10. Press Alt+l three times. Each time you press the key combination, the cursor moves
to the position just before the first character of the next word.

11. Press Ctrl+a, and then press Ctrl+k to clear the command line.

Project 1-9
You can execute multiple commands on one command line by using a semicolon between
commands. You practice running multiple commands in this project.

To enter multiple commands on the command line:

1. Type date ; cal and press Enter to view the current date and this month’s calendar.
(Using the semicolon between commands works whether or not you put spaces
before and after it. For example, you can enter either date ; cal or date;cal.)

2. Type date ; who -uH and press Enter (see Figure 1-17). The date command pro-
duces the first line of the output; the remainder of the output is the result of the who
command.

Project 1-10
In this project, you use the command history capability of the Bash shell to recall commands
you have used earlier. As you’ll discover the more you use UNIX/Linux, this command-line
capability saves lots of time otherwise spent on repeated typing.

To use the command-line history:

1. Type date and press Enter.

2. Type who and press Enter.

3. Type who -uH and press Enter.

4. Type clear and press Enter.

5. Press the up arrow key four times. The date command is recalled to the command
line. Do not press Enter.

6. Press the down arrow key twice. What command do you see? Press Enter to
execute the command.

Hands-On Projects 45

1

Project 1-11
Your password is your means to protect your user account from others who might attempt
to access it without your authorization. Plan to change your password often to keep your
account secure. In this project, you learn how to change your password.

To change your password:

1. Type passwd after the command prompt, and press Enter.

2. Type your current password and press Enter. (On some systems, if you are logged in
to the root account, you skip this step and go directly to Step 3.)

3. Type your new password and press Enter. Your new password does not appear on
the screen as you type.

4. Retype your new password and press Enter so that UNIX/Linux can confirm the
new password.

If the password you retype as confirmation does not match your new password,
UNIX/Linux asks you to enter the password again. UNIX/Linux might also ask
you to choose a different password because you chose one that is too short, too
easily guessed, or one you have used previously.

Figure 1-17 Executing multiple commands on one command line

46 Chapter 1 The Essence of UNIX and Linux

Project 1-12
The cat command has several purposes, but one of the most commonly used is to view the
contents of a file. For example, in this project, you use the cat command to view a file called
shells that resides in the /etc directory. This file contains a list of valid shell programs
available through UNIX/Linux.

To use cat to view the shells file:

1. Type cat /etc/shells after the command prompt, and press Enter (see Figure 1-18).
(The forward slash (/) is used to indicate a directory or folder change.) What shells
do you see on your system?

2. Sometimes, it is helpful to see a file’s contents displayed with line numbers. The -n
option causes the cat command to display a number at the beginning of each line of
output. Type cat -n /etc/shells and press Enter. You see the same list of shells as
before, but this time a number precedes each line.

Project 1-13
You can also view another file in the /etc directory called termcap. This multiple-page file
contains many specifications about all terminals supported on a Linux system. The cat

Figure 1-18 Using the cat command to view the contents of a file

Hands-On Projects 47

1

command is not a practical way to view this file, which is longer than one screen. However,
as you learn in this project, you can use the more and less commands to read a large file, screen
by screen.

To view the contents of large files on the screen with the more command:

1. Type more /etc/termcap after the command prompt, and press Enter (see
Figure 1-19).

2. Press the Spacebar to scroll to the next screen.

3. Terminate the display by typing q (for quit).

To view the contents of large files on the screen with the less command:

1. Type less /etc/termcap after the command prompt, and press Enter. You see a
long file of text on your screen.

2. Press the down arrow key several times to scroll forward in the file one line at a time.

3. Press the up arrow key several times to scroll backward in the file one line at a time.

4. Press Pg Dn (or Page Down), Spacebar, z, or f to scroll forward one screen.

5. Press Pg Up (or Page Up) or b to return to a previous screen.

6. Terminate the display by typing q (for quit).

Figure 1-19 Using the more command to view, screen by screen, the contents of a
large file

48 Chapter 1 The Essence of UNIX and Linux

For Knoppix users, there is no termcap file in the /etc directory. Replace termcap
with mailcap by using /etc/mailcap in the steps for this project and in
Project 1-14.

Project 1-14
Sometimes, you only need to glimpse part of a file’s contents to determine what is stored in
the file. In this project, you use the head command to view the beginning 10 lines in a file,
and then you use the tail command to view the final 10 lines in the file.

To view the first and final few lines of a file:

1. Type head /etc/termcap and press Enter to see the first 10 lines of the /etc/
termcap file.

2. The -n option specifies the number of lines the head command displays. Type head -n 5
/etc/termcap and press Enter. You see the first five lines of the /etc/termcap file.

3. The tail command shows you the final few lines of a file. Like the head command, tail
displays 10 lines by default. Type tail /etc/termcap and press Enter to see the final
10 lines of the /etc/termcap file.

4. The -n option specifies the number of lines the tail command displays. Type tail -n
5 /etc/termcap and press Enter. You see the final five lines of the /etc/termcap file.

Project 1-15
You already used the who command to find out who is logged in to a computer. In this
project, you use the same command with the > redirection operator to save this information
in a text file.

To save to a file that lists persons logged in to the system:

1. Type who > current_users after the command prompt, and press Enter. The who
command output does not appear on the screen, but is redirected to a new disk file
called current_users. UNIX/Linux places this text file in the active directory (the
directory on the disk where you are currently using the system).

2. Type cat current_users after the command prompt, and press Enter to see a list of
users currently using the system, such as the following:

mpalmer pts/1 2009-11-23 15:14 (:0.0)

Hands-On Projects 49

1

Project 1-16
You can also use the output redirection operator with the cal command to save a calendar in
a text file. For example, assume that you are involved in a development project with a
projected deadline in the year 2009. You can save the calendar in a text file.

To save the year 2009 calendar in a file:

1. Type cal 2009 > year_2009 after the command prompt, and press Enter. This cre-
ates a text file called year_2009.

2. Type less year_2009 and press Enter to see the calendar created by the previous
command. Use the arrow keys, Pg Dn (or Page Down), Pg Up (or Page Up), and
other keys to scroll through the file.

3. Terminate the display by typing q (for quit).

Project 1-17
As you work with UNIX/Linux,you remember that your supervisor asked you to complete
a few tasks by the end of the week. In this project, you decide to create a notes file of task
reminders by using the cat command with the > redirection operator.

To create a new file:

1. Type cat > notes after the command prompt, and press Enter.

2. Type the following: Remember to order a new CD-ROM, and send the
report by Thursday, and press Enter.

3. Press Ctrl+d.

4. To review the file you just created, type cat notes after the command prompt, and
press Enter. The sentence you typed in Step 2 appears on the screen.

After you create the notes file, you remember that your supervisor asked you to complete
another task. You can append the reminder to the existing notes file. You also want to
include the appropriate monthly calendar in the file for reference.

To add information to an existing file:

1. Type cat >> notes after the command prompt, and press Enter.

2. Type the following: Also remember to make reservations for Sept.
conference, and press Enter.

3. Press Ctrl+d.

4. To add the September calendar to your notes, type cal 9 2009 >> notes and
press Enter.

5. Type less notes and then press Enter to review the file (see Figure 1-20).

6. Type q to exit the file.

50 Chapter 1 The Essence of UNIX and Linux

7. Exit the command-line display by closing the terminal window or by terminating
your Telnet or SSH session.

DISCOVERY EXERCISES

1. Use the whatis command to determine the purpose of the ls command.

2. Use the man program to find out what the -R option does when used with the date
command.

3. Use the man program to determine what other commands you should also see in
relation to the clear command.

4. Use the cal command to determine on what day of the week you were born.

5. Use the cal command to determine which years between 2006 and 2015 are leap years.

6. Clear the screen, and view the online manual to determine how to display today’s
date in UTC.

7. Display the current UTC.

8. Create a file called month containing the current month.

9. View the contents of the month file you created in Exercise 8.

10. Use the who command to determine the idle time for users currently logged in, but
output that information to a file called users_info. Next, view the file you created.

Figure 1-20 Viewing the contents of the notes file

Discovery Exercises 51

1

11. View the files, month and users_info, in sequence using only one command-line
sequence of commands.

12. View the files month and users_info in sequence by using:

The less command

The more command

13. Create a file called who_info that contains the documentation for the who
command. Next, use the less command to view the who_info file contents, and scroll
forward and backward through the information. Then use the tail command to view
the final 12 lines of the who_info file. Finally, use the head command to view the
first 12 lines of the who_info file.

14. Create a file called favorite_foods, and list your favorite foods, entering five or six or
more. Press Enter after each favorite food so it appears on its own line (make certain you
also press Enter after the final food item). After the file is created, add two more foods
you like that are not on the list (press Enter after the final food item). View the list of
foods to make certain the two items you added appear at the end of the list.

15. View the documentation for who, and then view the documentation for w. How are
these commands similar?

16. Run the who -uH and w commands using one command-line sequence to compare
the results.

17. Determine when the computer on which you are working was last booted.

18. Use the command-line history function to determine the most recent two com-
mands you entered.

19. Run the who -H, cal 2009, and clear commands using one command-line sequence.
What do you end up with on the screen?

20. Use the history function to retrieve the command line you used in Exercise 19. Use
the edit function to remove the word “clear” and replace it with “date.” Next, go to
the beginning of “cal” and delete the text on the line from “cal” to the end. Now,
change the -H to -u. Finally, add “date -u” so that your final command-line entry is
who -u ; date -u. Execute the command-line entries.

52 Chapter 1 The Essence of UNIX and Linux

EXPLORING THE UNIX/LINUX

FILE SYSTEMS AND FILE SECURITY
After reading this chapter and completing the

exercises, you will be able to:
♦ Discuss UNIX/Linux file systems

♦ Explain partitions and inodes

♦ Understand the elements of the root hierarchy

♦ Use the mount command

♦ Explain and use paths, pathnames, and prompts

♦ Navigate the file system

♦ Create and remove directories

♦ Copy and delete files

♦ Configure file permissions

An essential reason for deploying UNIX/Linux is to store and use
information. A file system enables you to create and manage information,

run programs, and save information to use later. Through a file system, you can
protect information and programs to ensure that only specific users have access.
You can also copy information from one location to another, and you can
delete information you are no longer using.

In this chapter, you explore UNIX/Linux file systems, including the basic
concepts of directories and files and their organization in a hierarchical tree
structure. You learn to navigate the file system, and then you practice what
you’ve learned by creating directories and files and copying files from one
directory to another. You also have the opportunity to set directory and file
permissions, which is vital for security in a UNIX/Linux multiuser system.

CHAPTER

2

53

UNDERSTANDING UNIX/LINUX FILE SYSTEMS

In UNIX/Linux, a file is the basic component for data storage. UNIX/Linux consider
everything with which they interact a file, even attached devices such as the monitor,
keyboard, and printer. A file system is the UNIX/Linux system’s way of organizing files on
storage devices, such as hard disks and CDs or DVDs. A physical file system is a section
of the hard disk that has been formatted to hold files. UNIX/Linux consist of multiple file
systems that form virtual storage space for multiple users. Virtual storage in this sense is
storage that can be allocated using different disks or file systems (or both), but that is
transparently accessible as storage to the operating system and users. The file system’s
organization is a hierarchical structure similar to an inverted tree; that is, it is a branching
structure in which top-level files contain other files,which in turn contain other files.Figure
2-1 illustrates a typical UNIX/Linux hierarchical structure.

One reason why UNIX and Linux systems are so versatile is that they support many
different file systems. Some file systems are native to UNIX/Linux and others provide
compatibility with different operating systems, such as Windows.

Most versions of UNIX and Linux support the UNIX file system (ufs), which is the
original native UNIX file system. ufs is a hierarchical (tree structure) file system that is
expandable, supports large amounts of storage, provides excellent security, and is reliable. In
fact, many qualities of other file systems are modeled after ufs. ufs supports journaling, so
that if a system crashes unexpectedly, it is possible to reconstruct files or to roll back recent
changes for minimal or no damage to the integrity of the files or data. Journaling means that
the file system keeps a log (journal) of its own activities. If the operating system crashes or
is not properly shut down, such as during a power failure, the operating system reads the
journal file when it is restarted. The information in the journal file enables files to be
brought back to their previous or stable state before the crash. This is particularly important
for files that were being updated before the crash and that did not have time to finish writing
the updates to disk. ufs also supports hot fixes, which automatically move data on damaged
portions of disks to areas that are not damaged.

In Linux, the native file system is called the extended file system (ext or ext fs), which
is installed by default. ext is modeled after ufs, but the first version contained some bugs,
supported files up to only 2 GB, and did not offer journaling. However, in Linux, ext
provides an advantage over all other file systems because it enables the use of the full range
of built-in Linux commands, file manipulation, and security. Newer versions of Linux use
either the second (ext2), third (ext3), or fourth (ext4) versions of the extended file system.
ext2 is a reliable file system that handles large disk storage. ext3 has the enhancements of
ext2, with the addition of journaling.

Appearing in October 2006, ext4 is the newest version of ext. ext4 allows a single volume
to hold up to 1 exabyte (1,152,921,504,606,846,976 bytes, which is over 1.1 quintillion
bytes) of data and it enables the use of extents. An extent is used to reduce file fragmen-
tation, because a block of contiguous disk storage can be reserved for a file. For example,
consider a file of names and addresses that continuously grows as you add more people.Each

54 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

time you add more people to the file, the new data is stored right next to the old in the
extent of contiguous disk space reserved for that file. This is an improvement over other file
systems in which the new data may be stored in a different location on the disk. Over time
the data in a file (without the use of an extent) may be spread all over the disk, resulting in
more time to locate data and more disk wear.

bin

dev
etc
home

tricia
source

lib

/
boot

jean

source

source
joseph

mnt
proc
root
sbin
tmp
usr

bin
dict
etc
include
kerberos
lib
libexec
local

bin
etc
include
lib
libexec
sbin
share
src

sbin
share
src
X11R6

var

Figure 2-1 Typical UNIX/Linux hierarchical structure

Understanding UNIX/Linux File Systems 55

2

ext3 and ext4 are compatible unless extents are used in ext4. ext3 is also
compatible with ext2. This means that many disk utilities that work with ext2
are likely to work with ext3 and ext4 (without the use of extents in ext4). Also
note that a gigabyte is 230, whereas an exabyte is significantly larger at 260 in
binary, or 109 compared to 1018 in decimal.

Table 2-1 summarizes ufs, ext, and other file systems typically supported by UNIX/Linux.
Also,Table 2-2 compares FAT, NTFS, ext4, and ufs to give you a taste of what to consider
when using a file system. As you consider a file system, keep in mind that the actual
capabilities of that file system are also contingent on what is supported by the UNIX/Linux
operating system you use, and even the version of the kernel in that particular operating
system.

Table 2-1 Typical file systems supported by UNIX/Linux
File System Description
Extended file system (ext or ext fs)
and the newer versions: second
extended file system (ext2 or ext2
fs), third extended file system (ext3
or ext3 fs), and fourth extended file
system (ext4 or ext4 fs)

Comes with Linux by default (compatible with
Linux and FreeBSD); ext3 offers journaling, which
is important for reliability and recovery when a
system goes down unexpectedly; ext4 adds larger
volume sizes plus extents

High-performance file
system (HPFS)

Developed for use with the OS/2 operating
system

International Organization for
Standardization (ISO) Standard
Operating System 9660 (iso9660 in
Linux, hsfs in Solaris, cd9660 in
FreeBSD)

Developed for CD and DVD use; does not sup-
port long file names

Journaled File System (JFS) Modeled after IBM’s JFS; offers mature journaling
features, fast performance for processing larger
files, dynamic inode allocation for better use of
free space, and specialized approaches for orga-
nizing either small or large directory structures

msdos Offers compatibility with FAT12 and FAT16 (does
not support long file names); typically installed to
enable UNIX to read floppy disks made in
MS-DOS or Windows

Network file system (NFS) Developed by Sun Microsystems for UNIX sys-
tems to support network access and sharing of
files (such as uploading and downloading); sup-
ported on virtually all UNIX/Linux versions as well
as many other operating systems

NT file system (NTFS) Used by Windows NT, Windows 2000, Windows
XP, Windows Vista, and Windows Server systems

Proc file system Presents information about the kernel status and
the use of memory (not truly a physical file sys-
tem, but a logical file system)

56 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

Table 2-1 Typical file systems supported by UNIX/Linux (continued)

File System Description
ReiserFS Developed by Hans Reiser and similar to ext3 and

ext4, with journaling capabilities; designed to be
faster than ext3 and ext4 (up to 15 times) for
handling small files; intended to encourage pro-
grammers to create efficient code through use of
smaller files

Swap file system File system for the swap space—that is, disk
space used exclusively to store spillover informa-
tion from memory when memory is full (called
virtual memory) and used by virtually all UNIX/
Linux systems; on newer UNIX/Linux systems,
the swap file system is encrypted for improved
security

Universal Disk Format (UDF) Developed for CD and DVD use and broadly
replacing iso9660. UDF read capability is sup-
ported in Windows, UNIX/Linux, and Mac OS
systems prior to 2006; read/write capability is
supported in Windows Vista, UNIX/Linux ver-
sions after 2005, and Mac OS Tiger and the
newer Leopard.

uMS/DOS Compatible with extended FAT16 as used by
Windows NT, 2000, XP, Vista, and Server, but
also supports security permissions, file ownership,
and long file names

UNIX file system (ufs; also called
the Berkeley Fast File System)

Original file system for UNIX; compatible with
virtually all UNIX systems and most Linux systems

vfat Compatible with FAT32 and supports long
file names

XFS Silicon Graphics’ file system for the Irix version of
UNIX; offers many types of journaling features
and is targeted for use with large disk farms (mul-
tiple disk storage devices available through high-
speed connections)

Table 2-2 Comparison of typical file systems supported by UNIX/Linux
Feature FAT NTFS ext4 ufs
Total volume
or
partition size

2 GB to 2 TB 2 TB 1 exabyte in
Linux depend-
ing on the ker-
nel version*

1 TB in Linux;
4 GB to 2 TB
in UNIX
depending on
the version

Understanding UNIX/Linux File Systems 57

2

Table 2-2 Comparison of typical file systems supported by UNIX/Linux (continued)

Feature FAT NTFS ext4 ufs
Maximum
file size

2 GB for
FAT16;
4 GB for
FAT32

Potentially 16
TB, but limited
by the volume
size (up to
2 TB)

16 GB to 2 TB
in Linux
depending on
the kernel
version*

2 GB in Linux;
2 GB to 16 TB
in UNIX
depending on
the version

Security Limited secu-
rity based on
attributes and
shares

Extensive secu-
rity through
permissions,
groups, and
auditing
options

Extensive secu-
rity through
permissions
and groups

Extensive secu-
rity through
permissions
and groups

Reliability
through file
activity track-
ing or
journaling

None Journaling Journaling Journaling

POSIX support None (FAT16);
limited (FAT32)

Yes Yes Yes

Reliability
through hot fix
capability

Limited Supported Supported Supported

Support for
extents

No Yes, when pre-
allocated via a
program

Yes, when
enabled

No

*These maximums are limited by the kernel version and are based on Linux kernel
version 2.6.19.

Understanding the Standard Tree Structure
The treelike structure for UNIX/Linux file systems starts at the root file system level. Root
is the name of the file at this basic level, and it is denoted by the slash character (/). The slash
represents the root file system directory. Notice in Figure 2-1 that there is also a
directory that is used to store files for the root account, but this is designated as /root and is
under the main root file system directory (/).

A directory is a special kind of file that can contain other files and directories. Regular files
store information, such as records of employee names and addresses or payroll information,
while directory files store the names of regular files and the names of other directories,
which are called subdirectories. The subdirectory is considered the child of the parent
directory because the child directory is created within the parent directory. In Figure 2-1,
the root system directory (/) is the parent of all the other directories, such as /bin, /boot,
/dev, /etc, /home, and so on. The /home directory is the parent of the /jean, /tricia, and
/joseph subdirectories; /usr is the parent of the /bin, /dict, and /etc subdirectories.

58 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

USING UNIX/LINUX PARTITIONS

The section of the disk that holds a file system is called a partition. One disk might have
many partitions, each separated from the others so that it remains unaffected by external
disturbances such as structural file problems associated with another partition. When you
install UNIX/Linux on your computer, one of your first tasks is deciding how to partition
your hard drive (or hard drives, if you have more than one).

UNIX/Linux partitions are identified with names; for example, Linux uses “hda1” and
“hda2” for some types of disks. In this case, the first two letters tell Linux the device type;
“hd,” for instance, identifies the commonly used IDE type of hard disk. The third letter,“a”
in this case, indicates whether the disk is the primary or secondary disk (a=primary,
b=secondary).

Partitions on a disk are numbered starting with 1. The name “hda1” tells Linux that this is
the first partition on the disk, and the name“hda2” indicates it is the second partition on the
same disk. If you have a second hard disk with two partitions, the partitions are identified as
“hdb1” and “hdb2.”

Computer storage devices such as hard disks are called peripheral devices. Computer
peripherals connect to the computer through electronic interfaces. The two most popular
hard disk interfaces are Integrated Drive Electronics (IDE) and Small Computer
System Interface (SCSI). Enhanced IDE (EIDE), which is IDE with built-in speed
improvements, is now used more commonly than the original IDE technology, but often
appears in computer system information as IDE.

On PCs used by individuals, IDE/EIDE hard disk drives (identified as hdx) are more
common than SCSI (pronounced “scuzzy”). SCSI is faster and more reliable, so it is often
used on servers. If you have a primary SCSI hard disk with two partitions, the two partitions
are named “sda1” and “sda2.” Figure 2-2 shows two partition tables: one with an IDE drive
and the other with a SCSI drive.

IDE is sometimes referred to as Integrated Device Electronics. The American
National Standards Institute (ANSI) standard for IDE is actually named
Advanced Technology Attachment (ATA). ATA and SCSI are standards devel-
oped by the ANSI-sponsored T10 and T13 committees; you can find out more
about them by visiting www.T10.org and http://www.t13.org/.

Modern computers come with one or more Universal Serial Bus (USB) connec-
tions for connecting keyboards, pointing devices, printers, and external hard
drives. An external hard drive (that you plug into a USB port on your computer)
may be referred to as a Serial ATA, SATA, or eSATA drive. SATA/eSATA is a
newer technology than ATA, and the bottom line for the user is that it is
generally faster than ATA (when used with a USB 2.0 port). Also, internal SATA
drives are in many new PCs.

Using UNIX/Linux Partitions 59

2

www.T10.org
http://www.t13.org/.Modern
http://www.t13.org/.Modern

Note that the first table in Figure 2-2 identifies “hda” as the device, which indicates an IDE
drive. The second table identifies “sda” as the device, which indicates a SCSI drive.

Fedora, Red Hat Enterprise Linux, and SUSE have an Automatic Partitioning
option that you can select as you are installing these systems. This tool auto-
matically allocates space to create the swap, /boot, and root partitions described
in the next section of this book.

Setting Up Hard Disk Partitions
Partitioning your hard disk provides organized space to contain your file systems. If one file
system fails, you can work with another. This section provides general guidelines on how to
partition hard disks. These recommendations are suggestions only. How you partition your
hard disk might vary depending on your system’s configuration, number of users, and
planned use. Partition size is measured in megabytes (MB, about a million characters) or
gigabytes (GB, about a billion characters). Some UNIX/Linux vendors recommend at least
three partitions: root, swap, and /boot.

You can begin the process by setting up a partition for the root file system, which holds the
root file system directory (remember that this is referred to as “/”). A partition must be
mounted before it becomes part of the file system. The kernel mounts the root file system
when the system starts.

Disk/dev/hda: 128 heads, 63 sectors, 767 cylinders
Units = cylinders of 8064 * 512 bytes

Device Boot Begin Start End Blocks Id System
/dev/hda1 * 1 1 242 975712+ 6 DOS 32-bit >=32M
/dev/hda2 243 243 767 2116899 5 Extended
/dev/hda3 243 243 275 127024+ 83 Linux native
/dev/hda6 276 276 750 1028224+ 83 Linux native
/dev/hda7 751 751 767 68512+ 82 Linux swap

Command (m for help): _

Disk /dev/sda: 255 heads, 63 sectors, 1106 cylinders
Units = cylinders of 16065 * 512 bytes

Device Boot Begin Start End Blocks Id System
/dev/sda1 1 1 64 514048+ 83 Linux native
/dev/sda2 65 65 1106 8369865 5 Extended
/dev/sda5 65 65 1084 8193118+ 83 Linux native
/dev/sda6 1085 1085 1100 128488+ 82 Linux swap

Command (m for help): _

This partition table is from a Linux system with an IDE drive

This partition table is from a Linux system with a SCSI drive

Figure 2-2 Sample Linux partition tables

60 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

References to the root file system directory (/) and to the directory used by the
root account (/root) can get confusing. Some UNIX/Linux users refer to the root
file system directory as “slash” and to /root as the “root directory” to help avoid
confusion.

The size of the root partition depends on the type of installation you are performing. For
example, in Fedora, Red Hat Enterprise Linux, or SUSE, the root partition should be a
minimum of 1.2 GB to load the basic operating system required for a workstation or
portable computer installation. A 1.2 GB partition for a basic system does not include
enough space to load the GNOME desktop or many software packages. If you are setting up
a server or loading the full complement of software packages that come with Fedora, Red
Hat Enterprise Linux, or SUSE, use a partition of 5-10 GB or larger. Besides loading the
software packages, this allows space for a desktop, such as GNOME, KDE, or a combination
of both. (You learn more about desktops in Chapter 11,“The X Window System.”)

After creating the root partition, you should set up the swap partition. The swap partition
acts like an extension of memory, so that UNIX/Linux have more room to run large
programs. As a general rule, the swap partition should be the same size as the amount of
RAM in your computer. For instance, if you have 256 MB of RAM, make your swap space
256 MB. If you have a large amount of RAM, such as 1 GB, but your disk space is limited,
you can make the swap space smaller than 1 GB. However, before configuring the swap
partition, check the documentation for your version of UNIX/Linux. For example, for
Fedora and Red Hat Enterprise Linux, Red Hat suggests that your swap space be a
minimum of 256 MB, or two times the size of the RAM in the computer (use the larger
figure). For SUSE, consider a swap partition of about 500 MB or a little larger.However, the
swap space should not be too large, such as over 2 GB, because then you begin sacrificing
speed because disk access is slower than direct RAM access.For instance, if you have 256 MB
of RAM in a Fedora system, it doesn’t make sense to allocate 2 GB of disk for the swap
partition. From the standpoint of performance, it makes more sense to install 256 MB more
RAM for a total of 512 MB and then allocate 1 GB for the swap partition.

A swap partition enables virtual memory. Virtual memory means you have what seem to
be unlimited memory resources.Swap partitions accomplish this by providing swap space on
a disk and treating it like an extension of memory (RAM). It is called swap space because the
system can use it to swap information between disk and RAM.Setting up swap space makes
your computer run faster and more efficiently.

You can create and use more than one swap partition in Linux. Having multiple
swap partitions spread across several hard disks can sometimes improve appli-
cation performance on busy systems. Also note that you can often improve the
speed of a server by installing higher amounts of RAM, such as 1 GB or more.

The /boot partition is used to store the operating system files that compose the kernel.
The size of this partition depends on how much space is needed for the operating system

Using UNIX/Linux Partitions 61

2

files in your version of UNIX/Linux. Generally, this is a relatively small partition. For
example, if you are installing Fedora, Red Hat Enterprise Linux, or SUSE, consider creating
a /boot partition that is about 100 to 200 MB in size.

If you plan to have multiple users accessing your system, consider having a /usr partition
in which to store some or all of the nonkernel operating system programs that are accessed
by users. These programs include software development packages that support computer
programming, networking, Internet access, graphical screens (including desktop software),
and the large number of UNIX/Linux utilities. Utilities are programs that perform
operations such as copying files, listing directories, and communicating with other users.
The /usr partition should be large enough—such as 10 GB or more—to accommodate all
of the software that you install.

Also, if you plan to have multiple users access the system,you can create a /home partition,
which is the home directory for all users’ directories. Having separate /usr and /home
partitions makes many system administration tasks, such as backing up only software or only
data, much easier.

The /home partition is the storage space for all users’ work. If the root partition (/)—or any
other partition—crashes, having a /home partition ensures that you do not lose all the users’
information. Although regular user accounts are restricted from reading information in
other partitions, you own and can access most files in your home directory. You can grant
or deny access to your files as you choose. See “Configuring File Permissions for Security”
later in this chapter for more information on file ownership.

Finally, you can create a /var partition to hold files that are created temporarily, such as files
used for printing documents (spool files) and files used to record monitoring and adminis-
tration data, often called log files. Fedora, Red Hat Enterprise Linux, and SUSE also use the
/var partition for files used to update the operating system.Plan on using a /var partition that
is over 5 GB.

Consider a small geological research company that plans to set up a Red Hat Enterprise Linux
server that has 512 MB of RAM. The company might set up a swap partition at 1024 MB. The
/boot partition would be 150 MB. They plan to install 20 GB of nonkernel programs for users,
so there might be a 25 to 50 GB /usr partition (allowing for programs not currently anticipated).
Each of the 15 users will be allocated 10 GB of space in their home directories,which means the
/home partition must be at least 150 GB (adding another 20 GB or more would provide some
margin for extra needs).Finally, a 10 GB /var partition should be created because all of the users
print large documents, often at the same time.

Setting up partitions might seem like a big task when you are learning UNIX/
Linux. Fortunately, many operating systems, including Fedora, Red Hat Enter-
prise Linux, and SUSE, offer tools to automatically set up partitions during
installation (see Appendix C, “How to Install Fedora and How to Use the
Knoppix CD”). Consider using these tools until you have more experience with
UNIX/Linux.

62 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

Using Inodes
Partitions containing directories and files in the ufs and ext file systems are built on the
concept of information nodes, or inodes. Each directory or file has an inode and is
identified by an inode number. Inode 0 contains the root of the directory structure (/) and
is the jumping-off point for all other inodes.

An inode contains (1) the name of a directory or file, (2) general information about that
directory/file, and (3) information (a pointer) about how to locate the directory/file on a
disk partition. In terms of general information, each inode indicates the user and group
ownership, the access mode (read, write, and execute security permissions, discussed later in
this chapter), the size and type of the file, the date the file was created, and the date the file
was last modified and read.

The pointer information is based on logical blocks. Each disk is divided into logical blocks
ranging in size (depending on the version of UNIX/Linux) from 512 to 8,192 bytes or
more (blocks can also be divided into multiple subblocks or fractions as needed by the file
system). The inode for a file contains a pointer (number) that tells the operating system how
to locate the first in a set of one or more logical blocks that contain the specific file contents
(or, it specifies the number of blocks or links to the first block used by the directory or file).
In short, the inode tells the operating system where to find a file on the hard disk.

Everything in the UNIX/Linux file system is tied to inodes. Space is allocated one block, or
fraction of a block, at a time. Directories are really simple files that have been marked with
a directory flag in their inodes. The file system itself is identified by the superblock. The
superblock contains information about the layout of blocks on a specific partition. This
information is the key to finding anything on the file system, and it should never change.
Without the superblock, the file system cannot be accessed. For this reason, many copies of
the superblock are written into the file system at the time the file system is created through
partitioning and formatting. If the superblock is destroyed, you can copy one of the
superblock copies over the original, damaged superblock to restore access to the file system.

You can display inode information for directories and files by using the ls –i
command, which you will learn later in this chapter.

EXPLORING THE ROOT HIERARCHY

The root (/) file system is mounted by the kernel when the system starts. To mount a file
system is to connect it to the directory tree structure. The system administrator uses the
mount command to mount a file system.

UNIX/Linux must mount a file system before any programs can access files on that file
system. After mounting, the root file system is accessible for reading only during the initial

Exploring the Root Hierarchy 63

2

systems check and boot-up sequence—after that, it is remounted as read and write. The root
file system contains all essential programs for file system repair: restoring from a backup,
starting the system, and initializing all devices and operating resources. It also contains the
information for mounting all other file systems. Nothing beyond these essentials should
reside in the root partition.

You can restore a crashed root partition using rescue files stored on disks, CDs,
DVDs, tapes, or other removable media. The installation media that comes with
Fedora, Red Hat Enterprise Linux, and SUSE can be used to create rescue discs,
or your installation CDs/DVDs can double as rescue discs.

The following sections describe commonly used directories under the root file system.

The /bin Directory
The /bin directory contains binaries, or executables, which are the programs needed to
start the system and perform other essential system tasks. This directory holds many
programs that all users need to work with UNIX/Linux.

The /boot Directory
The /boot directory normally contains the files needed by the bootstrap loader (the utility
that starts the operating system); it also contains the kernel (operating system) images.

The /dev Directory
Files in /dev reference system devices. They access system devices and resources, such as the
hard disks, mice, printers, consoles, modems, memory, and CD/DVD drives. UNIX/Linux
versions include many device files in the /dev directory to accommodate separate vendor
devices that can be attached to the computer.

UNIX/Linux devices are managed through the use of device special files, which contain
information about I/O devices that are used by the operating system kernel when a device
is accessed. In many UNIX/Linux systems, two types of device special files exist:

■ Block special files (also called block device files) are used to manage random
access devices that involve handling blocks of data, including CD/DVD drives,
hard disk drives, tape drives, and other storage devices.

■ Character special files (also called character device files) handle byte-by-byte
streams of data, such as through serial or universal serial bus (USB) connections,
including terminals, printers, and network communications. USB is a relatively
high-speed I/O port found on most modern computers. It is used to interface
mice, keyboards, monitors, digital sound cards, disk drives, and other external
computer hardware, such as printers and digital cameras.

64 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

Another method for managing devices is the use of a named pipe, which offers
a method for handling internal communications, such as redirecting file output
to a monitor. You learn about piping in Chapter 5.

When you install a UNIX/Linux operating system, device special files are created for the
devices already installed on the system. Table 2-3 shows a sampling of device special files.

Table 2-3 UNIX/Linux device special files
File Description
/dev/console For the console components, such as the monitor and key-

board attached to the computer (/dev/tty0 is also used at the
same time on many systems)

/dev/fdn For floppy disk drives, where n is the number of the drive,
such as fd0 for the first floppy disk drive

/dev/hdxn For IDE and EIDE hard drives, where x represents the disk and
the n represents the partition number, such as hda1 for the
first disk and partition

/dev/modem For a modem, a symbolic link to the device special file (typi-
cally linked to /dev/ttys1), where a symbolic link enables one
file or directory to point to another (in later versions of
Fedora/Red Hat Enterprise Linux, the modem file may be in
/usr/share/applications, and in SUSE this file may be under
/usr/share/applications/YaST2 because it is managed using the
YaST management tool)

/dev/mouse For a mouse or other pointing device, a symbolic link to the
device special file (typically linked to /dev/ttys0)—in Fedora/
Red Hat Enterprise Linux, the mouse file may be under /usr/
share/applications, and in SUSE it may be under /opt/gnome/
share/applications

/dev/sdxn For a hard drive connected to a SCSI interface, where x repre-
sents the disk and the n represents the partition, such as sda1
for the first SCSI drive and first partition on that drive

/dev/stn For a SCSI tape drive, where n represents the number of the
drive, such as st0 for the first tape drive

/dev/ttyn For serial terminals connected to the computer
/dev/ttysn For a serial device connected to the computer, such as ttys0

for the mouse

Exploring the Root Hierarchy 65

2

If you need to create a device special file for a new device, you can do so by
using the mknod command as in the following general steps: 1. Log in to the
root account. 2. Access a terminal window or the command prompt. 3. Type cd
/dev and press Enter to switch to the /dev folder. 4. Use the mknod command
plus the device special file name, such as ttys42, and the type of file, such as
character (c) or block (b), and a major and minor node value used by the kernel
(check with the device manufacturer for these values). For example, you might
type mknod ttys20 c 8 68, and press Enter for a new serial device.

You can see the list of device files by typing ls -l /dev and pressing Enter after the command
prompt. (See “Listing Directory Contents” later in this chapter for more information on the ls
command.)The far-left character in the list tells you whether the file is a character device (c) or
a block device (b), as shown in Figure 2-3. Try Hands-on Project 2-8 to view the contents of
the /dev directory on your computer. Hands-on Project 2-8 also teaches you to use the ls
command.

Explanations of the kinds of items you will see in the /dev directory are as follows:

■ console refers to the system’s console, which is the monitor connected directly to
your system.

■ ttyS1 and cua1 are devices used to access serial ports.For example,/dev/ttyS1 refers
to COM2, the communication port on your PC.

■ cua devices are callout devices used in conjunction with a modem.

■ Device names beginning with hd access IDE hard drives.

■ Device names beginning with sd are SCSI drives.

■ Device names beginning with lp access parallel ports. The lp0 device refers to
LPT1, the line printer.

■ null is a “black hole”; any data sent to this device is gone forever. Use this device
when you want to suppress the output of a command appearing on your screen.
Chapters 6 and 7 (“Introduction to Shell Script Programming” and “Advanced
Shell Programming,” respectively) discuss this technique.

■ Device names beginning with tty refer to terminals or consoles. Several “virtual
consoles” are available on your Linux system. (You access them by pressing
(Ctrl+Alt+F1, Ctrl+Alt+F2, and so on.) Device names beginning with pty are
“pseudoterminals.”They are used to provide a terminal to remote login sessions.
For example, if your machine is on a network, incoming remote logins would use
one of the pty devices in /dev.

The /etc Directory
The /etc directory contains configuration files that the system uses when the computer
starts. Most of this directory is reserved for the system administrator, and it contains
system-critical information stored in the following files:

■ fstab—The mapping information about file systems to devices (such as hard disks
and CDs/DVDs)

66 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

■ group—The user group information file

■ inittab—The configuration file for the init program, which performs essential
chores when the system starts

■ login.defs—The configuration file for the login command

■ motd—The message-of-the-day file

■ passwd—The user information file

■ printcap—The printer-capability information file

■ profile and bashrc—The files executed at login that let the system administrator set
global defaults for all users

■ rc—The scripts or directories of scripts to run when the system starts

■ termcap—The terminal capability information file

Some block devices in /dev

brw-rw-r-- 1 root floppy 2, 0 May 5 2008 fd0
brw-rw---- 1 root disk 3, 0 May 5 2008 hda
brw-rw---- 1 root disk 3, 1 May 5 2008 hda1
brw-rw---- 1 root disk 3, 64 May 5 2008 hdb
brw-rw---- 1 root disk 3, 65 May 5 2008 hdb1
brw-r----- 1 root disk 1, 1 May 5 2008 ram
brw-rw---- 1 root disk 11, 0 May 5 2008 scd0
brw-rw---- 1 root disk 11, 1 May 5 2008 scd1
brw-rw---- 1 root disk 8, 0 May 5 2008 sda
brw-rw---- 1 root disk 8, 1 May 5 2008 sda1
brw-rw---- 1 root disk 8, 16 May 5 2008 sdb
brw-rw---- 1 root disk 8, 17 May 5 2008 sdb1

Some character devices in /dev

crw------- 1 root root 4, 0 Jan 4 01:07 console
crw-rw---- 1 root uucp 5, 64 Jan 4 01:07 cua0
crw-rw---- 1 root uucp 5, 65 May 5 2008 cua1
crw-rw---- 1 root uucp 5, 66 May 5 2008 cua2
crw-rw---- 1 root uucp 5, 67 May 5 2008 cua3
crw-rw-rw- 1 root root 44, 0 May 5 2008 cui0
crw-rw---- 1 root daemon 6, 0 May 5 2008 1p0
crw-rw---- 1 root daemon 6, 1 May 5 2008 1p1
crw-r----- 1 root kmem 1, 1 May 5 2008 mem
crw-rw-rw- 1 root root 1, 3 May 5 2008 null
crw-rw-rw- 1 root tty 2, 176 May 5 2008 ptya0
crw-rw-rw- 1 root tty 2, 177 May 5 2008 ptya1
crw-rw-rw- 1 root root 5, 0 May 5 2008 tty
crw------- 1 jdent jdent 4, 0 May 5 2008 tty0
crw-r--r-- 1 root root 4, 65 Jan 4 18:29 ttyS1

File type Meaning
- Normal
d Subdirectory
b Block device
c Character device

Figure 2-3 Device files in /dev

Exploring the Root Hierarchy 67

2

To get a taste of what is in the /etc directory, try viewing the contents of the
fstab file. Enter more /etc/fstab and you’ll see default setup information for file
systems and devices such as CD/DVD drives.

The /home Directory
The /home directory is often on the /home partition and is used to offer disk space for users,
such as on a system that has multiple user accounts. In Figure 2-1, for example, three home
directories exist for three user accounts: /home/jean, /home/tricia, and /home/joseph.

The /lib Directory
This directory houses kernel modules, security information, and the shared library
images, which are files that programmers generally use to share code in the libraries rather
than creating copies of this code in their programs. This makes the programs smaller and, in
some cases, they can run faster using this structure. Many files in this directory are symbolic
links to other library files. A symbolic link is a name, file name, or directory name that
contains a pointer to a file or directory in the same directory or in another directory on your
system. Another related use of a symbolic link is to create a name or shortcut notation for
accessing a directory. In a directory’s long listing, l in the far-left position identifies files that
are symbolic links.

One way to save typing time is to create a symbolic link to a directory that has
a long path. For example, assume that you store many files in the /data/
manufacturing/inventory/parts subdirectory. Each time you want to perform a
listing of that subdirectory, you must type ls /data/manufacturing/inventory/
parts. If you enter ln -s /data/manufacturing/inventory/parts to create a sym-
bolic link (ln is the command to create a link and -s is the option for a symbolic
link) to that directory; in the future you only have to type ls parts to see the
contents. To learn more about the ln command, type man ln or info ln and
press Enter.

The /mnt Directory
Mount points for temporary mounts by the system administrator reside in the /mnt
directory. A temporary mount is used to mount a removable storage medium, such as a
CD/DVD or USB/flash storage so that it can be easily unmounted for quick removal. For
example,you might mount a CD to burn a disc and then quickly unmount it to give the disc
to an office associate. The /mnt directory is often divided into subdirectories, such as
/mnt/cdrom, to clearly specify device types.

68 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

The /media Directory
In newer distributions of UNIX/Linux, mount points for removable storage are in the
/media directory, which is a relatively new recommendation of the Filesystem Hierarchy
Standard (FHS).Modern Linux distributions include both /mnt and /media directories, but
automated software to detect insertion of a CD/DVD typically uses /media.Linux users and
programmers are often encouraged to use /media instead of /mnt as a way to follow the
newer FHS recommendation.

Guidelines for the file hierarchy in UNIX/Linux are provided by the Filesystem
Hierarchy Standard (FHS). You can learn more about FHS at the official Web
site: http://www.pathname.com/fhs. Also, Wikipedia offers an introduction to
FHS at en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard.

The /proc Directory
The /proc directory occupies no space on the disk; it is a virtual file system allocated in
memory only.Files in /proc refer to various processes running on the system as well as details
about the operating system kernel.

The /root Directory
The /root directory is the home directory for the root user—the system administrator.

The /sbin Directory
The /sbin directory is reserved for the system administrator. Programs that start the system,
programs needed for file system repair, and essential network programs are stored here.

The /tmp Directory
Many programs need a temporary place to store data during processing cycles. The
traditional location for these files is the /tmp directory.For example, a payroll program might
create several temporary data files as it processes a payroll for 5,000 people. The temporary
files might hold data briefly needed for calculating withholdings for taxes and retirement and
then be deleted after the withholding information is written to tape or CD to send to federal
and state agencies.

The /usr Directory
Frequently on the /usr partition, this directory houses software offered to users. The
software might be accounting programs, manufacturing programs, programs for research
applications, or office software.

Exploring the Root Hierarchy 69

2

http://www.pathname.com/fhs

The /var Directory
Located on the /var partition, the /var directory holds subdirectories that often change in
size. These subdirectories contain files such as error logs and other system performance logs
that are useful to the system administrator. The /var/spool/mail subdirectory can contain
incoming mail from the network, for example. Another example is the /var/spool/lpd
subdirectory, which is the default directory for holding print files until they are fully
transmitted to a printer.

Try viewing the contents of a log to get an idea of what is in the /var directory.
For example, log in as root and enter more /var/log/boot.log to see how
information about booting the system is retained for informational purposes
and troubleshooting. (If the boot.log file is empty, try entering a log version
number, such as boot.log.2.)

USING THE MOUNT COMMAND

As you learned, UNIX/Linux use the mount command to connect the file system partitions
to the directory tree when the system starts.Users can access virtually any file system that has
been mounted and to which they have been granted permission. Additional file systems can
be mounted at any time using the mount command. The CD and DVD drives are the file
system devices beyond the hard disk that are most commonly mounted. The syntax for the
mount command is as follows:

Syntax mount [-option] [device-name mount-point]

Dissection

■ Use the -t option to specify a file system to mount.

■ device-name identifies the device to mount.

■ mount-point identifies the directory in which you want to mount the file system.

To ensure security on the system, only the root user can normally use the mount
command. Ordinary users can sometimes mount and unmount file systems
located on floppy disks and CDs/DVDs, but some operating systems require the
root account to mount one or both.

70 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

Suppose you want to access files on a CD for your organization. You or the system
administrator can mount a CD by inserting a disk in the CD drive, and then using one of
the following mount commands (depending on whether your UNIX/Linux distribution and
version use /mnt or /media):

mount -t iso9660 /dev/cdrom /mnt/cdrom

or

mount -t iso9660 /dev/cdrom /media/cdrom

This command mounts the CD on a device called “cdrom” located in the /dev directory.
The actual mount point in UNIX/Linux is /mnt/cdrom or /media/cdrom, a directory that
references the CD device. After the CD is mounted, you can access its files through the
/mnt/cdrom or /media/cdrom directory.

UNIX/Linux support several different types of file systems. The type of file system is specified
with the -t option.CDs are classified as iso9660 or udf devices, so the system administrator types
-t, followed by the argument, such as iso9660, to specify the file system for CDs.On some newer
versions of Linux, CDs/DVDs are mounted automatically through program software. The
contents of CDs/DVDs can be viewed by double-clicking the CD’s/DVD’s icon on the desktop
or as a subdirectory in the /media directory under the root (/).

After a CD is mounted, you can view the device paths, file system, and
permissions by typing the mount command without options or arguments.

Some systems still include legacy floppy disk drives. To mount a floppy disk, first
insert it and then use one of the following commands (where filesystem is the
floppy disk file system, such as vfat for porting a floppy to a Windows system):
mount -t filesystem /dev/fd0 /mnt/floppy

or
mount -t filesystem /dev/fd0 /media/floppy

Using the mount Command 71

2

After accessing manually mounted file systems, the system administrator unmounts them
using the umount command before removing the storage media, as in the following example:

umount /mnt/cdrom (or umount /media/cdrom)

Syntax umount mount-point

Dissection

■ mount-point identifies the directory to unmount.

Notice that the command is umount, not unmount; there is only one “n” in
umount.

Try Hands-on Project 2-1 to use the mount command to view the file systems you can
mount in your version of UNIX/Linux and to view what file systems are currently
mounted. Also,Hands-on Project 2-2 enables you to mount or load a CD and view the files
on the CD. See Appendix B, “Syntax Guide to UNIX/Linux Commands,” for a brief
description of the mount and umount commands.

USING PATHS, PATHNAMES, AND PROMPTS

As you’ve learned, all UNIX/Linux files are stored in directories in the file system, starting
from the root file system directory. To specify a file or directory, use its pathname, which
follows the branches of the file system to the desired file. A forward slash (/) separates each
directory name. For example, suppose you want to specify the location of the file named
phones.502. You know that it resides in the source directory in Jean’s home directory,
/home/jean/source, as illustrated in Figure 2-1. You can specify this file’s location as
/home/jean/source/phones.502.

Using and Configuring Your Command-Line Prompt
The UNIX/Linux command prompt can be configured to show your directory location within
the file system.For example,in Fedora the prompt [jean@localhost ~]$ is the default prompt that
the system generated when the system administrator first created the user account called“jean.”
The prompt [jean@localhost ~]$ means that “jean” is the user working on the host machine
called “localhost” in her home directory, which is signified by the tilde (~). The ~ is shorthand
for the home directory, which typically has the same name as the user’s account name. The
account jean would typically have a home directory also called jean that is located at /home/
jean. When Jean changes her location to /home/jean/source, her prompt looks like:

[jean@localhost source]$

72 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

When the system is initially installed, the default root prompt looks like this:
[root@localhost root]#. To simplify the meaning of the command prompts in
this book, the steps use $ to represent the ordinary user’s command prompt and
to represent the system administrator’s command prompt.

Your command prompt is configured automatically when you log in. An environment variable,
PS1, contains special formatting characters that determine your prompt’s configuration. An
environment variable is a value in a storage area that is read by UNIX/Linux when you log in.
Environment variables can be used to create and store default settings, such as the shell that you
use or the command prompt format you prefer. You learn more about environment variables
and how to configure them in Chapter 6. Figure 2-4 illustrates how the PS1 variable is
configured by default for a user account in Fedora.

In Figure 2-4, the PS1 variable contains: [\u@\h \W]\$. Characters that begin with \ are
special Bash shell formatting characters. \u prints the username, \h prints the system host
name, and \W prints the name of the working (current) directory. The characters \$ print
either a # or a $,depending on the type of user logged in. The brackets, [and], and the space
that separates \h and \W are not special characters, so they are printed just as they appear.
When Jean is logged into the system localhost and working in her home directory, her
prompt appears as [jean@localhost ~]$ in the format shown previously.

Table 2-4 shows other formatting characters for configuring your Bash shell prompt.

Figure 2-4 Viewing the contents of the PS1 variable

Using Paths, Pathnames, and Prompts 73

2

Table 2-4 Formatting characters for configuring a Bash shell prompt
Formatting Character Purpose
\a Sounds an alarm
\d Displays the date
\e Uses an escape character
\h Displays the host name
\j Shows the number of background jobs
\n Displays a new line
\nnn Displays the ASCII character that corresponds to the octal

number nnn
\r Places a carriage return in the prompt
\s Displays the shell name
\t Displays the time
\u Displays the username
\v Displays the Bash version and release number
\w Displays the path of the working directory
\A Displays the time in 24-hour format
\D(format) Displays the time in a specific format
\H Has the same effect as \h
\T Displays the time in 12-hour format
\V Displays the Bash version, release number, and patch level
\W Displays the name of the working directory without any

other path information
\! Displays the number of the current command in the com-

mand history
\# Displays the number of the command in the current session
\$ Displays a # if root is the user, otherwise displays a $
\@ Displays the time in 12-hour format
$PWD Displays the path of the current working directory
\[Marks the beginning of a sequence of nonprinting charac-

ters, such as a control sequence
\] Marks the end of a sequence of nonprinting characters
\\ Displays a \ character

Hands-On Project 2-3 gives you the opportunity to view the contents of the PS1
environment variable for your user account and then to configure your Bash shell prompt.

The pwd Command
If you have configured your prompt so that it does not show your working directory,you can
use the pwd command (pwd stands for print working directory) to verify in what directory
you are located, along with the directory path. This command can be important for several
reasons. One is that you can list the contents of a directory and not find the files you are
expecting, and so it can help to ensure that you are in the right directory before doing
anything else (such as restoring the files). In other situations, you might have created a script

74 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

or program that you can only run from a specific directory. If the script or program is not
working, first use pwd to verify you are in the right directory. Hands-on Project 2-4 enables
you to use pwd.

Syntax pwd

Dissection

■ Use pwd to determine your current working directory.

■ Typically, there are no options with this command.

pwd is a simple but important command for all users. Often, users, program-
mers, and administrators alike experience errors or misplace a file because they
are working in the wrong directory. Periodically using pwd can be invaluable for
making certain you are in the right place.

NAVIGATING THE FILE SYSTEM

To navigate the UNIX/Linux directory structure, use the cd (change directory) command.
Its syntax is:

Syntax cd [directory]

Dissection

■ directory is the name of the directory to which you want to change. The directory name
is expressed as a path to the destination, with slashes (/) separating subdirectory names.

When you log in, you begin in your home directory, which is under the /home main
directory. When you change directories and then want to return to your home directory,
type cd, and press Enter. (Some shells also use the tilde character (~) to denote the user’s
home directory.) Try Hands-on Project 2-5 to use the cd command.

In UNIX/Linux, you can refer to a path as either an absolute path or a relative path. An
absolute path begins at the root level and lists all subdirectories to the destination file. For
example, assume that Becky has a directory named lists located under her home directory.
In the lists directory, she has a file called todo. The absolute path to the todo file is
/home/becky/lists/todo. This pathname shows each directory that lies in the path to the
todo file.

Navigating the File System 75

2

Any time the / symbol is the first character in a path, it stands for the root
file system directory. All other / symbols in a path serve to separate the
other names.

A relative path takes a shorter journey. You can enter the relative path to begin at your
current working directory and proceed from there. In Figure 2-1, Jean,Tricia, and Joseph
each have subdirectories located in their home directories. Each has a subdirectory called
“source.” Because Jean is working in her home directory, she can change to her source
directory by typing the following command and pressing Enter:

cd source

In this example, which is called relative path addressing, Jean is changing to her source
directory directly from her home directory, /home/jean. Her source directory is one level
away from her current location, /home/jean. As soon as she enters the change directory
command, cd source, the system takes her to /home/jean/source because it is relative to her
current location.

If Tricia,who is in the /home/tricia directory,enters the command cd source, the system takes
her to the /home/tricia/source directory. ForTricia to change to Jean’s source directory, she
can enter:

cd /home/jean/source

This example uses absolute path addressing because Tricia starts from the root file system
directory and works through all intervening directories. (Tricia, of course, needs permission
to access Jean’s source directory, which is discussed later in this chapter.)

Hands-on Project 2-6 enables you to practice absolute and relative path addressing.

Using Dot and Dot Dot Addressing Techniques
UNIX/Linux interpret a single dot character to mean the current working directory, and
dot dot (two consecutive dots) to mean the parent directory. Entering the following
command keeps you in the current directory:

cd .

When you use UNIX/Linux commands, always pay close attention to spaces.
For example, in cd . and cd .. there is one space between cd and the single or
double dot characters. Remember, you must always use a space after a UNIX/
Linux command before including options or arguments with that command.

If you use two dots, you move back to the parent directory.Do not type a space between the
two dots. The next example shows how the user jean, who is currently in the /home/jean/
source directory, returns to her home directory, which is /home/jean:

cd ..

76 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

Assume you are Jean in her home directory and want to go to Tricia’s source directory. Use
the following command:

cd ../tricia/source

In the preceding example, the dot dot tells the operating system to go to the parent
directory, which is /home. The first / separator followed by the directory name tells the
operating system to go forward to the tricia subdirectory. The second / separator followed
by the directory name tells UNIX/Linux to go forward to the source subdirectory, the final
destination. If no name precedes or follows the slash character, UNIX/Linux treat it as the
root file system directory. Otherwise, / separates one directory from another. Hands-on
Project 2-7 gives you practice using the dot and dot dot conventions.

Listing Directory Contents
Use the ls (list) command to display a directory’s contents, including files and other
directories. When you use the ls command with no options or arguments, it displays the
names of regular files and directories in your current working directory. You can provide an
argument to the ls command to see the listing for a specific file or to see the contents of a
specific directory, such as ls myfile or ls /etc.

Syntax ls [-option] [directory or filename]

Dissection

■ Common arguments include a directory name (including the path to the directory) or a
file name.

■ Useful options include:
-l to view detailed information about files and directories
-S to sort by size of the file or directory
-X to sort by extension
-r to sort in reverse order
-t to sort by the time when the file or directory was last modified
-a to show hidden files
-i to view the inode value associated with a directory or file

Remember, when you log in, you begin in your home directory, which is
/home/username.

Navigating the File System 77

2

You can also use options to display specific information or more information than the
command alone provides. The -l option for the ls command generates a long directory
listing, which includes more information about each file, as shown in Figure 2-5.

Notice the first line in Figure 2-5 for the /bin directory:

drwxr-xr-x 2 root root 4096 Mar 2 2007 bin

If you look in the far-right column, you see bin, the name of a file. All of the columns to its
left contain information about the file bin. Here is a description of the information in each
column, from left to right.

■ File type and access permissions—The first column of information shown is the
following set of characters:
drwxr-xr-x

The first character in the list, d, indicates that the file is actually a directory. If bin
were an ordinary file, a hyphen (-) would appear instead. The rest of the characters
indicate the file’s access permissions. You learn more about these later in this
chapter, in the section “Configuring File Permissions for Security.”

■ Number of links—The second column is the number of files that are hard-linked to
this file. (You learn more about links in Chapter 5,“Advanced File Processing.”) If
the file is a directory, this is the number of subdirectories it contains. The listing for
bin shows it contains two (2) entries. (A directory always contains at least two
entries: dot and dot dot.)

Figure 2-5 Using ls -l to view the root file system directory contents

78 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

■ Owner—The third column is the owner of the file. The root user owns the /bin
directory.

■ Group—The fourth column is the group that owns the file. The root group owns
the /bin directory.

■ Size—The fifth column shows the size of the file in bytes, which is 4096 for the
/bin directory.

■ Date and time—The sixth and seventh columns show the date when a directory or
file was created, or if information has been changed for a directory or file, it shows
the date and time of the last modification.

■ Name—The eighth column shows the directory or file name.

You can also use the -a option with the ls command to list hidden files.Hidden files appear
with a dot at the beginning of the file name. The operating system normally uses hidden files
to keep configuration information, among other purposes. To view the inode value for a
directory or file, use the -i option.

Try Hands-on Project 2-8 to use the ls command. Also, see Appendix B for a brief
description of the ls command.

Using Wildcards
A wildcard is a special character that can stand for any other character or, in some cases, a
group of characters. Wildcards are useful when you want to work with several files whose
names are similar or with a file whose exact name you cannot remember. UNIX/Linux
support several wildcard characters. In this section, you learn about two: * and ?.

The * wildcard represents any group of characters in a file name.For example, assume Becky
has these 10 files in her home directory:

friends
instructions.txt
list1
list2
list2b
memo_to_fred
memo_to_jill
minutes.txt
notes
readme

If she enters ls *.txt and presses Enter, she sees the following output:

instructions.txt minutes.txt

Navigating the File System 79

2

The argument *.txt causes ls to display the names of all files that end with .txt. If she enters
ls memo*, she sees the following output:

memo_to_fred memo_to_jill

If she enters the command ls *s and presses Enter, ls displays all file names that end with “s”.
She sees the output:

friends notes

The ? wildcard takes the place of only a single character. For example, if Becky types ls list?
and presses Enter, ls displays all files whose names start with “list” followed by a single
character. She sees the output:

list1 list2

She does not see the listing for the file list2b, because two characters follow the word “list”
in its name. To see the list2b file in the listing, Becky could use two wildcard characters as
in ls list??. Further, she can combine wildcard characters. For instance, if she wants to include
the readme file in a listing, she might enter ls ??a* .

You work again with wildcard characters in Chapter 6. In this chapter,Hands-on Project 2-9
enables you to use wildcards with the ls command.

Wildcards are connected to the shell that you are using. The* and ? wildcards
are available in the Bash shell. You can determine what wildcards are supported
by a shell by reading the man documentation for that shell. For example, to read
the documentation about the Bash shell, enter man bash at the command line.

CREATING AND REMOVING DIRECTORIES

You sometimes need to organize information by creating one or more new directories, such
as under your home directory. System administrators also create new directories to hold
programs, data, utilities, and other information. The mkdir command is used to create a new
directory.

Syntax mkdir [-option] directory

Dissection

■ The argument used with mkdir is a new directory name.

■ There are only a few options used with mkdir.One option is to use -v to display a message
that verifies the directory has been made.

Hands-on Project 2-10 enables you to make a directory and begin a set of projects in which
you create a telephone database.

80 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

You can delete empty directories by using the remove directory command, rmdir. First, use
the cd command to change to the parent directory of the subdirectory you want to delete.
For example, if you want to delete the old directory in /home/old, first change to the home
directory. Then type rmdir old and press Enter. In many versions of UNIX/Linux, including
Fedora,Red Hat Enterprise Linux, and SUSE, rmdir will not delete a directory that contains
files and you must delete, or move and delete, the files before you can delete the directory.
Also, the rm -r command can be used to delete a directory that is not empty. You learn more
about deleting directories in Chapter 4,“UNIX/Linux File Processing.”

Syntax rmdir [-option] directory

Dissection

■ The argument used with rmdir is a directory.

■ As is true for mkdir, rmdir has only a few options. Consider using the -v option to display
a message that verifies the directory has been removed.

COPYING AND DELETING FILES

The UNIX/Linux copy command is cp, which is used to copy files from one directory to
another. The -i option provides valuable insurance because it warns you that the cp
command overwrites the destination file, if a file of the same name already exists. You can
also use the dot notation (current directory) as shorthand to specify the destination of a cp
command. Try Hands-on Project 2-11 to use the cp command.

Syntax cp [-option] source destination

Dissection

■ The argument consists of the source and destination directories and files, such as cp
/home/myaccount/myfile /home/youraccount.

■ Common options include:
-b makes a backup of the destination file if the copy will overwrite a file
-i provides a warning when you are about to overwrite a file
-u specifies to only overwrite if the file you are copying is newer than the one you are

overwriting

To delete files you do not need, use the remove command, rm. First, use the cd command to
change to the directory containing the file you want to delete. Then type rm filename. For
example, to delete the file “old” in the current working directory, type rm old.Depending on

Copying and Deleting Files 81

2

your version of UNIX/Linux, you might or might not receive a warning before the file is
deleted. However, you can have the operating system prompt to make certain you want to
perform the deletion by using the -i option. The best insurance, though, is to be certain you
want to remove a file permanently before using this command. You learn more about the rm
command in Chapter 4.

Syntax rm [-option] filename

Dissection

■ The argument consists of the name of the file to delete.

■ The -i option causes the operating system to prompt to make certain you want to delete
the file before it is actually deleted.

CONFIGURING FILE PERMISSIONS FOR SECURITY

Early in computing, people didn’t worry much about security. Stolen files and intrusions
were less of a concern, in part because networks were rare and there was no Internet. As you
have probably learned through the media, friends, and school, times are different and you
need to protect your files. Security is important on UNIX/Linux systems because they can
house multiple users and are connected to networks and the Internet, all potential sources of
intrusion.

Users can set permissions for files (including directories) they own so as to establish
security. System administrators also set permissions to protect system and shared files.
Permissions manage who can read, write, or execute files.

The original owner of a file is the account that created it; however, file ownership can be
transferred to another account. The permissions the owner sets are listed as part of the file
description. Figure 2-6 shows directory listings that describe file types.

Notice the long listing of the two directories. (Remember that the directory is just another
file.) An earlier section of this chapter,“Listing Directory Contents,” describes the informa-
tion presented in a long listing.Now, you can look closer at the file permissions. For the first
file described, the column on the far left shows the string of letters drwxr-xr-x. You already
know the first character indicates the file type, such as - for a normal file and d for a
directory/subdirectory. The characters that follow are divided into three sections of file
permission specifiers, as illustrated in Figure 2-7.

The first section of file permission specifiers indicates the owner’s permissions. The owner,
like all users, belongs to a group of users. The second section indicates the group’s
permissions. This specification applies to all users (other than the owner) who are members
of the owner’s group. The third section indicates all others’ permissions. This specification
applies to all users who are not the owner and not in the owner’s group. In each section, the

82 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

first character indicates read permissions. If an “r” appears there, that category of users has
permission to read the file. The second character indicates write permission. If a“w”appears
there, that category of users has permission to write to the file. The third character indicates
the execute permission. If an “x” appears there, that category of users has permission to
execute the file, such as a program file. If a dash (-) appears in any of these character positions,
that type of permission is denied.

If a user is granted read permission for a directory, the user can see a list of its contents. Write
permission for a directory means the user can rename,delete, and create files in the directory.
Execute permission for a directory means the user can make the directory the current
working directory.

From left to right, the letters rwxr-xr-x mean:

r — File’s owner has read permission

w — File’s owner has write permission

Excerpt from ls -1 /etc

drwxr-xr-x 16 root root 4096 Jan 17 9:29 X11
-rw-r--r-- 1 root root 46 Jan 15 19:11 adjtime
drwxr-xr-x 1 root root 1024 Feb 27 2007 cron.daily

Excerpt from ls -1 /home/jean/source

rw-rw-r-- 1 jean jean 387 Dec 12 23:11 phones.502

File type Meaning

 - Normal file
d Subdirectory
l Symbolic link
b Block device file
c Character device file

Figure 2-6 File types described in directory listings

d r w x r - x r - x

File type Group permissions

Owner permissions Others’ permissions

Figure 2-7 Example of the file type and the file permissions for a file

Configuring File Permissions for Security 83

2

x — File’s owner has execute permission (can run the file as a program)

r — Group has read permission

- — Group does not have write permission

x — Group has execute permission

r — Others have read permission

- — Others do not have write permission

x — Others have execute permission

You can change the pattern of permission settings by using the chmod command. For
example, setting others’ permissions to --- removes all permissions for others. They cannot
read, write, or execute the file. In the first line of Figure 2-6, notice that the owner has read,
write, and execute (rwx) permissions for the subdirectory X11. The first character is the file
type, in this case, a “d” for a subdirectory. The rwx gives the owner read, write, and execute
permissions. The next r-x indicates that the group of users that shares the same group id as
the owner has only read and execute permissions; the final r-x gives read and execute
permissions to others.

The system administrator assigns group ids when he or she adds a new user account. A
group id (GID) gives a group of users equal access to files that they all share. Others are all
other users who are not associated with the owner’s group by a group id, but who have read
and execute permissions.

In many UNIX/Linux distributions, when the system administrator creates an
account, a group with the same name as the user account is created. The
system administrator can choose to suppress the creation of the group with the
same name as the account and instead assign new accounts to a general group
called users or to another group (or groups) the administrator has previously
created. Groups are simply a tool the administrator uses to manage security.

Syntax chmod [-option] mode filename

Dissection

■ The argument can include the mode (permissions) and must include the file name. You
can also use a wildcard to set the permissions on multiple files.

■ Permissions are applied to owner (u), group (g), and others (o). The permissions are read
(r), write (w), and execute (x). Use a plus sign (+) before the permissions to allow them
or a hyphen (-) to disallow permissions.Octal permissions are assigned by a numeric value
for each owner, group, and others.

Use the UNIX/Linux chmod command to set file permissions. In its simplest form, the chmod
command takes as arguments a symbolic string (individual characters that are abbreviations

84 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

for permissions) followed by one or more file names. The symbolic string specifies
permissions that should be granted or denied to categories of users. Here is an example:
ugo+rwx. In the string, the characters ugo stand for user (same as owner), group, and others.
These categories of users are affected by the chmod command. The next character, the +
sign, indicates that permissions are being granted. The last set of characters, in this case rwx,
indicates the permissions being granted. The symbolic string ugo+rwx indicates that read,
write, and execute permissions are being granted to the owner, group, and others. The
following is an example of how the symbolic string is used in a command to modify the
access permissions of myfile:

chmod ugo+rwx myfile

The following command grants group read permission to the file customers:

chmod g+r customers

It is also possible to deny permissions with a symbolic string. The following command
denies the group and others write and execute permissions for the file account_info.

chmod go-wx account_info

From your home directory, you can create any subdirectory and set permissions
for it. However, you cannot create subdirectories outside your home directory
unless the system administrator makes a special provision.

The octal permission format is another way to assign permissions; it assigns a number on the
basis of the type of permission and on the basis of owner, group, and other. The type of
permission is a number. For example, execute permission is assigned 1, write is 2, and read
is 4. These permission numbers are added together for a value between 0 and 7.For instance,
a read and write permission is a 6 (4 + 2) and read and execute is a 5 (4 + 1), as shown in
the following list:

■ 0 is no permissions.

■ 1 is execute (same as x).

■ 2 is write (same as w).

■ 3 is write and execute (same as wx).

■ 4 is read (same as r).

■ 5 is read and execute (same as rx).

■ 6 is read and write (same as rw).

■ 7 is read, write, and execute (same as rwx).

One of these numbers is associated with each of three numeric positions (xxx) after the
chmod command. The first position gives the permission number of the owner, the second
position gives the permission number of the group, and the final position gives the

Configuring File Permissions for Security 85

2

permission number of other.For example, the command chmod 755 myfile assigns read,write,
and execute permissions to owner (7) for myfile; it assigns read and execute permissions to
both group and other (5 in both positions). Here are some other examples:

■ chmod 711 data—For the file data, this command assigns read,write, and execute to
owner; execute to group; and execute to other (programmers often use this for
programs they write, enabling users to execute those programs).

■ chmod 642 data—For the file data, this command assigns read and write to owner;
read to group; and write to other.

■ chmod 777 data—For the file data, this command assigns read,write, and execute to
owner, group, and other.

■ chmod 755 data—For the file data, this command assigns read,write, and execute to
owner; read and execute to group; and read and execute to other (another
permission often used by programmers).

■ chmod 504 data—For the file data, this command assigns read and execute to
owner; no permissions to group; and read permission to other.

If you want to set security on a directory to ensure that users must know the
exact path to a file in that directory—so they can execute a program, but not
snoop—configure the directory to have 711 permissions. This gives all permis-
sions to the owner (you) and only the execute permission to group and others.

Some versions of UNIX/Linux include the umask command, which enables you
to set permissions on multiple files at one time. This command is more complex
than using chmod octal commands, but can save time for system
administrators. For example, umask 022 grants rwx permissions for all users.
However, you can also grant permissions on multiple files by using the wildcard
asterisk (*) with chmod. For example, chmod 777 * grants full permission on all
files in the current directory to all users and groups.

Now that you’ve learned about permissions, check out Table 2-5 for suggestions about
setting permissions. Also, try Hands-on Project 2-12 to configure permissions.SeeAppendix
B for a brief description of the chmod command.

Table 2-5 Suggestions for setting permissions
Type of File or Directory Permissions Suggestion
System directories such as /bin,
/boot, /dev, /etc, /sbin, /sys, and
/usr

Give all permissions to root (the owner), rx to
group and others—chmod 755.

/root directory for the root account Give all permissions to root (the owner), rx to
group, and no permissions to
others—chmod 750.

86 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

Table 2-5 Suggestions for setting permissions (continued)

Type of File or Directory Permissions Suggestion
Your home directory Give all permissions to owner (your account), x

or no permissions to group, and no permissions
to others—chmod 710 or chmod 700. (If you
are a student and need to give your instructor
access to your home directory, consider using
chmod 705 so your instructor has rx
permissions.)

A subdirectory under your home
directory that you want to share
with others so they can access and
create files

Give all permissions to owner (your account),
group, and others—chmod 777.

A file in your home directory that
you want people to be able to view,
but not change

Give all permissions to owner (your account), rx
to group, and rx to others—chmod 755.

A file that should only be accessed
by you

Give all permissions to owner and no permis-
sions to group and others—chmod 700.

An archived file in your home direc-
tory that should not be changed
(just preserved) and that only you
should be able to view

Give rx permissions to owner and no permissions
to group and others—chmod 500.

There are three advanced permissions that deserve brief mention so that you are aware of
them: sticky bit, set user id (SUID) bit, and set group ID (SGID) bit. All three
permissions are typically used by a system administrator for special purposes.

On older UNIX and Linux distributions, the sticky bit has been used to cause an executable
program (a file you run as a program) to stay resident in memory after it is exited. This action
ensures that the program is immediately ready to use the next time around or that it stays
ready for multiple users on a server. In current operating systems, the sticky bit is used instead
to enable a file to be executed, but only the file’s owner or root have permission to delete or
rename it. The symbol for the sticky bit is t (used in place of x), such as when you view
permissions using ls -l. For example,when the sticky bit is set on a file, the permissions might
look like: -rwxr-xr-t.

The SUID bit is generally used on programs and files used by programs. SUID gives the
current user (user ID) temporary permissions to execute program-related files as though
they are the owner. For example, programs on a multiuser system or server are usually
installed by root. However, an ordinary user may need capabilities to execute and possibly
modify files to run those programs as though they are the root account. Setting the SUID
bit gives them the access they need to use the programs—temporarily treating the user as
root (the owner).Even though someone is using the program with the SUID bit permission,
root still retains actual ownership.

The SGID bit works similarly to SUID,but it applies to groups. For example, your company
might have a group of people who use accounting files on a computer. The system

Configuring File Permissions for Security 87

2

administrator can create a group called accounting and, through the SGID bit, give
temporary access as an owner to each member of the group while she or he is using the
accounting programs and files. The symbol for SUID or SGID is an s. For example, when
both SUID and SGID are set, the permissions on a file might look like -rwsr-sr-x (notice
that the x permission is replaced with s for the owner and group).

CHAPTER SUMMARY

In UNIX/Linux, a file is the basic component for data storage. UNIX/Linux consider
everything to be a file, even attached devices such as the monitor, keyboard, and printer.
Even a directory,which can contain both files and subdirectories, is really just a special file
in UNIX/Linux.

A file system is the UNIX/Linux systems’ way of organizing files on storage devices such
as hard disks and removable media such as CDs/DVDs. Files are stored in a file system,
which is a hierarchical, treelike structure in which top-level directories contain subdirec-
tories, which in turn can contain other subdirectories. Every file can be located by using
a pathname—a listing of names of directories leading to a particular file.

The standard tree structure starts with the root (/) file system directory, which serves as
the foundation for a hierarchical group of other directories and subdirectories.

The section of the disk that holds a file system is called a partition. One disk might have
many partitions, each separated from the others so that it remains unaffected by external
disturbances such as structural file problems associated with another partition. The
UNIX/Linux file system is designed to allow access to multiple partitions after they are
mounted in the tree structure.

A path, as defined in UNIX/Linux, serves as a map to access any file on the system. An
absolute path is one that always starts at the root level. A relative path is one that starts at
your current location.

You can customize your command prompt to display the current working directory
name, the date, the time, and several other items.

The ls command displays the names of files and directories contained in a directory. The
ls -l command,or long listing,displays detailed file information. The ls -a command shows
hidden files.

Wildcard characters can be used in a command, such as ls, and take the place of other
characters in a file name. In the Bash shell, the * wildcard can take the place of any string
of characters, and the ? wildcard can take the place of any single character. The specific
wildcards you can use are related to the shell.

You can use the mkdir command to create a new directory as long as you own the parent
directory. A file’s original owner is the person who creates it, and he becomes the one
who controls access to it (although the root account also can control access).

88 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

Use the cp command to copy a source file to a destination file. UNIX/Linux might
overwrite the destination file without warning unless you use the -i option. The dot
notation (current directory) is a shorthand way to specify the destination in a cp
command.

You can use the chmod command to set permissions for files that you own. The basic
permission settings are rwx, which mean read, write, and execute, respectively. File
permissions are set to control file access by three types of users: the owner (u), the group
(g), and others (o). You must remember to change permission settings on any directories
you own if you want others to access information in those directories. Also, to run a
program file, the intended users (owner, group, others) must have execute permissions.

COMMAND SUMMARY: REVIEW OF CHAPTER 2 COMMANDS

Command Purpose Options Covered in This Chapter
cd Changes directories (with no options,

cd goes to your home directory)
. Changes to the current working
directory.
.. Changes to the parent
directory.

chmod Sets file permissions for specified files + assigns permissions.
-removes permissions.

cp Copies files from one directory to
another

-b makes a backup of the desti-
nation file, if an original one
already exists (so you have a
backup if overwriting a file).
-i prevents overwriting of the
destination file without warning.
-u overwrites an existing file only
if the source is newer than the
file in the current destination.

ls Displays a directory’s contents, includ-
ing its files and subdirectories

-a lists the hidden files.
-l (lowercase L) generates a long
listing of the directory.
-r sorts the listing in
reverse order.
-S sorts the listing by file size.
-t sorts by the time when the file
or directory was last modified.
-X sorts by extension.

mkdir Makes a new directory -v verifies that the directory
is made.

mount Connects the file system partitions to
the directory tree when the system
starts, and mounts additional devices,
such as the CD/DVD drive

-t specifies the type of file system
to mount.

pwd Displays your current path

Command Summary: Review of Chapter 2 Commands 89

2

Command Purpose Options Covered in This Chapter
rm Removes a file -i prompts before you delete

the file.
rmdir Removes an empty directory -v provides a message to verify

the directory is removed.
umask Sets file permissions for multiple files
umount Disconnects the file system partitions

from the directory tree

KEY TERMS

/boot partition — A partition that is used to store the operating system files that compose
the kernel.
/home partition — A partition that is on the home directory and provides storage space
for all users’ directories. A separate section of the hard disk, it protects and insulates users’
personal files from the UNIX/Linux operating system software.
/usr partition — A partition in which to store some or all of the nonkernel operating
system programs that will be accessed by users.
/var partition — A partition that holds temporarily created files, such as files used for
printing documents and log files used to record monitoring and administration data.
absolute path — A pathname that begins at the root file system directory and lists all
subdirectories to the destination file.
binaries — The programs residing in the /bin directory and elsewhere that are needed to
start the system and perform other essential tasks. See also executables.
block special file — In UNIX/Linux, a file used to manage random access devices that
involve handling blocks of data, including CD/DVD drives, hard disk drives, tape drives, and
other storage devices. Also called a block device file.
bootstrap loader — A utility residing in the /boot directory that starts the operating
system.
character special file — A UNIX/Linux I/O management file used to handle byte-by-
byte streams of data, such as through serial or USB connections, including terminals,
printers, and network communications. Also called a character device file.
child — A subdirectory created and stored within a (parent) directory.
device special file — A file used in UNIX/Linux for managing I/O devices. It can be one
of two types: block special file or character special file.
directory — A special type of file that can contain other files and directories.Directory files
store the names of regular files and other directories, called subdirectories.
Enhanced IDE (EIDE) — An improved version of IDE that offers faster data transfer
speeds and is commonly used in modern computers. See also Integrated Drive Electronics.
executables — The programs residing in the /bin directory that are needed to start the
system and perform other essential tasks. See also binaries.
extended file system (ext or ext fs) —The file system designed for Linux that is installed,
by default, in Linux operating systems. It enables the use of the full range of built-in Linux

90 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

commands, file manipulation, and security. Released in 1992, ext had some bugs and
supported only files of up to 2 GB. In 1993, the second extended file system (ext2 or ext2
fs) was designed to fix the bugs in ext, and supported files up to 4TB. In 2001, ext3 (or ext3
fs) was introduced to enable journaling for file and data recovery. ext4 was introduced in
2006, enabling a single volume to hold up to 1 exabyte of data and supporting the use of
extents. ext, ext2, ext3, and ext4 support file names up to 255 characters.
extent — A portion of a disk, such as a block or series of blocks, that is reserved for a file
and that represents contiguous space, so that as the file grows, all of it remains in the same
location on disk. The use of extents reduces file fragmentation on a disk,which reduces disk
wear and the time it takes to retrieve information.
file — The basic component for data storage.
file system — An operating system’s way of organizing files on mass storage devices, such
as hard and floppy disks. The organization is hierarchical and resembles an inverted tree. In
the branching structure, top-level files (or folders or directories) contain other files,which in
turn contain other files.
group id (GID) — A number used to identify a group of users.
hidden file — A file that the operating system uses to keep configuration information,
among other purposes. The name of a hidden file begins with a dot.
hot fixes — The ability to automatically move data on damaged portions of disks to areas
that are not damaged.
information node, or inode — A system for storing essential information about direc-
tories and files. Inode information includes (1) the name of a directory or file, (2) general
information about that directory/file, and (3) information (a pointer) about how to locate
the directory/file on a disk partition.
Integrated Drive Electronics (IDE) — Sometimes called Integrated Device Electronics,
the most popular electronic hard disk interface for personal computers. This is the same as
the ANSI Advanced Technology Attachment (ATA) standard.
journaling — The process of keeping chronological records of data or transactions so that
if a system crashes without warning, the data or transactions can be reconstructed or backed
out to avoid data loss or information that is not properly synchronized.
mount — The process of connecting a file system to the directory tree structure, making
that directory accessible.
parent — The directory in which a subdirectory (child) is created and stored.
partition —A separate section of a disk that holds a file system and that is created so activity
and problems occurring in other partitions do not affect it.
pathname — A means of specifying a file or directory that includes the names of directories
and subdirectories on the branches of the tree structure. A forward slash (/) separates each
directory name.For example, the pathname of the file phones (the destination file) in the source
directory of Jean’s directory within the /home directory is /home/jean/source/phones.
peripherals —The equipment connected to a computer via electronic interfaces.Examples
include hard and floppy disk drives, printers, and keyboards.
permission — A specific privilege to access and manipulate a directory or file, for example,
the privilege to read a file.

Key Terms 91

2

physical file system — A section of the hard disk that has been formatted to hold files.
relative path — A pathname that begins at the current working directory and lists all
subdirectories to the destination file.
root file system directory — The main or parent directory (/) for all other directories
(the highest level of the file system); also can refer to the directory in which the system
administrator’s files are stored (/root).
set group ID (SGID) bit — Enables the owner of a program to keep full ownership, but
also gives members of a group temporary ownership while executing that program.
set user ID (SUID) bit — Enables the owner of a program to retain full ownership, but
also gives an ordinary user temporary ownership while executing that program.
shared library images — The files residing in the /lib directory that programmers use to
share code, rather than copying this code into their programs. Doing so makes their
programs smaller and faster.
Small Computer System Interface (SCSI) — Pronounced “scuzzy,” a popular and fast
electronic hard disk interface commonly used on network servers. SCSI is actually a set of
standards that defines various aspects of fast communications with a hard disk.
sticky bit — An executable permission that either causes a program to stay resident in
memory (on older UNIX/Linux systems) or ensures that only root or the owner can delete
or rename a file (on newer systems).
subdirectory — A directory under a higher or parent directory.
superblock — A special data block on a partition that contains information about the
layout of blocks. This information is the key to finding anything on the file system, and it
should never change.
swap partition — A section of the hard disk separated from other sections so that it
functions as an extension of memory, which means it supports virtual memory. A computer
system can use the space in this partition to swap information between disk and RAM so the
computer runs faster and more efficiently.
symbolic link — A name or file name that points to and lets you access a file using a
different name in the same directory or a file using the same or a different name in a different
directory.
UNIX file system (ufs) — A hierarchical (tree structure) file system supported in most
versions of UNIX/Linux. It is expandable, supports large storage,provides excellent security,
is reliable, and employs information nodes (inodes).
utility —A program that performs useful operations such as copying files, listing directories,
and communicating with other users.Unlike other operating system programs, a utility is an
add-on and not part of the UNIX/Linux shell, nor a component of the kernel.
virtual file system — A system that occupies no disk space, such as the /proc directory.
The virtual file system references and lets you obtain information about which programs
and processes are running on a computer.
virtual memory — A memory resource supported by the swap partition, in which the
system can swap information between disk and RAM, allowing the computer to run faster
and more efficiently.

92 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

virtual storage —The storage that might be allocated via different disks or file systems (or
both), but that is transparently accessible as storage to the operating system and users.
wildcard — A special character that can stand for any other character or, in some cases, a
group of characters and is often used in an argument, such as ls file.* .

REVIEW QUESTIONS

1. Your company is discussing plans to migrate desktop and laptop users to Linux. One
concern raised by the users is whether Linux supports the use of CDs and DVDs for
both work files and for listening to music. Which of the following is an appropriate
answer?
a. Linux only supports hard disk file systems, such as extended file system (ext) and

UNIX file system, but users can copy music (MP3) files to the hard disk to play.
b. Linux can use the Reiser File System,which supports CD and DVD files of all types.
c. Linux supports both the UDF and iso9660 file systems for CD and DVD use.
d. Linux supports mounting CDs and DVDs by using the /removable partition.

2. You receive a message that you’ve successfully backed up hda2 on your Linux
system. What is hda2?
a. the second disk on a two-disk system
b. the second partition on your main hard disk
c. the files on a CD
d. the subdirectory under the /root directory that houses the kernel

3. You have purchased a special monitor for your computer and the instructions tell
you to make a minor modification to the inittab file. Where would you locate this
file on a typical Linux system?
a. /var
b. /fastboot
c. /home/users
d. /etc

4. You’re frantically trying to get ready for a meeting and want to access a file in your
home directory, but you are currently working in a public directory open to all
users. What command can you enter to instantly go to your home directory?
a. cd
b. home
c. go
d. fetch

Review Questions 93

2

5. Your new colleague asks which partitions vendors recommend setting up on a Linux
system. Which of the following partitions do you include in your response? (Choose
all that apply.)
a. /backup
b. root
c. swap
d. /boot

6. You have mounted a remote network drive and now you want to unmount that
drive. Which of the following commands do you use? (Choose all that apply.)
a. bye
b. umount
c. driveoff
d. disconnect

7. When you connect a printer via a USB port on your Linux computer, which type
of device special file is used to handle streams of data sent to and from the printer?
a. character special file
b. block special file
c. root device file
d. port device file

8. Some of the users in your company create and delete so many files that they have
problems with fragmented disks. Which of the following new features in the ext4
file system help to reduce fragmentation problems?
a. hot swap
b. fragmonitor
c. smaller file sizes
d. extents

9. In UNIX and Linux systems, what source of extra memory space is used when
working on tasks and files that exceed the RAM capacity on chips in the computer?
a. register memory contained on the circuit board used to run the monitor
b. swap partition
c. /mem directory
d. memory subdirectory under the /users directory (/users/mem)

94 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

10. You are always scheduled for two or three meetings each day and need to keep an
eye on the time. What PS1 variable parameter can you set in order to have your
command prompt display the current time?
a. \t
b. \v
c. /time
d. /date

11. You have been working in several directories for the past hour and right now you
don’t remember which directory you’re in currently. What command can you use to
show your current working directory?
a. showme
b. where am i
c. pwd
d. dir -w

12. A member of your department has given you permissions to view the contents of
the accounting directory under his home directory. The name of his home directory
is bramirez. Which of the following commands should you use to display the con-
tents of the accounting directory?
a. dir accounting
b. ls ~/accounting
c. ls /home/bramirez/accounting
d. cd -l /bramirez/accounting

13. It’s late and you have been working all day to finish a report. Before you go home,
you want to copy several files, including your report file. What copy command
should you use to ensure that you don’t inadvertently copy an older report file over
the newer report file you’ve been working on for the last four hours?
a. cp -u
b. cp --warn
c. copy -w
d. copy --caution

14. Which of the following are file systems supported by UNIX and Linux operating
systems? (Choose all that apply.)
a. NTFS
b. vfat
c. PICK
d. ufs
e. ext

Review Questions 95

2

15. You are helping a friend who is new to Linux. You want to determine which entries
under her home directory are directories instead of files. When you perform a long
listing of the home directory’s contents, what do you use to distinguish a directory
from a file?
a. The very first character in the line for an entry will be either “~” for a directory or

“$” for an ordinary file.
b. The very last word in the line for an entry will be “file” or “directory.”
c. The last character appended to the entry’s name will be either“1” for an ordinary file

or “2” for a directory.
d. The very first character in the line for an entry will be “d” for directory or “-” for an

ordinary file.

16. Your boss is planning to do some house cleaning by deleting several old files. How-
ever, she mentions that she doesn’t want to delete an important file inadvertently.
What command can she use so that she is prompted to make sure she wants to
delete a particular file?
a. del ?
b. cp -d
c. write -del -q
d. rm -i

17. You are curious about the error and system logs kept by your operating system. In
what main directory under the root (/) would you most likely find these logs?
a. /var
b. /sbin
c. /tmp
d. /sys

18. A friend of yours is trying to make more space on his hard disk drive and is consid-
ering deleting the /lib directory because he has heard it mostly contains games that
he doesn’t use. What is your recommendation?
a. Delete the /lib directory because it mainly contains old games anyway.
b. Before deleting the /lib directory, copy the config file to another directory, because

this file is used to configure games and other software.
c. Delete the /mnt directory instead, because it contains backups of changed mainte-

nance and log files.
d. Keep the /lib directory because it holds security information, shared library images,

kernel modules and other important files.

96 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

19. Which of the following are permissions that can be granted to a file? (Choose all
that apply.)
a. start
b. write
c. execute
d. manage
e. read

20. Which of the following commands enable(s) you to set permissions on a directory
after you create it? (Choose all that apply.)
a. mkdir -p
b. cpdir --permissions
c. chmod
d. catperm

21. You have created many notes to yourself that end in .txt. Which of the following
commands enables you to list all of the .txt files in your home directory while you
are in the Bash shell?
a. dir ##.txt
b. ls *.txt
c. cp .txt -all
d. cat $.txt

22. Where is virtual memory located?

23. When you see the permissions rwx--x--x associated with a file, what permissions are
granted?

24. Your boss wants to use the command to view hidden files and also wants to know
how to find them among other files. What do you tell her?

25. You have many files that begin with the word “account” and that end with two dig-
its to designate a year, such as account00, account 01, and so on. What is the com-
mand that enables you to view all of these files that start with account?

HANDS-ON PROJECTS

All projects in this chapter are performed from the command line, such as from
a terminal window.

Hands-On Projects 97

2

Project 2-1
UNIX/Linux support many different file systems that can be mounted using the mount
command. In this project, you will use the mount command to determine what file systems
are available in your version of UNIX/Linux. For this and all projects in this chapter, unless
otherwise specified as in Hands-on Project 2-2, you should be logged in to your own
account.

To view the available file systems:

1. At the command prompt, type man mount and press Enter. Continue pressing the
Spacebar, as necessary, to view the documentation for the -t parameter for the
mount command. (If you are using a terminal window, you might need to press q to
exit the text display mode when you are finished.)

2. What file systems can be mounted?

3. Next, type mount and press Enter to determine what file systems are actually
mounted. (See Figure 2-8.) What file systems do you see mounted on your system?

Project 2-2
Most systems have a CD or CD/DVD drive enabling you to mount CDs. Ask your
instructor if your system supports using the mount command to mount a CD from the
command line. This project allows you to mount and then unmount a CD. You need a CD
that can be inserted (by you or by a server operator) in the CD/DVD drive.

Figure 2-8 Mounted file systems

98 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

If your system supports mounting a CD from the command line, try the following project.
Also, note that on newer systems the /mnt/cdrom mount point may be replaced with
/media/cdrom. Ask your instructor about whether to use /mnt/cdrom or /media/cdrom.

To mount and unmount a CD:

1. Log in to root.

2. Insert the CD or request the server operator to insert the CD.

3. If your system automatically mounts the CD, type umount/mnt/cdrom (or
replace mnt with media) and press Enter to unmount it. (Close the CD drive with
the CD loaded, if the drive opens.)

4. Type mount -t iso9660 /dev/cdrom /mnt/cdrom (or replace mnt with media)
and press Enter. (Note that /mnt/cdrom or /media/cdrom is used as a mount point for
the CD, and after the CD is mounted, you can view its files in the /mnt/cdrom or
/media/cdrom subdirectory. Also, if your system does not have a /mnt/cdrom or
/media/cdrom directory, you will need to create it for this step.)

5. Type mount and press Enter to verify that the CD is mounted.

6. Type ls /mnt/cdrom (or replace mnt with media) and press Enter to view the
contents of the CD.

7. Type umount /mnt/cdrom (or replace mnt with media) and press Enter. (On
some systems, the CD drive now opens for you or the server operator to remove
the CD.)

8. What commands would you use to mount and unmount a floppy disk for use with a
Windows-based system?

If your system does not support using the mount command to mount a CD from the
command line, try this project using the GNOME or KDE desktop. You’ll need a CD that
is configured to automount (which can be a program, music, or video CD, for example).

To load a CD:

1. Log in to your individual account.

2. Insert a CD.

3. Notice that an icon appears on the desktop for the CD. (The icon may display the
label of the CD and the type of CD, such as CD-R.)

4. Double-click the CD’s icon to view its contents in a window.

5. Close the window when you are finished viewing the contents.

Project 2-3
The PS1 variable contains the configuration parameters for how your command-prompt
line appears. In this project, you will view the contents of the PS1 variable and then you

Hands-On Projects 99

2

configure the PS1 variable. You should be using the default Bash shell and be logged in using
your own account and home directory.

To view the PS1 variable’s contents and then to configure the variable:

1. Type echo $PS1 and press Enter. (Refer to Figure 2-4.)

2. You see the contents of the PS1 variable, which in Red Hat Enterprise Linux and
Fedora appear as:

[\u@\h \W]\$

3. To change your prompt to display the date and time, type PS1='\d \t>' and press
Enter. Type the command with no spaces between the characters, other than one
space between \d and \t. Your prompt now looks similar to:

Tue Jul 5 09:18:33>

4. To change your prompt to display the current working directory, type PS1='\w>'
and press Enter. Your prompt now looks similar to:

~>

The \w formatting character displays the ~ to represent the user’s home directory.

5. To change your prompt to display the full path of the current working directory, you
must use another environment variable, PWD. The PWD variable contains the full
pathname of the current working directory. To display the PWD variable in the
prompt, type PS1='$PWD>' and press Enter. (Notice that you must place the $ in
front of the environment variable name to extract its contents.)Your prompt now
looks similar to:

/home/jean>

6. If you are using a terminal window, close and open a new terminal window session,
or log out and log back in and then access the command line. How does your
prompt change from what you saw in Step 5?

Project 2-4
In this project, you will use the pwd command to view your working directory.

To display your current path:

1. Type pwd and press Enter.

2. What is your current directory path?

Project 2-5
For this project, you will practice more with changing the PS1 variable, and you use the cd
command.

100 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

To use the cd command:

1. First, change your prompt so that you can view the directory path. At the $ com-
mand prompt, type PS1='$PWD>' and press Enter.

2. Type cd /var/spool/mail and press Enter. This moves you to the /var/spool/mail
subdirectory.

3. Type cd and press Enter. The change directory command (cd) without arguments
returns you to your home directory. (See Figure 2-9.)

4. If you are using a terminal window, close that terminal window and open another
terminal window for the next project. If you are logged in remotely or are not using
a terminal window to access the command prompt, log out and then log back in to
reset your prompt.

Project 2-6
Comparing the use of absolute versus relative paths can be handy for understanding how
each works. In this project, you will use both types of path addressing to navigate through a
file system.

To navigate directories:

1. If you are not in your home directory, type cd and press Enter.

Figure 2-9 Using the cd command

Hands-On Projects 101

2

2. The parent directory of your home directory is /home. /home is an absolute path
name. Type cd /home and press Enter. The system takes you to the /home
directory.

3. Type cd plus your username, such as cd joseph, and press Enter. This step uses rela-
tive path addressing to return to your home directory.

Project 2-7
Navigating a file system using the dot and dot dot options can save you typing time. In this
project, you practice using both conventions. Make certain you are logged in to your own
account for this project and not as root.

To use dot and dot dot to change your working directory:

1. If you are not in your home directory, type cd and press Enter.

2. Type cd . and press Enter. Because the . (dot) references your current directory, the
system did not change your working location.

3. Type cd .. and press Enter. The system takes you to the parent directory, which is
/home.

4. Type cd .. and press Enter. The system takes you to the root file system directory
(/). Type cd and press Enter. The system takes you to your home directory.

On any of the steps in this project, you can enter pwd to verify which directory
you are in currently.

Project 2-8
The ls command is one of the most useful commands. In this project, you will start by using
ls to view your working directory. Next, you use ls with an argument to view a file and then
a directory. For a more complete listing of information about the contents of a directory, you
use the -l option, and finally you use the -a option to include hidden files in a directory listing.

To see a list of files and directories in your current working directory:

1. Type ls and press Enter. You see a list of file and directory names.

To see a listing for a specific file or directory:

1. If you are not in your home directory, type cd and press Enter.

2. In Chapter 1,“The Essence of UNIX and Linux,” you used the cat command to cre-
ate a notes file. You should still have that file in your home directory. (If not, use cat
again to create a notes file.) Type ls notes and press Enter. The system displays the
listing for the notes file.

102 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

3. To see the contents of a directory other than your current working directory, give
the directory name as an option to the ls command. For example, to see the contents
of the /var directory, type ls /var and press Enter. You see a listing similar to the
one in Figure 2-10.

To use the ls command with the -l option:

1. Type ls -l /dev and press Enter. You see information similar to that in Figure 2-11.
This shows a listing of block special and character special files in the /dev directory.
Notice in the first column of information that the block special files begin with a
“b”. (You may need to scroll up to find a block special file.) What designates a char-
acter special file?

2. Type ls -l / and press Enter to view the contents of the root file system directory.
(Refer to Figure 2-5 earlier in this chapter.)

To list hidden files in your home directory:

1. Type clear and press Enter to clear the screen.

2. Type ls -a after the command prompt and press Enter. (See Figure 2-12.)

Figure 2-10 Viewing the contents of the /var directory

Hands-On Projects 103

2

Figure 2-11 Using ls -l to view the /dev directory

Figure 2-12 Viewing hidden files

104 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

Project 2-9
Wildcards are handy when you want to find or work on files that have a specific sequence
of characters or when you are searching for a file and are not certain of the correct spelling
of that file name. In this project, you will use the * and ? wildcards with the ls command.

To work with wildcards:

1. To practice using wildcards, you first must create a set of files with similar names. In
Chapter 1, you used the cat command to create the notes file. Use the cat command
now to create these five files:

first_name—A file containing your first name

middle_name—A file containing your middle name

last_name—A file containing your last name

full_name1.txt—A file containing your full name

full_name22.txt—Another file containing your full name

2. For example, type cat > first_name, press Enter, type your first name, press Enter,
and press Ctrl+d.

3. Type ls *name and press Enter. You see first_name, last_name, and middle_name
listed.

4. Type ls full_name?.txt and press Enter. You see full_name1.txt listed.

5. Type ls *.txt and press Enter. Now, you see full_name1.txt and full_name22.txt
listed.

Project 2-10
Assume that you work for a company that is developing a telephone database, and in this
project you will be creating directories for the Mail and Receiving Departments, which are
referenced in the company’s budget and accounting systems as departments 4540 and 4550.
After you create the directories, you will begin creating files of department phone numbers
to store in those directories. You will use the mkdir (make directory) command to create new
directories, and then you use the cat command to create the phone files. Also, don’t delete
the files you create because you use them in other projects.

To create new directories and phone files:

1. Type cd and press Enter to make certain you are in your home directory.

2. Type mkdir dept_4540 and press Enter to make a new directory called dept_4540.

3. Type ls and press Enter. You see the dept_4540 directory in the listing.

4. Type cd dept_4540 and press Enter to change to the new directory. Now, you can
use the cat command to create a file called phones1. The phones1 file contains fields

Hands-On Projects 105

2

for area code, phone prefix, phone number, last name, and first name. A colon (:)
separates each field.

5. Type these commands, pressing Enter at the end of each line:

cat > phones1

219:432:4567:Harrison:Joel

219:432:4587:Mitchell:Barbara

219:432:4589:Olson:Timothy

6. Press Ctrl+d.

7. Type cat phones1 and press Enter to view and verify the contents of the file you
created.

8. Type cd and press Enter to return to your /home directory.

9. Type mkdir dept_4550 and press Enter to make a new directory called dept_4550.

10. Type ls and press Enter. You see the dept_4550 directory in the listing.

11. Type cd dept_4550 and press Enter to change to the new directory. Now you can
use the cat command to create the file phones2, which contains the same fields as the
phones1 file.

12. Type these commands, pressing Enter at the end of each line:

cat > phones2

219:432:4591:Moore:Sarah

219:432:4522:Polk:John

219:432:4501:Robinson:Lisa

13. Press Ctrl+d.

14. Type cat phones2 and press Enter to view and verify the contents of the
phones2 file.

15. Type clear and press Enter to clear the screen for the next project.

Project 2-11
After you create the phones files, you will need to create a new central directory called
corp_db for general access to the information, and you will copy the phones1 file into the
new directory. Next, using > you merge phones1 and phones2 into one file, called
corp_phones in your new directory. Note that you can use the tilde character (~) to
represent the location of your home directory.

To copy the phones1 file into a new directory, corp_db:

1. Type cd and press Enter to return to your home directory.

106 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

2. Type mkdir corp_db and press Enter to make a new directory.

3. Type cd corp_db and press Enter to change to the new directory.

4. To copy the phones1 file from the dept_4540 directory to the current directory, type
cp ~/dept_4540/phones1 . and press Enter.

5. To copy the phones2 file from the dept_4550 directory to the current directory, type
cp ~/dept_4550/phones2 . and press Enter. (See Figure 2-13.)

6. Type ls and press Enter to ensure that phones1 and phones2 are now in the new
directory.

To concatenate the phones1 and phones2 files into one file:

1. Type cat phones1 phones2 > corp_phones and press Enter to add the contents
of the two phone files to one new file called corp_phones.

2. Type clear and press Enter to clear the screen.

3. Type more corp_phones and press Enter to view the new file’s contents, as shown
in Figure 2-14.

Figure 2-13 Creating a directory and copying files into it

Hands-On Projects 107

2

As you recall from Chapter 1, the more command, which lets you display files
one screen at a time, is especially useful for reading long files.

Project 2-12
Assume that you want all users to have access to the corp_phones file. In this project,you first
grant access to your home directory. Next, you allow access to the corp_db directory, and
then set the permissions for everyone to read the corp_phones file. You use the chmod
command with the x argument to grant access to directories.

To change file and directory permissions:

1. Make certain that you are in your home directory. (Type cd and press Enter.)

2. Type clear and press Enter to clear the screen.

3. Type chmod go+x ~ and press Enter to allow access to your home directory.

This command means “make your home directory (~) accessible (+x) to the group (g)
and others (o).”

4. Type chmod ugo+x ~/corp_db and press Enter to allow access to the corp_db
directory.

This command means “make the corp_db directory accessible (+x) for the owner (u),
group (g), and others (o).”

Figure 2-14 Viewing the contents of the new corp_phones file

108 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

5. Type chmod o+w ~/corp_db/* and press Enter to set permissions so that others
can write to the files in the corp_db directory. (Owner and group already have write
permission by default.)

This command means “make all files in the corp_db directory so that others (o) can
write (+w) to them.”

6. Type ls -l ~/corp_db to check the permissions you have set. (See Figure 2-15.)

DISCOVERY EXERCISES

1. Use the ls command to list the contents of the root file system directory (/) on your
system.

2. Use the ls -l command to view the contents of the root file system directory (/).

3. Determine the inode value for the /etc directory.

4. Make /etc your current working directory and then go back to your home directory.

5. Make the root file system directory your current working directory. What command
can you use to verify that you are in the root file system directory? Return to your
home directory.

6. The file info.txt is in the help directory, which is a subdirectory of the /dev
directory. What is the absolute path to info.txt?

7. Change to the /dev directory. Next, access your home directory using a tilde (~) in
the command that you employ.

Figure 2-15 Permissions changes to enable users’ access

Discovery Exercises 109

2

8. Determine whether there are any hidden files in the /home directory.

9. Make a directory under your home directory called documents. Next, make a direc-
tory under the documents directory called spreadsheets. What is the absolute path
for the spreadsheets directory?

10. Make certain you are in your home directory. Use a relative path to make your new
documents directory the current working directory. Next, use a relative path to make
the spreadsheets directory your current working directory. Now use a command
with dots in it to make the documents directory your current working directory.

11. With your home directory as your current directory, use the command to remove
read, write, and execute permissions from group and others for the spreadsheets
directory. Next, verify that your change has taken place.

12. Use the cat command to create a two-line file in your home directory called datainfo.
On the first line, enter 144, and on the second line, enter 288. After the file is created,
copy it from your home directory to the spreadsheets directory you created.

13. Determine the default permissions on the datainfo file you created. Next, set the
permissions on the datainfo file so that the owner, group, and others can read and
execute the file. (Otherwise, leave the default settings as is.)

14. Append the current month’s calendar to the datainfo file that is in your home
directory. Next, copy your changed datainfo file over the older datainfo file in the
spreadsheets directory, but use the copy option that prompts you before you over-
write the file in the spreadsheets directory. Check the contents of the datainfo file in
the spreadsheets directory to make certain your copy was successful.

15. Make the spreadsheets directory your working directory. Make copies of the datainfo
file in the spreadsheets directory, so that one copy is named myinfo and one is
named datadata. Next, use a wildcard character to list all files that start with “data.”
Use a wildcard character to list all files that end with “info.” Use a wildcard character
combination to list all files that have “ata” as the second, third, and fourth characters.

16. Make certain you are in your home directory. Change your command prompt so
that it shows your current working directory with an exclamation point, such as
mydirectory! Change to the spreadsheets and then to the documents directory and
notice how the prompt changes.

17. Change to your home directory. Use the rmdir command to delete the spreadsheets
directory. What happens?

18. Delete the datainfo files in both your home directory and in the spreadsheets
directory. Also, delete the myinfo and datadata files in the spreadsheets directory.

19. Change to your home directory. Delete the spreadsheets directory and then delete
the documents directory.

20. Create a directory called secure under your home directory. Next, using the octal
permission format, set security on the secure directory so that you have all permis-
sions and no one else has any permissions.

110 Chapter 2 Exploring the UNIX/Linux File Systems and File Security

MASTERING EDITORS
After reading this chapter and completing the

exercises, you will be able to:
♦ Explain the basics of UNIX/Linux files, including ASCII, binary, and

executable files
♦ Understand the types of editors

♦ Create and edit files using the vi editor

♦ Create and edit files using the Emacs editor

The ability to create and modify the contents of files is a fundamental skill
not only in producing documents such as memos, reports, and letters, but

also in writing programs and customizing system configuration files. All
operating systems, including UNIX/Linux, provide one or more editors that
enable you to work with the contents of files.

This chapter introduces two important UNIX/Linux editors, which you use
throughout the rest of this book. The vi editor provides basic editing functions
and is often preferred by UNIX/Linux administrators and programmers for its
simplicity. The Emacs editor offers more sophisticated editing capabilities for
writing all kinds of documents as well as programs. Both of these popular
editors can be started from the command line and are included in most versions
of UNIX/Linux.

CHAPTER

3

111

UNDERSTANDING UNIX/LINUX FILES

Almost everything you create in UNIX/Linux is stored in a file. All information stored in
files is in the form of binary digits. A binary digit, called a bit for short, is in one of two
states. The states are 1 (on) and 0 (off). They can indicate, for example, the presence or
absence of voltage in an electronic circuit. Because the computer consists of electronic
circuits that are either in an on or off state, binary numbers are perfectly suited to report
these states. The exclusive use of 0s and 1s as a way to communicate with the computer is
known as machine language. The earliest programmers had to write their programs using
machine language, a tedious and time-consuming process.

ASCII Text Files
To make information stored in files accessible, computer designers established a standard
method for translating binary numbers into plain English. This standard uses a string of eight
binary digits, called a byte, which is the abbreviation for binary term. A byte can be
configured into fixed patterns of bits, and these patterns can be interpreted as an alphabetic
character, decimal number, punctuation mark,or a special character, such as &,*, or @.Each
byte, or code, has been standardized into a set of bit patterns known as ASCII.ASCII stands
for the American Standard Code for Information Interchange. Computer files containing
nothing but printable characters are called text files, and files that contain nonprintable
characters, such as machine instructions, are called binary files. The ASCII character set
represents 256 characters. Figure 3-1 lists the printable and nonprintable ASCII characters.

Many nonprintable ASCII characters are available. Some examples are charac-
ters used to control printers, such as the escape (ESC) character to show the
start of a printing command, a form feed (FF) character, and a line feed (LF)
character. If you use Microsoft Word or OpenOffice.org Writer, you are familiar
with other nonprinting characters, such as the paragraph symbol. You can view
nonprinting characters in Microsoft Word or OpenOffice.org Writer by clicking
the Show/Hide ¶ or Nonprinting Characters button (paragraph symbol) on the
Standard toolbar.

Some operating systems also support Unicode. Unicode offers up to 65,536 characters,
although not all of the possible characters are currently defined. Unicode was developed
because the 256 characters in ASCII are not enough for some languages, such as Chinese,
that use more than 256 characters. Visit www.unicode.org to learn more about Unicode.

Binary Files
Computers are not limited to processing ASCII codes. To work with graphic information,
such as icons, illustrations, and other images, binary files can include strings of bits
representing white and black dots, in which each black dot represents a 1 and each white dot

112 Chapter 3 Mastering Editors

www.unicode.org

represents a 0. Graphics files include bit patterns—rows and columns of dots called a
bitmap—that must be translated by graphics software, commonly called a graphics viewer,
which transforms a complex array of bits into an image.

Executable Program Files
Many programmers develop source code for their programs by writing text files; then, they
compile these files to convert them into executable program files. Compiling is a process of
translating a program file into machine-readable language. Programmers and users also develop

Printing Characters
(Punctuation Characters)
Dec Octal Hex ASCII
32 040 20 (Space)
33 041 21 !
34 042 22 “
35 043 23 #
36 044 24 $
37 045 25 %
38 046 26 &
39 047 27 ‘
40 050 28 (
41 051 29)
42 052 2A *
43 053 2B +
44 054 2C ,
45 055 2D -
46 056 2E .
47 057 2F /

Printing Characters
(Alphabet—Uppercase)
Dec Octal Hex ASCII
65 101 41 A
66 102 42 B
67 103 43 C
68 104 44 D
69 105 45 E
70 106 46 F
71 107 47 G
72 110 48 H
73 111 49 I
74 112 4A J
75 113 4B K
76 114 4C L
77 115 4D M
78 116 4E N
79 117 4F O
80 120 50 P
81 121 51 Q
82 122 52 R
83 123 53 S
84 124 54 T
85 125 55 U
86 126 56 V
87 127 57 W
88 130 58 X
89 131 59 Y
90 132 5A Z

Printing Characters
(Alphabet—Lowercase)
Dec Octal Hex ASCII
 97 141 61 a
 98 142 62 b
 99 143 63 c
100 144 64 d
101 145 65 e
102 146 66 f
103 147 67 g
104 150 68 h
105 151 69 i
106 152 6A j
107 153 6B k
108 154 6C l
109 155 6D m
110 156 6E n
111 157 6F o
112 160 70 p
113 161 71 q
114 162 72 r
115 163 73 s
116 164 74 t
117 165 75 u
118 166 76 v
119 167 77 w
120 170 78 x
121 171 79 y
122 172 7A z

(Decimal Numbers—Print)
Dec Octal Hex ASCII
48 060 30 0
49 061 31 1
50 062 32 2
51 063 33 3
52 064 34 4
53 065 35 5
54 066 36 6
55 067 37 7
56 070 38 8
57 071 39 9

(Special Characters—Print)
Dec Octal Hex ASCII
58 072 3A :
59 073 3B ;
60 074 3C <
61 075 3D =
62 076 3E >
63 077 3F ?
64 080 40 @

Nonprinting Characters (Abridged)
Control Characters
Dec Octal Hex ASCII
 0 000 00 ^@ (Null)
 7 007 07 Bell
 8 010 08 Backspace
 9 011 09 Tab
10 012 0A Line Feed, Newline
11 013 0B Vertical tab
12 014 0C Form feed
13 015 0D Carriage return

Figure 3-1 ASCII characters

Understanding UNIX/Linux Files 113

3

scripts, which are files containing commands. Scripts are typically not compiled into machine
code prior to running,but are executed through an interpreter. At the time the script is run, the
interpreter looks at each line and converts the commands on each line into actions taken by the
computer. Scripts are interpreted program files that are executable. You learn more about
writing program code, scripts, compilers, and interpreters later in this book.

Compiled and interpreted files that can be run are called executable program
files (or sometimes just executables). These files can be run from the
command line.

USING EDITORS

An editor is a program for creating and modifying files containing source code, text, data,
memos, reports, and other information. A text editor is like a simplified word-processing
program; you can use a text editor to create and edit documents, but many text editors do
not allow you to format text using boldface text, centered text, or other text-enhancing
features.

Editors let you create and edit ASCII files. UNIX/Linux normally include the two editors
vi and Emacs. They are screen editors, because they display the text you are editing one
screen at a time and let you move around the screen to change and add text. Both are text
editors as well, because they work like simple word processors. You can also use a line editor
to edit text files. A line editor lets you work with only one line or group of lines at a time.
Although line editors do not let you see the context of your editing, they are useful for
general tasks, such as searching, replacing, and copying blocks of text. In UNIX/Linux,
however,most users prefer vi or Emacs to using a simple line editor,which is another reason
why vi and Emacs are included with UNIX/Linux systems.

The vi and Emacs editors do not offer the same functionality as GUI-based
editors such as Microsoft Word (although Emacs now has lots of functionality
and “snap-ins” for extra functions like editing Web documents). Also, UNIX/
Linux systems can use more sophisticated GUI editors, such as OpenOffice.org
Writer, gedit in the GNOME desktop, and KEdit in the KDE desktop. However,
both vi and Emacs are typically preferred for system, configuration, and pro-
gramming activities, because they are quickly initiated from the command line
and offer a simple, direct way to perform critical editing tasks.

USING THE VI EDITOR

The vi editor is so called because it is visual—it immediately displays on screen the changes
you make to text. It is also a modal editor; that is, it works in three modes: insert mode,
command mode, and extended (ex) command set mode. Insert mode,which lets you enter

114 Chapter 3 Mastering Editors

text, is accessed by typing the letter “i” after the vi editor is started. Command mode,
which is started by pressing Esc, lets you enter commands to perform editing tasks, such as
moving through the file and deleting text.Ex mode employs an extended set of commands
that were initially used in an early UNIX editor called ex. You can access this mode by
pressing Esc to enter command mode, and then typing a colon (:) to enter extended
commands at the bottom of the screen.

You can simulate a line editor using vi by starting the vi editor with the -e option
(vi -e filename), which places vi exclusively in ex mode. Also, when you open
vi, it is set up by default to edit a text file. You can edit a binary file by using the
-b option with vi.

To use the vi editor, it is important to master the following tasks:

■ Creating a file

■ Inserting, editing, and deleting text

■ Searching and replacing text

■ Adding text from other files

■ Copying, cutting, and pasting text

■ Printing a file

■ Saving a file

■ Exiting a file

Different versions of the vi editor are included in different versions of UNIX/Linux.
The commands described in this chapter generally apply to most UNIX/Linux vi
editor versions. However, they particularly apply to the vi editor in Fedora, Red Hat
Enterprise Linux, and SUSE, which is technically called the vim (vi improved) editor.

Creating a New File in the vi Editor
To create a new file in the vi editor:

1. Access the command line.

2. Enter vi plus the name of the file you want to create, such as vi data.

These steps open the vi editor and enable you to begin entering text in the file you specify.
Remember, though, at this point the file is in memory and is not permanently saved to the
disk until you issue the command to save it.

As you enter text, the line containing the cursor is the current line. Lines containing a tilde
(~) are not part of the file; they indicate lines on the screen only, not lines of text in the file.
(See Figure 3-2.)

Using the vi Editor 115

3

Hands-on Project 3-1 enables you to create a new file using the vi editor.

Sometimes you might open the vi editor without specifying the file name with
the vi command on the command line. You can save the file and specify a file
name at any time by pressing Esc, typing :w filename, and pressing Enter.

Inserting Text
When you start the vi editor, you’re in command mode. This means that the editor interprets
anything you type on the keyboard as a command. Before you can insert text in your new file,
you must use the i (insert) command. In insert mode, every character you type appears on the
screen. You can return to command mode at any time by pressing the Esc key.

Try Hands-on Project 3-2 to insert text in the vi editor.

Repeating a Change
The vi editor offers features that can save you time.One such feature is the ability to replicate
any changes you make. When you are in command mode, you can use a period (.) to repeat
the most recent change you made. This is called the repeat command and it can save you
time when typing the same or similar text. Hands-on Project 3-3 uses the repeat command.

Moving the Cursor
When you want to move the cursor to a different line or to a specific position on the same
line,use command mode (press Esc). In command mode,you can move forward or back one

Figure 3-2 Creating a new file in the vi editor

116 Chapter 3 Mastering Editors

word, move up or down a line, go to the beginning of the file, and so on. Table 3-1
summarizes useful cursor-movement commands. You can practice moving the cursor in
Hands-on Project 3-4.

Table 3-1 vi editor’s cursor movement keys
Key Movement
h or left arrow Left one character position
l or right arrow Right one character position
k or up arrow Up one line
j or down arrow Down one line
H Upper-left corner of the screen
L Last line on the screen
G Beginning of the last line
nG The line specified by a number, n
W Forward one word
b Back one word
0 (zero) Beginning of the current line
$ End of the current line
Ctrl+u Up one-half screen
Ctrl+d Down one-half screen
Ctrl+f or Page Down Forward one screen
Ctrl+b or Page Up Back one screen

Remember that the Ctrl key combinations and the letter keys shown in Table 3-1 are
designed to work in command mode. The arrow keys, which are used for moving around
text, work in both command and insert mode. Try Hands-on Project 3-4 to practice using
vi in command mode to move around in a file.

Using the letter keys to move the cursor can be traced to the time when
UNIX/Linux used teletype terminals that had no arrow keys. Designers of vi
chose the letter keys because of their relative position on the keyboard.

Deleting Text
The vi editor employs several commands for deleting text when you are in command mode.
For example, to delete the text at the cursor, type x. Use dd in command mode to delete the
current line. Use dw to delete a word or to delete from the middle of a word to the end of
the word. To delete more than one character, combine the delete commands with the cursor
movement commands you learned in the preceding section. Table 3-2 summarizes the most
common delete commands.

Using the vi Editor 117

3

Table 3-2 vi editor’s delete commands
Command Purpose
x Delete the character at the cursor.
dd Delete the current line (putting it in a buffer so it can also be pasted

back into the file).
dw Delete the word starting at the cursor. If the cursor is in the middle of

the word, delete from the cursor to the end of the word.
d$ Delete from the cursor to the end of the line.
d0 Delete from the cursor to the start of the line.

The command to delete a line, dd, actually places deleted lines in a buffer. You can then use
the command p to paste deleted (cut) lines elsewhere in the text. (Position the cursor where
you want to paste the information.)To copy and paste text, use the “yank” command, yy, to
copy the lines. After yanking the lines you want to paste elsewhere, move the cursor, and
type p to paste the text in the current location. You learn more about the p and yy
commands in later sections of this chapter.

Hands-on Project 3-5 gives you the opportunity to practice using delete commands.

Undoing a Command
If you complete a command and then realize you want to reverse its effects, you can use the
undo (u) command. For example, if you delete a few lines from a file by mistake, type u to
restore the text.

Searching for a Pattern
You can search forward for a pattern of characters by typing a forward slash (/), typing the
pattern you are seeking, and then pressing Enter. Programmers often call this a “string
search.” For example, suppose you want to know how many times you used the word
“insure” in a file. First, go to the top of the file, type /insure, and press Enter to find the first
instance of insure. To find more instances, type n while you are in command mode.

When placed after the forward slash, several special characters are supported by vi when
searching for a pattern. For example, the special characters \> are used to search for the next
word that ends with a specific string. If you enter /te\> you find the next word that ends with
“te,” such as “write” or “byte.”The characters \< search for the next word that begins with a
specific string, such as using /\<top to find the next word that begins with“top,”which might be
“topology,” for example. The ^ special character searches for the next line that begins with a
specific pattern. For instance, /^However finds the next line that starts with “However.” Use a
period as a wildcard to match characters. For example,/m.re finds “more” and “mere,” and /s..n
finds “seen,”“soon,” and “sign.”Also, use brackets [] to find any of the characters between the
brackets, such as /theat[er] to find “theater” or “theatre,” and /pas[st] to find “pass” or “past.”
Finally, use $ to find a line that ends with a specific character. For instance /!$ finds a line that
ends with an exclamation point “!”. You can type n after searching with any of these special

118 Chapter 3 Mastering Editors

characters to find the next pattern that matches. Table 3-3 summarizes the special characters
used to match a pattern.

Table 3-3 Special characters used to match a pattern
Special Character* Purpose
\> Searches for the next word that ends with a specific string.
\< Searches for the next word that begins with a specific string.
. Acts as a wildcard for one character.
[] Finds the characters between the brackets.
$ Searches for the line that ends with a specific character.
*All of these special characters must be preceded with a slash (/) from the
command mode.

Hands-on Project 3-6 provides experience in pattern matching.

If you are in an editing session and want to review information about the file
status, press Ctrl+g or Ctrl+G (you can use uppercase G or lowercase g). The
status line at the bottom of the screen displays information, including line-
oriented commands and error messages.

Searching and Replacing
Suppose you want to change all occurrences of “insure” in the file you are editing to
“ensure.” Instead of searching for “insure,” and then deleting it and inserting “ensure,” you
can search and replace with one command. The commands you learned so far are
screen-oriented. Commands that can perform more than one action (searching and replac-
ing) are line-oriented commands and they operate in ex mode.

Screen-oriented commands execute at the location of the cursor. You do not need to tell
the computer where to perform the operation because it takes place relative to the cursor.
Line-oriented commands, on the other hand, require you to specify an exact location (an
address) for the operation. Screen-oriented commands are easy to type, and their changes
appear on the screen. Typing line-oriented commands is more complicated, but they can
execute independently of the cursor and in more than one place in a file, saving you time
and keystrokes.

A colon (:) precedes all line-oriented commands. It acts as a prompt on the status line,which
is the bottom line on the screen in the vi editor. You enter line-oriented commands on the
status line, and press Enter when you complete the command.

In this chapter, all instructions for line-oriented commands include the colon as
part of the command.

Using the vi Editor 119

3

For example, to replace all occurrences of “insure” with “ensure,” you first enter command
mode (press Esc), type :1,$s/insure/ensure/g, and press Enter. This command means access
the ex mode (:), beginning with the first line (1) to the end of the file ($), search for“insure,”
and replace it with “ensure” (s/insure/ensure/) everywhere it occurs on each line (g).

Try Hands-on Project 3-7 to use a line-oriented command for searching and replacing.

Saving a File and Exiting vi
As you edit a file, periodically saving your changes is a good idea. This is especially true if
your computer is not on an uninterruptible power supply (UPS). A UPS is a device that
provides immediate battery power to equipment during a power failure or brownout.

You can save a file in several ways. One way is to enter command mode and type :w to save
the file without exiting. (See Figure 3-3.) If you are involved in a relatively long editing
session, consider using this command every 10 minutes or so to periodically save your work.
If you want to save your changes and exit right away, use :wq or ZZ from command mode.
You can also use :x to save and exit. You should always save the file before you exit vi;
otherwise, you will lose your changes. Hands-on Project 3-8 enables you to save your
changes and exit an editing session.

Adding Text from Another File
Sometimes, the text you want to include in one file is already part of another file. For
example, suppose you already have a text file that lists customer accounts and you have
another file called customerinfo that contains customer information. You want to copy the
customer accounts text into the customerinfo file and make further changes to the

Figure 3-3 Saving without exiting

120 Chapter 3 Mastering Editors

customerinfo file. It is much easier to use the vi command to copy the text from the
accounts file into the customerinfo file than it is to retype all of the text. To copy the entire
contents of one file into another file: (1) use the vi editor to edit the file you want to copy
into; and (2) use the command :r filename,where filename is the name of the file that contains
the information you want to copy. Hands-on Project 3-9 enables you to copy from one file
into another.

Leaving vi Temporarily
If you want to execute other UNIX/Linux commands while you work with vi, you can
launch a shell or execute other commands from within vi. For example, suppose you’re
working on a text or program file and you want to leave to check the calendar for the
current month. To view the calendar from command mode, type :!cal (a colon, an
exclamation point, and the command) and press Enter. This action executes the cal
command, and when you press Enter again, you go back into your vi editing session. Using
:! plus a command-line command enables you to start a new shell, run the command, and
then go back into the vi editor.

When you want to run several command-line commands in a different shell without first
closing your vi session,use the Ctrl+z option to display the command line. (See Figure 3-4.)
When you finish executing commands, type fg to go back into your vi editing session.

Using Ctrl+z in this context is really a function of the Bash shell, which in this
example leaves the vi editor running in the background and takes you to the
shell command line. When you enter fg, this is a shell command that brings the
job you left (the vi editing session) back to the foreground.

Hands-on Project 3-10 enables you to use the :! and Ctrl+z commands from a vi editing
session.

You can set up a script file (a file of commands) that automatically runs when
you launch vi. The file is called .exrc and is a hidden file located in your home
directory. This file can be used to automatically set up your vi environment.
Programmers, for example, who want to view line numbers in every editing
session might create an .exrc file and include the set number command in the
file. To learn more about scripts, see Chapters 6 and 7 (“Introduction to Shell
Script Programming” and “Advanced Shell Programming”).

Changing Your Display While Editing
Besides using the vi editing commands, you can also set options in vi to control editing
parameters, such as using a line number display. Turn on line numbering when you want to
work with a range of lines, for example, when you’re deleting or cutting and pasting blocks
of text. Then, you can refer to the line numbers to specify the text.

Using the vi Editor 121

3

To turn on line numbering, use the :set number command. Then, if you want to delete lines
4 through 6, for example, it is easy to determine that these are the lines you intend to delete,
and you simply use the :4,6d command to delete them. Try Hands-on Project 3-11 to turn
on line numbering and then refer to it for deleting text.

Copying or Cutting and Pasting
You can use the yy command in vi to copy a specified number of lines from a file and place
them on the clipboard. To cut the lines from the file and store them on the clipboard, use
the dd command. After you use the dd or yy commands, you can use the p command to paste
the contents in the clipboard to another location in the file. These commands are handy if
you want to copy text you already typed and paste it in another location. Hands-on Project
3-12 enables you to cut text and paste it in another location within the same file.

Printing Text Files
Sometimes you want to print a file before you exit the vi editor. You can use the lpr (line
print) shell command to print a file from vi. Type !lpr and then type the name of the file you
want to print. Hands-on Project 3-13 enables you to print a file on which you are working
in the vi editor.

You can also specify which printer you want to use via the -P printer option, where printer
is the name of the printer you want to use. For example, you might have two printers, lp1
and lp2. To print the file accounts to lp2, enter :!lpr -P lp2 accounts and press Enter.

Figure 3-4 Accessing a shell command line from the vi editor

122 Chapter 3 Mastering Editors

Syntax lpr [-option] [filename]

Dissection

■ The argument consists of the name of the file to print.

■ Options include:
-P specifies the destination printer; you include the name of the printer just after

the option.
-# specifies the number of copies to print (up to 100 copies).
-r deletes a print file after it is printed (saving disk space).

Canceling an Editing Session
If necessary, you can cancel an editing session and discard all the changes you made in case
you change your mind. Another option is to save only the changes you made since last using
the :w command to save a file without exiting vi. In Hands-on Project 3-14, you exit a file
without saving your last change.

Getting Help in vi
You can get help in using vi at any time you are in this editor. To access the online help
documentation while you are editing a file, use the help command. You can access
help documentation after you start the vi editor by pressing Esc, then typing a colon (:), and
then help. You access the help documentation in Hands-on Project 3-14.

You can also view documentation about vi using the man vi command. While
you are in vi, press Esc, type :!man vi, and press Enter (type q and press Enter to
go back into your editing session). Or, when you are at the shell command line
and not in a vi session, type man vi and press Enter.

USING THE EMACS EDITOR

Emacs is another popular UNIX/Linux text editor. Unlike vi, Emacs is not modal. It does not
switch from command mode to insert mode. This means that you can type a command without
verifying that you are in the proper mode. Although Emacs is more complex than vi, it is more
consistent.For example,you can enter most commands by pressingAlt or Ctrl key combinations.

Emacs also supports a sophisticated macro language. A macro is a set of commands that
automates a complex task. Think of a macro as a “superinstruction.” Emacs has a powerful
command syntax and is extensible.Its packaged set of customized macros lets you read electronic
mail and news and edit the contents of directories. You can start learning Emacs by learning its

Using the Emacs Editor 123

3

common keyboard commands. Although Emacs also supports many conventional mouse-based
menu options, it is worth your time to learn the keyboard commands. When you know these,
you can often navigate and use Emacs keyboard features even faster than going through menus
to find the same options. Table 3-4 lists the Emacs keyboard commands.

Table 3-4 Common Emacs commands
Command Purpose
Alt+< Move the cursor to the beginning of the file.
Alt+> Move the cursor to the end of the file.
Alt+b Move the cursor back one word.
Alt+d Delete the current word.
Alt+f Move the cursor forward one word (moving space to space between

words).
Alt+q Reformat current paragraph using word wrap so that lines are full.
Alt+t If the cursor is under the first character of the word, transpose the

word with the preceding word; if the cursor is not under the first
character, transpose the word with the following word.

Alt+u Capitalize all letters from the cursor position in a word to the end of
that word.

Alt+w Scroll up one screen.
Alt+x doctor Enter doctor mode to play a game in which Emacs responds to your

statements with questions. Save your work first. Not all versions
support this mode.

Ctrl+@ Mark the cursor location. After moving the cursor, you can move or
copy text to the mark.

Ctrl+a Move the cursor to the beginning of the line.
Ctrl+b Move the cursor back one character.
Ctrl+d Delete the character under the cursor.
Ctrl+e Move the cursor to the end of the line.
Ctrl+f Move the cursor forward one character.
Ctrl+g Cancel the current command.
Ctrl+h Use online help.
Ctrl+k Delete text to the end of the line.
Ctrl+n Move the cursor to the next line.
Ctrl+p Move the cursor to the preceding line.
Ctrl+t Transpose the character before the cursor and the character under

the cursor.
Ctrl+v Scroll down one screen.
Ctrl+w Delete the marked text. Press Ctrl+y to restore deleted text.
Ctrl+y Insert text from the file buffer, and place it after the cursor.
Ctrl+h, t Run a tutorial about Emacs.
Ctrl+x, Ctrl+c Exit Emacs.
Ctrl+x, Ctrl+s Save the file.

124 Chapter 3 Mastering Editors

Table 3-4 Common Emacs commands (continued)

Command Purpose
Ctrl+x, u Undo the last change.
Ctrl+Del Delete text from the current cursor location to the end of the cur-

rent word.

In most instances, Ctrl and Alt commands in Emacs are not case sensitive, so
Alt+B and Alt+b are the same command.

If you are using Emacs through a remote connection, such as through SSH (see
Chapter 1, “The Essence of UNIX and Linux”), try pressing Ctrl+F10 or just F10
to access the menu bar mode. The menu choices appear in a buffer window
displayed under your main editing window. This is very useful when you cannot
use the common Emacs commands through a remote connection.

Creating a New File in Emacs
Start Emacs by entering the emacs command in the terminal window or at a command line
in UNIX/Linux. If you type a file name after this command, Emacs creates a new, blank file
with that name or opens an existing file with that name. If you type emacs with no file name,
Emacs automatically displays several introductory screens, beginning with the one shown in
Figure 3-5 for Fedora. The Emacs window runs under the X Window desktop you have
configured, such as GNOME.

Figure 3-5 Emacs opening screen (without a file name) in Fedora with GNOME

Using the Emacs Editor 125

3

When you start Emacs without specifying a file to open, the introductory screen
display ends on a screen on which you can type notes in a buffer you do not
plan to save. You can open an existing file to edit by typing Ctrl+x then Ctrl+f
and entering the path and name of the file.

If you have installed a desktop, such as GNOME, there is likely to be a menu option
for starting Emacs. At this writing, in Fedora and Red Hat Enterprise Linux with
the GNOME desktop you can open Emacs by clicking Applications, pointing to
Programming, and clicking Emacs Text Editor. In SUSE, click the Computer menu,
click More Applications, click Utilities in the left pane, and click Emacs.

As Figure 3-5 illustrates, there is a menu bar at the top of the Emacs screen. When you click
one of the items, such as File, a menu appears. The default menu bar has the following
categories:

■ File—Provides options for operations such as opening a file, opening a directory,
saving information in a buffer, inserting information from another file, going into
the split window mode, and closing the currently open file (buffer)

■ Edit—Offers text-editing functions, such as undoing a change, cutting or copying
text, pasting text, and so on

■ Options—Provides all kinds of special options, such as syntax highlighting, region
highlighting, word wrap modes, file decompression/compression, debugger
options, and “mule” options that are used to set the language environment, fonts,
and input method

■ Buffers—Enables you to open any of the editor’s storage buffers that currently hold
information, including the text that is already in the file

■ Tools—Provides options for compiling a program file, executing a shell command,
checking the spelling of text, comparing or merging files, installing Emacs patches,
reading and sending e-mail, and searching a directory

■ Help—Provides assistance through access to manuals, a tutorial, Emacs FAQs, and
the Emacs psychiatrist, which lets you ask Emacs questions

You also see an icon bar under the menu bar that provides options for the following:

■ Reading a file into Emacs

■ Reading a directory to access its files

■ Exiting and not saving the current buffer

■ Saving the contents of the current buffer to a file

■ Copying the current buffer contents to a different file

■ Undoing the most recent task you performed

■ Cutting text

■ Copying text

126 Chapter 3 Mastering Editors

■ Pasting text

■ Searching ahead for a word pattern or string

■ Printing the contents of the current buffer

■ Configuring your editing preferences

■ Viewing the Help menu

Navigating in Emacs
To create a new file in Emacs, type emacs plus the file name at the command line, such as
emacs research. After you start Emacs, to navigate in the file, you can use either the cursor
movement keys—such as the arrow keys, Page Down, Page Up, Home, and End—or
Ctrl/Alt key combinations, such as Alt+f to move the cursor forward one word (see Table
3-4). When you want to save your work: (1) use the File menu; (2) use the icon to save the
current buffer to the file; or (3) press Ctrl+x, Ctrl+s. Also, to exit Emacs, use the File menu,
Exit Emacs option, or enter Ctrl+x, Ctrl+c.

In Hands-on Project 3-15, you create a file and practice saving and exiting. In Hands-on
Project 3-16, you practice navigating in a file.

Deleting Information
You can use the Del or Backspace keys to delete individual characters in Emacs. Also, use
Ctrl+k to delete to the end of a line. If you decide to undo a deletion, use Ctrl+x, u (do not
press Ctrl with the u) to repeatedly undo each deletion. Hands-on Project 3-17 enables you
to delete text and then undo your deletion.

Copying, Cutting, and Pasting Text
In Emacs, you can insert text simply by typing. You can also insert text by copying and pasting,
or by cutting and pasting.Before you copy or cut text,you first need to mark the text with which
to work. When you use command keys, navigate to the beginning of the text you want to
replicate and press Ctrl+Spacebar. Next, navigate to the end of the text you want to include and
press Alt+w to copy the text, or press Ctrl+w to cut the text. Next, move the cursor where you
want to place the copied or cut text and press Ctrl+y (the yank command). This might sound
confusing at first; the best way to learn the process is by doing it.Hands-on Project 3-18 enables
you to copy and paste text in Emacs.

Searching in Emacs
Like the vi editor,Emacs lets you search for specific text.One way to search is by pressing Ctrl+s,
entering on the status line the string of characters you want to find, and pressing
Ctrl+s repeatedly to find each occurrence. You can also use Ctrl+r to search backward.

Using the Emacs Editor 127

3

Another way to search for a string is to use the Search forward for a string icon or to click the
Edit menu, point to Search, and click Search. In both cases, you then type the search string
on the status line and press Enter. Try Hands-on Project 3-19 to search for a string.

Reformatting a File
Often, as you create a document, you want to set it up so that the lines automatically wrap
around from one line to the next.Use the Alt+q command to turn on the word wrap feature
in Emacs. Hands-on Project 3-20 teaches you to use word wrap.

Getting Help in Emacs
Emacs comes with extensive documentation and a tutorial. The Emacs tutorial is a good
way to get up to speed quickly. Click the Help menu and click Emacs Tutorial; or, in most
versions of Emacs, type Ctrl+h and then type t. You can also view general Emacs docu-
mentation by entering Ctrl+h (press this one or two times) while you are in Emacs or type
man emacs at the command line.

CHAPTER SUMMARY

Bits represent digital 1s and 0s. Bytes are computer characters (a series of bits) stored using
numeric codes. A set of standardized codes known as ASCII codes is often used to represent
characters. ASCII stands for the American Standard Code for Information Interchange.
Computer files that contain only ASCII characters (bytes) are called text files.

The vi editor is a popular choice among UNIX/Linux users.Standard editors process text
files. Text files are also called ASCII files. The vi editor is a modal editor, because it works
in three modes: insert, command, and ex mode. Insert mode (press i) lets you enter text,
whereas command mode (press Esc) lets you navigate the file and modify the text. Ex
mode (type : in command mode) is used to access an extended set of commands,
including the commands to save and exit a file.

In the vi editor’s insert mode, characters you type are inserted in the file. They are not
interpreted as vi commands. To exit insert mode and reenter command mode, press Esc.

With vi, you initially edit a copy of the file placed in the computer’s memory. You do not
alter the file itself until you save it on disk.

To get help for the vi editor, press Esc and enter :help or view the man documentation
from the command line by entering man vi.

The Emacs editor is a popular alternative to the vi editor and, along with vi, is included
with most UNIX/Linux systems.

Unlike vi, Emacs is not modal—it does not switch between modes. Emacs has a powerful
command syntax, is extensible, and supports a sophisticated language of macro
commands. A macro is a set of commands designed to simplify a complex task. Emacs’

128 Chapter 3 Mastering Editors

packaged set of customized macros lets you read electronic mail and news, and edit the
contents of directories.

You can start Emacs by typing emacs at the command line with or without a file name. If
you enter this command and then type a file name, Emacs creates a new, blank file with
that name, or opens an existing file with that name. If you type emacs with no file name,
Emacs displays an introductory screen. You can then use a command to open an existing
file or create a new file.

You can use either the cursor movement keys—such as the arrow keys, Page Down, Page
Up, Home, and End—or Ctrl/Alt key combinations to navigate an Emacs file.

In Emacs, as well as in vi, you can undo your editing changes in sequence, even after
you’ve made many changes.

In Emacs, you can insert text simply by typing. You can also insert text by copying and
pasting,or by cutting and pasting.Like the vi editor,Emacs lets you search for specific text.
Emacs also has an automatic word wrap capability.

For Emacs help, type Ctrl+h (press t for a tutorial) while in Emacs or use the man emacs
command from the command line.

COMMAND SUMMARY: REVIEW OF CHAPTER 3 COMMANDS

Command Purpose
vi commands:
. (repeat) Repeat your most recent change.
/ Search forward for a pattern of characters.
:! Leave vi temporarily.
:q Cancel an editing session.
:r Read text from one file and add it to another.
:set Turn on certain options, such as line numbering.
:w Save a file and continue working.
:wq Write changes to disk and exit vi.
:x Save changes and exit vi.
:!lpr filename Print a file.
i Switch to insert mode.
p Paste text from the buffer.
u Undo your most recent change.
vi Start the vi editor.
yy Copy (yank) text to the clipboard.
ZZ In command mode, save changes and exit vi.
Ctrl+z Use this shell-based command (not truly a vi command) to leave

vi to temporarily access the command line—use the fg command
to return to vi.

Command Summary: Review of Chapter 3 Commands 129

3

Command Purpose
UNIX/Linux
commands:
lpr Print a file.

-P prints to a specific printer.
-# prints a specific number of copies.
-r deletes the print file from disk storage.

Emacs commands:
See Table 3-4

KEY TERMS

ASCII —An acronym forAmerican Standard Code for Information Interchange;a standard
set of bit patterns organized and interpreted as alphabetic characters, decimal numbers,
punctuation marks, and special characters. The code is used to translate binary numbers into
ordinary language, and, therefore, makes information stored in files accessible. ASCII can
represent up to 256 characters (bit patterns).
binary file — A file containing non-ASCII characters (such as machine instructions).
bit —The abbreviation for binary digit; a number composed of one of two numbers, 0 and
1. UNIX/Linux store all data in the form of binary digits. Because the computer consists of
electronic circuits in either an on or off state, binary digits are perfect for representing these
states.
bitmap — The rows and columns of dots or bit patterns that graphics software transforms
into an infinite variety of images.
byte —The abbreviation for binary term; a string of eight binary digits or bits. These digits
can be configured into patterns of bits, which, in turn, can be interpreted as alphabetic
characters, decimal numbers, punctuation marks, and special characters. This is the basis for
ASCII code.
command mode — A feature of a modal editor that lets you enter commands to perform
editing tasks, such as moving through the file and deleting text. The UNIX/Linux vi editor
is a modal editor.
compiling — A process of translating a program file into machine-readable language.
editor — A program for creating and modifying computer documents, such as program and
data files.
ex mode — A text-editing command mode, currently used in the vi editor, that employs
an extended set of commands initially used in an early UNIX editor called ex.
executable program file — Also called an executable; a compiled file (from a program-
ming language) or an interpreted file (from a script) that can be run on the computer.
insert mode — A feature of a modal editor that lets you enter text. The UNIX/Linux vi
editor is a modal editor.
line editor — An editor that lets you work with only one line or a group of lines at once.
Although you cannot see the context of your file,you might find a line editor useful for tasks
such as searching, replacing, and copying blocks of text.

130 Chapter 3 Mastering Editors

line-oriented command — A command that can perform more than one action, such as
searching and replacing, in more than one place in a file. When using a line-oriented
command, you must specify the exact location where the action is to occur. These
commands differ from screen-oriented commands,which execute relative to the location of
the cursor.
machine language — The exclusive use of 0s (which mean off) and 1s (which mean on)
to communicate with the computer. Years ago, programmers had to write programs in
machine language, a tedious and time-consuming process.
macro — A set of commands that automates a complex task. A macro is sometimes called
a superinstruction.
modal editor — A text editor that enables you to work in different modes. For example,
the vi editor has three modes: insert, command, and ex.
screen editor — An editor supplied by the operating system that displays text one screen
at a time and lets you move around the screen to add and change text. UNIX/Linux have
two screen editors: vi and Emacs.
screen-oriented command — A command that executes relative to the position of the
cursor. Screen-oriented commands are easy to type, and you can readily see their result on
the screen. These commands differ from line-oriented commands, which execute indepen-
dently of the location of the cursor.
text editor — A simplified word processor used to create and edit documents but that has
no formatting features to boldface or center text, for example.
text file — A computer file composed entirely of ASCII characters.
Unicode — A set of bit patterns that supports up to 65,536 characters and was developed
to offer more characters than ASCII for a broader range of languages, such as Chinese.

REVIEW QUESTIONS

1. You are using vi to edit a file and have just entered 12 new lines. You need to repli-
cate the same 12 lines right after you enter them. What command-mode command
can you type to replicate the lines? (Choose all that apply.)
a. a period (.)
b. Ctrl+r
c. Ctrl+R
d. a dollar sign ($)

2. Which of the following enables you to move the cursor to the left while you are in
command mode in the vi editor? (Choose all that apply.)
a. Press the right arrow key.
b. Press the left arrow key.
c. Press h.
d. Press l.

Review Questions 131

3

3. When you started the vi editor, you forgot to specify the name for the new file you
are creating. To save steps next time, how can you specify the name of a new file
when you first start vi?
a. Enter vi -n at the command line and then type in the file name when prompted.
b. Enter vi -n and the filename, such as vi -n myfile.
c. Enter vi and the filename, such as vi myfile.
d. Enter vi ? and then enter the file name when you see the > prompt on the

command line.

4. Your colleague has written a line of text in vi and now wants to delete the line, but
save its contents in a buffer in case he decides to bring back the line he deletes.
What do you recommend?
a. While in command mode, move the cursor to the last character in the line and

press d-.
b. While in insert mode, move the cursor to any character in the line and press Alt+d.
c. While in command mode, move the cursor to the first character in the line and

press dd.
d. While in insert mode, move the cursor to the last character in the line and type

:#delete.

5. You are in the vi editor and it’s now noon. Every day at noon you run a program
called update, which updates a database. How can you run the program without clos-
ing your vi session?
a. From command mode, press #, type update, and press Enter.
b. From insert mode, press Alt+ and then type update.
c. From insert mode, press && twice and then type update.
d. From command mode, type :!update and press Enter.

6. While you are working on a report in vi, you decide to insert information from another
text file in your home directory called summary_data. Which of the following com-
mands (from command mode) enables you to add the contents of summary_data?
a. :r summary_data
b. +summary_data
c. add summary_data
d. #copy summary_data

132 Chapter 3 Mastering Editors

7. You’re editing a document using vi and you are near the end of a page. You want to
quickly go back to the top of the page to check something you said. Which of the fol-
lowing command-line commands enables you to quickly go to the top of the page?
a. :top
b. T
c. Go1
d. H

8. You are preparing to give a training session on the vi editor. How would you
describe it? (Choose all that apply.)
a. It is modal.
b. It is a text editor.
c. Most UNIX/Linux distributions come with vi.
d. It is a screen editor.

9. While working in the Emacs editor, you delete a section of text and then decide to
undo your deletion. Which of the following commands should you use?
a. Use the Ctrl+u command.
b. Use the Alt+u command.
c. Use the Ctrl+x,u command.
d. You’re stuck retyping the deleted text, because Emacs does not enable you to

undelete.

10. When you copy text in Emacs, you must mark the text you want to copy by using
which of the following commands?
a. Use Ctrl+Tab to mark the beginning of the text and Ctrl+Shift to mark the end.

Next press Alt+z to copy the text.
b. Use Ctrl+Spacebar to mark the beginning of the text and Alt+w to mark the end as

well as to copy the text.
c. Use :mark to mark the beginning of the text and :endmark to mark the end as well

as to copy the text.
d. Use @begin to mark the beginning of the text and @end to mark the end. Next type

:copy to copy the text.

11. You’ve used Emacs to write advertising copy about a new software product your
company has developed. Now you find out that the name of the product has been
changed slightly. What command can you use to track down all references to the old
name so you can locate them?
a. Press Ctrl+s.
b. Press Alt+f.
c. Type :find.
d. Type #locate.

Review Questions 133

3

12. How can you find out information about the status of an editing session while in the
vi editor? (Choose all that apply.)
a. Type :status while in command mode.
b. Press Ctrl+? while in insert mode.
c. Press Ctrl+g while in command mode.
d. Press the Spacebar twice while in command mode.

13. You are using the vi editor to create a list of tasks on each line and you would like an
easy way to number each line (task) listed in the file. Which of the following is an easy
solution?
a. Press Alt+F2 to turn on automatic numbering for text.
b. When you first start vi from the command line, type vi -n.
c. Enter the number 1 plus a period at the beginning of the first line, and then each

new line will be numbered automatically.
d. From command mode, enter :set number.

14. You have been working on a long vi text file and now you’ve got to rush off to a
meeting. How can you quickly save your work and exit the vi editor? (Choose all
that apply.)
a. From command mode, enter :wq.
b. From command mode, enter :ZZ.
c. From command mode, enter :bye.
d. From command mode, enter :x.

15. While editing a file in vi, you realize you have been spelling the word receive as
recieve. How can you find all occurrences of your misspelled receive? (Choose all
that apply.)
a. From command mode, type /recieve and press Enter.
b. From insert mode, type Alt+r and enter recieve.
c. From command mode, press F4 and enter recieve.
d. From insert mode, press F7 and enter recieve.

16. As you look over the shoulder of an employee who is using the vi editor, you see
her use the command :l $s/capitol/capital. What does this command do?
a. It converts all letters to capitals in the file.
b. It changes all instances of capitol to capital.
c. It searches to ensure that each sentence starts with an uppercase letter.
d. It finds the last instance of capital and changes it to Capitol.

134 Chapter 3 Mastering Editors

17. You have just pressed Ctrl+x,Ctrl+s in the Emacs editor thinking that this will exit
Emacs, but it seems like nothing has happened. What is the problem?
a. The x and the s are lowercase and you must instead type X and S.
b. You have the order reversed and must instead type Ctrl+s,Ctrl+x.
c. Ctrl+x,Ctrl+s is a command sequence that saves your file, but it does not cause

Emacs to close.
d. Ctrl+x,Ctrl+s is used to expand the buffer size, which is a process you don’t see on

the screen; and this command sequence does not exit Emacs.

18. You’ve just finished entering a one-page memo in Emacs and now want to quickly
go to the beginning so you can reread it. What command enables you to quickly go
to the beginning?
a. Alt+b
b. Alt+H
c. Go 1
d. Alt+<

19. Which of the following are menus that you would find on the menu bar in Emacs?
(Choose all that apply.)
a. View
b. Options
c. Edit
d. Buffers

20. Which of the following commands enables you to use online help in Emacs?
a. Ctrl+?
b. Ctrl+h
c. ?
d. Ctrl+q

21. How can you get help for using the vi editor? (Choose all that apply.)
a. From insert mode, press :doc.
b. From command mode, enter :help.
c. From ex mode, enter ?doc.
d. From the regular command line outside of vi, enter man vi.

Review Questions 135

3

22. What is the name of a standardized bit pattern for characters and numbers that is
used by most computer operating systems?

23. What is the process called compiling?

24. How can you print a file while you are in the vi editor?

25. You have started Emacs without specifying a file name for the existing file you want
to open. Is there a way to specify the file name and open the file after you’ve started
Emacs, and if so how?

HANDS-ON PROJECTS

Hands-on Projects 3-1 through 3-14 are designed to be completed as a block of
step-by-step projects in which you learn how to create and edit a file using the
vi editor. These projects are performed from the command line (such as a
terminal window) using your own account.

Project 3-1
In this project, you start the vi editor by creating a file called textfiles to hold some basic
comments about text files. This is simply a practice file to get you started learning the vi
editor. It is generally best to learn on a file that is not important to your work. To open vi
and create a new file, type vi followed by the new file’s name.

To open vi and create a new file:

1. After the $ command prompt, type vi textfiles and press Enter. This starts vi and
begins editing a new file called textfiles. Your screen should look similar to the one
presented in Figure 3-2 earlier in this chapter.

In the upper-left corner of your screen, you see the cursor as a solid block. The cursor
indicates your current location in the file. The lines beginning with ~ are not actual
lines in the file, and as you enter text on a new line, you’ll see the tilde disappear from
that line. Also, note that the name of your new file appears in double quotation marks
on the bottom line in the screen.

2. Leave your vi editing session open for Hands-on Project 3-2.

If at any time you need to stop and later resume the following projects (through
Hands-on Project 3-14) because you cannot complete them in one sitting, press
Esc, type :x, and press Enter. When you resume, type vi and the file name, such
as vi textfiles.

136 Chapter 3 Mastering Editors

Project 3-2
In this project, you practice alternating between the insert and command modes in the vi
editor. Next, you type text on which to practice.

To access the insert and command modes:

1. Type i (but do not press Enter).

Like most vi commands, the i command does not appear (or echo) on your screen. The
command switches you from command mode to insert mode; you don’t need to press
Enter to signal the command’s completion. Notice that “-- INSERT --” appears at the
bottom of the screen when you are in insert mode.

2. Press Esc to go back into command mode. What happens to the line at the bottom
of the screen?

3. Press i to reenter insert mode.

4. Type the following text, pressing Enter after each line to move to the next line. Be
certain that you press Enter after the final line you type to move the cursor to the
next line. If you need to delete characters, press the Backspace key.

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

5. Your cursor should now be at the beginning of the sixth line with no text on that
line. (See Figure 3-6.) Leave the vi editor open for Hands-on Project 3-3.

Project 3-3
In this project, you practice using the repeat command (.) to replicate the most recent
changes you made to text in the vi editor.

To use the repeat command:

1. Press Esc to switch to command mode.

2. Type . (period).

The vi editor inserts the five lines that you typed in Step 4 of Hands-on Project 3-2.
Your screen should look similar to the one in Figure 3-7.

3. Keep the vi editor open for Hands-on Project 3-4.

Hands-On Projects 137

3

Project 3-4
Efficiently moving the cursor to the right spot is vital to editing a file. In this project, you
practice moving the cursor around the screen.

To move the cursor around the screen:

1. Press Esc to make certain you are in command mode.

2. Press the arrow keys to move up, right, left, and down one character at a time.

Figure 3-6 Inserting text using the vi editor

Figure 3-7 Repeating a command in the vi editor

138 Chapter 3 Mastering Editors

3. Type H to move the cursor to the upper-left corner of the screen.(Hint: Make cer-
tain you type uppercase letters as indicated in these steps.)

4. Type L to move the cursor to the last line on the screen.

5. Use the up arrow key to go to the beginning of the third-to-last line, which starts
with “Lines.” Use the right arrow key to go to the end of that line.

6. Type G to go to the beginning of the last line. This is the “go to” command. You
can include a number before the G to indicate the line to which you want to move.

7. Type 2G to move to the beginning of the second line.

8. Type w to go forward one word.

9. Type b to go back one word. Leave the vi editor open for Hands-on Project 3-5.

Project 3-5
People often make typing mistakes or change their mind about what to say in text. Thus the
ability to delete is very important. In this project, you use the delete commands and the
cursor movement keys to edit text you inserted in your file.

To edit by deleting text:

1. Press Esc to be certain you are in command mode.

2. Type 1G to move to the first line of the file. You want to delete this line.

3. To delete the first line, type dd (but do not press Enter).

Your file should now look like Figure 3-8.

Figure 3-8 File after deleting the first line

Hands-On Projects 139

3

4. Press w to go to the next word,“contains.”

5. Type dw to delete the current word (so the line now reads “Text lines.”), and then
type i to enter insert mode.

6. Type consistss of between “Text” and “lines.” Be certain to include the extra “s”
and a space after “of.”

7. Press the arrow keys to move the cursor to the extra “s” in “consistss,” and then press
Esc to switch to command mode.

8. To delete the current character (the extra “s”), type x (but do not press Enter).

Your file should now look like the one in Figure 3-9.

9. Now, you want to edit the sentence,“Files contain text,” by deleting the last word.
Type 5G to move to the fifth line and press the right arrow key to move to the “c”
in “contain.”

10. Type d$ to delete the text from the cursor to the end of the line, and then type i to
switch to insert mode.

11. Type consist of words. to complete the sentence. (Be certain there is a space
between “Files” and “consist” and a period after “words.”)

12. Now, you can edit the next sentence by replacing the final word. Press Esc to switch
back to command mode. Next, press the arrow keys to move to the next line down
in the file and move to the initial character (“l”) in the word “lines.”

13. Type d0 to delete the text from the cursor to the beginning of the line, and then
type i to enter insert mode.

Figure 3-9 File after deleting the extra “s”

140 Chapter 3 Mastering Editors

14. Type Words form to insert the text at the beginning of the sentence. (Make certain
you have a space between “form” and “lines.”)

15. Your completed edits should look like those in Figure 3-10. Leave the vi editor open
for Hands-on Project 3-6.

Project 3-6
Sometimes, you might consistently misspell a word or you might want to locate some text
to check its accuracy. In this project, you use the vi pattern-matching capability to find
specific text in a file.

To search for a pattern of text:

1. Press Esc to ensure you are in command mode.

2. Type H to move the cursor to the top of the screen.

3. Type /cons and press Enter to search for the string “cons.”What happens?

4. To move the cursor to the next occurrence of “cons,” press n (for next). What hap-
pens next?

If you had searched for “/con” instead of “/cons,” you would have first found
“consist” on line 1 and then “contain” on line 2. (In Fedora, “con” would be
highlighted in “consists” on line 1, “contain” on line 2, “consist” on line 5, and
“contain” on line 7.)

5. At this point, it is valuable to learn how to view status information for your editing
session. To see file status information, press Ctrl+g. (You also can press Ctrl+G.

Figure 3-10 File edits after completing Step 14

Hands-On Projects 141

3

This is one instance in which you can use uppercase or lowercase in UNIX/Linux.)
Your screen should look like the one in Figure 3-11. Leave the vi editor open for
the next project.

Project 3-7
Using line-oriented editing commands can be much faster than using screen-oriented
commands, particularly when you want to search and replace patterns in a file. In this
project, you compare using a screen-oriented command to search for occurrences of the
word“text”with using a line-oriented command.Note that the line-oriented command not
only finds occurrences of “text,” but it also enables you to replace specific occurrences with
the word “documents.”

To perform a screen-oriented search for “text”:

1. Press Esc to make certain you are in command mode.

2. Type H to go to the beginning of the file.

3. Type /text and press Enter.

4. Type n to repeat the search. (In Fedora, you see all instances of text highlighted at
the same time, with the cursor on the first instance of “text.” Pressing n takes you to
the second instance. In SUSE, only the first instance of “text” is highlighted and you
press n to go to the next one.) How many occurrences are there of the word “text”?

To search for “text” and replace “text” with “documents” using a line-oriented
command:

1. Press Esc to be certain you are in command mode.

Figure 3-11 vi status line appears at the bottom of the screen

142 Chapter 3 Mastering Editors

2. Type :1,$s/text/documents/g (but do not press Enter). Note that this command
means “From the first line (1) to the end of the file ($), search for “text”and replace
it with “documents”(s/text/documents/) everywhere it occurs on each line (g).”

3. Press Enter. See Figure 3-12. Leave the vi editing session open for Hands-on
Project 3-8.

The word “Text” in line 1 remains unchanged because it is capitalized. By
default, case matters in searches.

Project 3-8
Periodically saving your work in the vi editor can help ensure that you don’t lose your work
if there is an unexpected power failure. Also, when you exit vi after making changes, be
certain to exit using a command that saves your work prior to exiting. In this project, you
practice using commands to save your work.

To save the work in your file without exiting vi:

1. Press Esc, if necessary, to enter command mode.

2. Type :w and then press Enter to save your changes.

To save your work and then exit:

1. From command mode, type :x and press Enter. (See Figure 3-13.)

Figure 3-12 Searching for and replacing text using a line-oriented edit command

Hands-On Projects 143

3

Project 3-9
Copying the contents of one file into another can eliminate extra typing when you are
working in UNIX/Linux. In this project, you use the vi editor to create a new file and add
text to that file from the textfiles file you just saved in Hands-on Project 3-8.

To create a new file and add text from another file:

1. Type vi practice and press Enter to create a new file called practice.

2. Press Esc to make certain you are in command mode.

3. Type :r textfiles and press Enter.

Your file should look like the one in Figure 3-14. The r command copied the text from
textfiles and put it in the current file,practice.Notice the blank line at the top of the file.
The status line provides information about the file you added, including its name and
the number of lines and characters it contains.

4. Move the cursor to the blank line, and type dd to delete it.

5. Leave the practice file open for Hands-on Project 3-10.

Project 3-10
Sometimes you need to do two things at once. For instance, consider a situation in which you
are working on a text file in vi and someone calls to schedule a meeting, but neither of you has
a calendar handy. You can run the cal command, or other commands, without closing the vi
editor. In this project, you learn two ways to execute commands without closing your vi editing
session.

Figure 3-13 Using :x to save and then exit

144 Chapter 3 Mastering Editors

To leave vi temporarily to view the current month’s calendar:

1. Press Esc, if necessary, to enter command mode.

2. Type :!cal and press Enter.

You see this month’s calendar and then instructions to “Hit ENTER or type command
to continue.” (See Figure 3-15.)

3. Press Enter to return to your vi editing session in command mode.

To access the command line to execute several commands:

1. Type Ctrl+z to access the command line.

2. Type ls -l and press Enter to execute a command.

3. Type pwd and press Enter to execute another command.

4. Type cat textfiles and press Enter to execute a third command.

5. Type fg and press Enter to return to your vi editing session. Into what mode do
you return?

6. Leave your vi editing session open for Hands-on Project 3-11.

Project 3-11
Line numbering can help you quickly identify specific lines that you want to edit in vi. In this
project, you turn on line numbering and then use it as a reference to delete lines in the text.

To use automatic line numbering:

1. Press Esc to be certain you are in command mode.

Figure 3-14 Copying one file into another in the vi editor

Hands-On Projects 145

3

2. Type :set number and press Enter. The line numbers appear on the screen. (See
Figure 3-16.)

Line numbers are for reference only. They are not part of the file. Now you can use
these reference numbers to delete the last three lines in the file.

3. Type :7,9d and press Enter. You’ve deleted lines 7 through 9 in the file.

4. Leave the practice file open for Hands-on Project 3-12.

Figure 3-15 Temporarily leaving vi to run the cal command

Figure 3-16 Turning on line numbering

146 Chapter 3 Mastering Editors

Project 3-12
No one likes to type any more than is necessary. In this project, you learn to cut and paste
text in your practice file as a way to reduce extra typing.

To cut and paste text:

1. From command mode, type H to move the cursor to the beginning of line 1.

2. Type 3dd to cut the first three lines from the document and store them in the
buffer.

3. Type G to move the cursor to the end of the file.

4. Type p to paste the three lines at the end of the file.

5. Leave the practice file open for Hands-on Project 3-13.

Project 3-13
In this project, you print the file you are working on, without leaving the vi editing session.
Your computer should be connected to a default printer for you to complete the
assignment.

To print a file:

1. Press Esc, if necessary, to return to command mode.

2. Type :w and press Enter to save the practice file.

3. Type :!lpr practice and press Enter. This prints the practice file in the current
directory on the default printer.

4. Press Enter to return to the vi editing session.

5. Leave your vi session open for Hands-on Project 3-14.

Project 3-14
Sometimes you make changes in a document, but then decide not to save them. In this
project, you make a change to the practice document and then exit without saving your
change. You also learn how to view the vi help documentation.

To make an additional change, and then cancel without saving it:

1. Press Esc, if necessary, to access command mode.

2. With the cursor at the beginning of the top line (type H if it is not), type dd (but
do not press Enter).

3. Type :q! and press Enter.

4. Type vi practice and press Enter. Notice that the sentence “Words form
documents.” is back in the file on line 1 because your change in Step 2 was
not saved.

Hands-On Projects 147

3

To view the vi help documentation:

1. Type :help and press Enter to view the help documentation. Use the Page Down
and Page Up keys (or PgDn/PgUp, depending on your keyboard) to scroll through
the documentation.

2. Type :q! and press Enter to leave the documentation. (In some older versions of
Red Hat Enterprise Linux, this also closes the vi editor. If you are using Fedora or
SUSE, proceed to Step 3 to close the editor.)

3. Type :q! and press Enter again to close the vi editor.

In Projects 3-15 through 3-20, you practice using the Emacs editor. In these
projects, you start Emacs from the command line (such as a terminal window)
using your own account. If Emacs is not installed and you are using Fedora or
Red Hat Enterprise Linux with the GNOME desktop, log in to root, click
Applications, click Add/Remove Software, click List, check the boxes for the
Emacs installation options, click Apply, and follow any remaining instructions. In
SUSE, log in to root, click the Computer menu, click Install Software, select the
Emacs options, click Install, and follow any remaining instructions. Ensure you
have the operating system installation disks available before you install Emacs.
Also, note that the Knoppix CD does not include the Emacs editor. You can
obtain Emacs from www.gnu.org/software/emacs.

Project 3-15
You begin using Emacs in this project by creating a new file, entering text, and then saving
and closing the file.

To start Emacs and create a new file:

1. Type emacs practice.fil and then press Enter. You see the opening screen and its
status bar (at the bottom of the screen), which indicates you are creating a new file.

2. To add text to the file, type the following so that your screen looks like the one in
Figure 3-17:

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

3. Press Ctrl+x and then Ctrl+s to save the file. Notice that the status line reports that
you wrote the file.

4. Press Ctrl+x and then Ctrl+c to exit the file.

148 Chapter 3 Mastering Editors

www.gnu.org/software/emacs

In Emacs, you press the two Ctrl key combinations to save and exit a file.

Project 3-16
This project enables you to practice navigating in Emacs.

To navigate in Emacs:

1. Type emacs practice.fil and press Enter.

2. Press Ctrl+f to move forward one character, and then press the right arrow key to
move forward one character at a time. Move forward by four or five characters.

3. Press Ctrl+b to move back one character, and then press the left arrow key to
practice moving backward.

4. Use the down arrow and up arrow keys to move down and up through lines in
the document.

Figure 3-17 Entering text in Emacs

Hands-On Projects 149

3

5. Type Alt+< to go to the beginning of the file. (Use the Shift key for < on the
keyboard.)

6. Type Alt+> to go to the end of the file. (Use the Shift key for > on the keyboard.)

7. Leave the file open for Hands-on Project 3-17.

Project 3-17
In this project, you practice deleting in Emacs and then undoing a deletion.

To delete text and undo the deletion:

1. Use the arrow keys to place the cursor on the line that begins “Lines contain...”.

2. Press Ctrl+k to delete the current line.

3. Press Ctrl+x and then type u to undo the last change.

4. Leave the Emacs editing session open for Hands-on Project 3-18.

You can restore the text repeatedly, even after making many changes. Press
Ctrl+x, and then press u as often as necessary to undo your editing commands
in sequence.

Project 3-18
In this project, you copy text in Emacs and then paste the text you copied.

To copy and paste text in Emacs:

1. Move the cursor to the beginning of the sentence “Text contains lines.”

2. Press Ctrl+Spacebar. This marks the starting point for the block of text you want
to copy. You see the words “Mark set” in the status bar.

3. Press the down arrow and right arrow keys to move the cursor to the end of the
text on the last line (after “...form text.” — making sure you place the cursor after
the period at the end of the line).

4. Press Alt+w. This marks the end of the text block to copy and briefly moves the
cursor to the location you marked in Step 2 and then back to where you marked the
end of the text. (In many versions of Emacs, you can also hold down Esc and press w
to mark the end of the block.)

5. Press Alt+> to go to the end of the file. If necessary, press Enter to start a blank line
after the last line ending with “...form text.” Your cursor should now be at the
beginning of a blank line at the end of the file.

6. Press Ctrl+y to paste the marked text from the clipboard into the buffer (on the
screen), as shown in Figure 3-18.

150 Chapter 3 Mastering Editors

To cut and paste rather than copy and paste, press Ctrl+w when the cursor is at
the end of the block you want to cut. (See Step 4.) Then move the cursor to
where you want to paste the text and press Ctrl+y.

Project 3-19
As you use the Emacs editor, you’ll discover that you often need to search for a specific
pattern or string of characters. In this project, you learn two ways to perform string searches
in Emacs.

To search using control key options:

1. Press Ctrl+s. You see the “I-search:” prompt in the status line. You can now type
the text you are seeking.

2. Type on (but do not press Enter).

3. Press Ctrl+s to search for an occurrence of “on.” In what word does this appear?
Press Ctrl+s again.

4. Press Ctrl+r to search backward for the previous occurrence of “on.”

Figure 3-18 Copying and pasting text in Emacs

Hands-On Projects 151

3

To search using the Edit menu Search option:

1. Type Alt+< to move to the beginning of the file.

2. Click the Edit menu, point to Search, and click Search....

3. Notice that the cursor goes to the status line at the bottom of the screen.

4. Type on in the status line, and press Enter.

5. Click the Edit menu, point to Search, and click Repeat Search to locate the next
occurrence of “on.”

6. Click the Edit menu, point to Search, and click Repeat Backwards to search for
“on” backward. Leave the Emacs editor open for Hands-on Project 3-20.

Project 3-20
In this project, you turn on the word wrap feature in Emacs, so that lines automatically wrap
around in the display.

To reformat your file to use word wrap:

1. Type Alt+< to move to the beginning of the file.

2. Press Alt+q to reformat the file so the lines are full of text. (See Figure 3-19. Words
wrap from one line to the next.)

3. Type Ctrl+x and Ctrl+s to save the file, and then Ctrl+x and Ctrl+c to exit.

152 Chapter 3 Mastering Editors

DISCOVERY EXERCISES

1. Using the vi editor:

Create a document with four lines, each containing the word “today.”

Copy the first four lines using only one command.

Save the file, and exit vi.

Reopen the document, and change“today” to“yesterday”only on the first four lines.

2. Using the vi editor:

Create a document called first.file, and enter a few lines of text in it. Save it.

Create a second document called second.file, and enter a few lines of text in it.
Save it.

Create a third document called third.file by merging the text from the first two files.

Save the third file, and exit the editor.

Type vi third.file and press Enter to be certain third.file contains the text from
both files.

Figure 3-19 Turning on word wrap in Emacs

Discovery Exercises 153

3

3. Delete all text from third.file that you created using vi, and then restore it.

Use Table 3-4 to find the correct commands for performing the following basic
exercises to practice using the Emacs editor.

4. Using the Emacs editor, create a new file, called sonnet, that contains the first four
lines of Shakespeare’s 80th Sonnet:

O, how I faint when I of you do write,
Knowing a better spirit doth use your name,
And in the praise thereof spends all his might,
To make me tongue-tied, speaking of your fame!

5. Move the cursor to any letter in the word “better” (except “b”) on the second line.

6. Use the command that causes the current word to be transposed with the one that
follows it. After executing the command, the line should read:

Knowing a spirit better doth use your name,

7. Move the cursor to the word “doth” on the same line.

8. Use the command to delete the current word.

9. Move the cursor to the first character of the word “spirit” on the same line.

10. Use the command that capitalizes the letters of the word.

11. Move the cursor under the letter “y” in the word “your” on the same line.

12. Use the command that deletes the character above the cursor. The line should now read:

Knowing a SPIRIT better use our name,

13. Move the cursor to the word “spends” on the third line.

14. Use the command that deletes text to the end of the line. The line should now read:

And in the praise thereof

15. Move the cursor to the beginning of the first line.

16. Use the command that puts a mark at the cursor location.

17. Move the cursor to the end of the first line. Use the command that marks that par-
ticular cursor location.

18. Move the cursor to the first character of the first line.

19. Use the command that deletes marked text; that is, deletes the first line.

154 Chapter 3 Mastering Editors

20. Move the cursor to the end of the file. Use the command that restores deleted text.
The text that was the first line of the file is now at the end of the file. Save your
work and then close the Emacs editor.

Use the vi editor with the following advanced exercises to sharpen your
editing skills.

21. Create a file with 12 lines of text. Delete the second word in the text.

22. Go to the fifth line, and insert your first and last name.

23. Remove the eighth line, and place it at the end of the file.

24. Use one command to go to the first line of the file.

25. Search for your last name.

26. Save the file, but do not exit vi.

27. Without exiting vi, temporarily execute the ls command to confirm that the file
is saved.

28. Enter the command that causes line numbers to appear.

29. Delete lines 9 and 10.

30. Move to the line of text that contains your first and last name, cut it, and place the
text in the buffer.

31. Paste the line with your first and last name in the middle of the text.

Use the Emacs editor for these more advanced exercises.

32. Using the practice file, practice copying and pasting the text to rearrange the order
of the lines.

33. Add text to the file, and practice using the cursor movement commands.

34. Replace all occurrences of the word “form” with “create.”

35. Select five words and convert them to all uppercase.

36. Delete a line and then undo the deletion.

37. Transpose the first two words in each line.

38. Save the file and exit Emacs.

Discovery Exercises 155

3

This page intentionally left blank

UNIX/LINUX FILE PROCESSING
After reading this chapter and completing the

exercises, you will be able to:
♦ Explain UNIX and Linux file processing

♦ Use basic file manipulation commands to create, delete, copy, and
move files and directories

♦ Employ commands to combine, cut, paste, rearrange, and sort infor-
mation in files

♦ Create a script file

♦ Use the join command to link files using a common field

♦ Use the awk command to create a professional-looking report

The power of UNIX/Linux is based on its storage and handling of files.
You’ve already learned about file systems, security, and UNIX/Linux

editors.Now it’s time to put your knowledge to work by manipulating files and
their contents. To give you some background, this chapter starts with a short
discussion of UNIX/Linux file types and file structures. Next, you learn more
about using redirection operators, including how to use them to store error
messages. You go on to learn file manipulation tools that you will use over and
over again, either as a UNIX/Linux administrator or as an everyday user. These
essential tools enable you to create, delete, copy, and move files. Other tools
enable you to extract information from files to combine fields and to sort a file’s
contents. Finally, you learn how to assemble the information you extract from
files, such as for creating reports. You also create your first script to automate a
series of commands, link files with a common field, and get a first taste of the
versatile awk command to format output.

CHAPTER

4

157

UNIX AND LINUX FILE PROCESSING

UNIX/Linux file processing is based on the idea that files should be treated as nothing more
than character sequences. This concept of a file as a series of characters offers a lot of
flexibility.Because you can directly access each character, you can perform a range of editing
tasks, such as correcting spelling errors and organizing information to meet your needs.

Reviewing UNIX/Linux File Types
Operating systems support several types of files.UNIX and Linux, like other operating systems,
have text files, binary files, directories, and special files. As discussed in Chapter 3,“Mastering
Editors,”text files contain printableASCII characters.Some users also call these regular,ordinary,
or ASCII files. Text files often contain information you create and manipulate, such as a
document or program source code. Binary files, also discussed in Chapter 3, contain nonprint-
able characters, including machine language code created from compiling a program. In
UNIX/Linux, text files and binary files are considered to be regular files, and you will
sometimes see this terminology when working with files at the command line.

Chapter 2, “Exploring the UNIX/Linux File Systems and File Security,” explained that
directories are system files for maintaining the structure of the file system. In Chapter 2, you
also learned about device special files. Character special files are used by input/output
devices for communicating one character at a time, providing what is called raw data. The
first character in the file access permissions is “c,” which represents the file type, a character
special file. Block special files are also related to devices, such as disks, and send information
using blocks of data. The first character in these files is “b.” For comparison, as you learned
in Chapter 2, the first character for a directory is “d,” and for a normal file—not a device
special file—the first character is a dash “-.”

Character special and block special files might also be called character device
and block device files or character-special device and block-special device files.

Understanding File Structures
Files can be structured in several ways. For example, UNIX/Linux store data, such as letters,
product records, or vendor reports, in flat ASCII files. The internal structure of a file
depends on the kind of data it stores. A user structures a letter, for instance, using words,
paragraphs, and sentences. A programmer can structure a file containing employee records
using characters and words grouped together, with each individual employee record on a
separate line in a file. Information about an employee in each separate line or record can be
divided by separator characters or delimiters, such as colons. This type of record is called a
variable-length record, because the length of each field bounded by colons can vary. The
following is a simple example of an employee telephone record that might be stored in a flat

158 Chapter 4 UNIX/Linux File Processing

ASCII file and used by a human resources program. The first three fields, separated by
colons, are the employee’s home telephone number, consisting of the area code, prefix, and
number. A human resources professional or boss might display some or all of this informa-
tion in a program or report to be able to call the employee at home.

219:432:4567:Harrison:Joel:M:4540:Accountant:09-12-1985

Another way to create records is to have them start and stop in particular columns. For
example, the area code in the previous example might start in column 1 and end in column
3. The prefix in the telephone number might go from column 5 to column 7, the last four
digits in the telephone number would be in columns 9 through 12, and so on. Figure 4-1
illustrates this type of record, which is called a fixed-length record.

Three simple kinds of text files are unstructured ASCII characters, records, and trees. Figure
4-2 illustrates these three kinds of text files.

Figure 4-2(a) shows a file that is an unstructured sequence of bytes and is a typical example
of a simple text file. This file structure gives you the most flexibility in data entry, because
you can store any kind of data in any order, such as the vendor name Triumph Motors and
other information related toTriumph Motors,which might be a unique vendor number, the
vendor’s address, and so on.However,you can only retrieve the data in the same order,which
might limit its overall usefulness. For example, suppose you list the vendors (product
suppliers) used by a hotel in an unstructured ASCII text file. In this format, if you want to
view only vendor names or vendor numbers, you really don’t have that option. You most
likely will have to print the entire file contents, including address and other information for
all vendors.

Figure 4-2(b) shows data as a sequence of fixed-length records, each having some internal
structure. In a UNIX/Linux file, a record is a line of data, corresponding to a row. For
example, in a file of names, the first line or row might contain information about a single
individual, such as last name, first name, middle initial, address, and phone number. The
second row would contain the same kind of data about a different person, and so on. In this
structure, UNIX/Linux read the data as fixed-length records. Although you must enter data
as records, you can also manipulate and retrieve the data as records. For example, you can
select only certain personnel or vendor records to retrieve from the file.

The third kind of file, illustrated in Figure 4-2(c), is structured as a tree of records that can
be organized as fixed-length or variable-length records. In Figure 4-2(c), each record
contains a key field, such as a record number, in a specific position in the record. The key

219 432 4567 Harrison Joel M 09–12–1985

1–3 5–7 9–12 14–25 27–36 38 40–43 45–60 62–71

Accountant4540

Columns

Figure 4-1 Fixed-length record

UNIX and Linux File Processing 159

4

field sorts the tree, so you can quickly search for a record with a particular key. For example,
you can quickly find the record for Triumph Motors by searching for record #1203.

You will practice creating and manipulating different kinds of files and records in this and
later chapters.

PROCESSING FILES

When performing commands, UNIX/Linux process data by receiving input from the
standard input device—your keyboard, for example—and then sending it to the standard
output: the monitor or console. System administrators and programmers refer to standard
input as stdin. They refer to standard output as stdout. The third standard device, or file,
is called standard error, or stderr. When UNIX/Linux detect errors in processing system
tasks and user programs, they direct the errors to stderr, which, by default, is the screen.

T
r
i
u
m
p
h

M
o
t
o
r
s

T
r
i
u
m
p
h

M
o
t
o
r
s

W
e
s
t

P
l
u
m
b
i
n
g

ASCII characters
(bytes)

Records

1300 1400 1500
Vendor file

(b) Record sequence

(a) Byte sequence

(c) Tree

1210 1214

Monarch Interiors Belmont GasPrivett Industries

Novus Furniture Bridger Elevators

B&S EngineersTriumph

1200 12031100

Figure 4-2 Three kinds of text files

160 Chapter 4 UNIX/Linux File Processing

stdin, stdout, and stderr are defined in IEEE Std 1003.1, “Standard for Informa-
tion Technology—Portable Operating System Interface (POSIX),” and the ISO
9899:1999 C language standard (for C programming). The Institute of Electrical
and Electronics Engineers (IEEE) and the International Organization for Stan-
dardization (ISO) set computer-based and other standards.

In Chapter 1,“The Essence of UNIX and Linux,” you learned about the > and >> output
redirection operators. You can use these and other redirection operators to save the output
of a command or program in a file or use a file as an input to a process. The redirection
operators are a tool to help you process files.

Using Input and Error Redirection
You can use redirection operators (>, >>, 2>, <, and <<) to retrieve input from something
other than the standard input device and to send output to something other than the
standard output device.

You already used the output redirection operators in Chapter 1,when you created a new file
by redirecting the output of several commands to files. Redirect output when you want to
store the output of a command or program in a file. For example, recall that you can use the
ls command to list the files in a directory, such as /home. The ls command sends output to
stdout,which,by default, is the screen. To redirect the list to a file called homedir.list, use the
redirection symbol by entering ls > homedir.list.

You can also redirect the input to a program or command with the < operator. For instance,
a program that accepts keyboard input can be redirected to read information from a file
instead. In Hands-On Project 4-1, you create a file from which the vi editor reads its
commands, instead of reading them from the keyboard.

You can also use the 2> operator to redirect commands or program error messages from the
screen to a file. For example, if you try to list a file or directory that does not exist, you see
the following error message: No such file or directory. Assume that Fellowese is not a file or
directory. If you enter ls Fellowese 2> errors, this places the No such file or directory error
message in the errors file. Try this redirection technique in Hands-On Project 4-2.

MANIPULATING FILES

When you manipulate files, you work with the files themselves as well as their contents. This
section explains how to complete the following tasks:

■ Create files

■ Delete files

■ Remove directories

■ Copy files

Manipulating Files 161

4

■ Move files

■ Find files

■ Combine files

■ Combine files through pasting

■ Extract fields in files through cutting

■ Sort files

Creating Files
You can create a new fileby using the output redirection operator (>). You learned how to
do this to redirect the cat command’s output in Chapters 1–3. You can also use the
redirection operator without a command to create an empty file by entering > and the name
of the file. For example, the following command:

> accountsfile

creates an empty file called accountsfiles. Hands-On Project 4-3 enables you to create a file
using the > redirection symbol.

You can also use the touch command to create empty files. For example, the following
command creates the file accountsfile2, if the file does not already exist.

touch accountsfile2

Syntax touch [-options] filename(s)

Dissection

■ Intended to change the time stamp on a file, but can also be used to create an empty file

■ Useful options include:
-a updates the access time only
-m updates the last time the file was modified
-c prevents the touch command from creating the file, if it does not already exist

To view time stamp information in full, use the --full-time option with the ls
command, such as ls --full-time myfile.

The primary purpose of the touch command is to change a file’s time stamp and date stamp.
UNIX/Linux maintain the following date and time information for every file:

■ Change date and time—The date and time the file’s inode was last changed

162 Chapter 4 UNIX/Linux File Processing

■ Access date and time—The date and time the file was last accessed

■ Modification date and time—The date and time the file was last modified

Recall from Chapter 2 that an inode is a system for storing key information
about files. Inode information includes the inode number, the owner of the file,
the file group, the file size, the change date of the inode, the file creation date,
the date the file was last modified and last read, the number of links to this
inode, and the information regarding the location of the blocks in the file system
in which the file is stored.

Although the touch command cannot alter a file’s inode changed date and time, it can alter
the file’s access and modification dates and times.By default, it uses the current date and time
for the new values. Hands-On Project 4-4 gives you experience using the touch command.

Deleting Files
When you no longer need a file, you can delete it using the rm (remove) command. If you
use rm without options, UNIX/Linux delete the specified file without warning. Use the -i
(interactive) option to have UNIX/Linux warn you before deleting the file. You can delete
several files with similar names by using the asterisk wildcard. (See Chapter 2.) For example,
if you have 10 files that all begin with the letters “test,” enter rm test* to delete all of them
at one time. Hands-On Project 4-5 enables you to use the rm command.

Syntax rm [-options] filename or directoryname

Dissection

■ Used to delete files or directories

■ Useful options include:
-i displays a warning prompt before deleting the file (or directory)
-r when deleting a directory, recursively deletes its files and subdirectories (to delete a
directory that is empty or that contains entries, use the -r option with rm)

Removing Directories
When you no longer need a directory, you can use the commands rm or rmdir to remove it.
For example, if the directory is already empty,use rm -r or rmdir. If the directory contains files
or subdirectories, use rm -r to delete them all. The rm command with the -r option removes
a directory and everything it contains. It even removes subdirectories of subdirectories. This
operation is known as recursive removal. Note that if you use rm alone, in many versions of
UNIX/Linux, including Fedora, Red Hat Enterprise Linux, and SUSE, it does not delete a
directory.

Manipulating Files 163

4

Hands-On Project 4-6 enables you to use rmdir to delete an empty directory and rm -r to
delete a directory that is not empty.

Syntax rmdir [-options] directoryname

Dissection

■ Used to delete directories

■ A directory must be empty to delete it with the rmdir command.

Use rm -r with great care by first making certain you have examined all of the
directory’s contents and intend to delete them along with the directory. If you
are just deleting an empty directory, it is safer to use the rmdir command in case
you make a typo when you enter the name of the directory. Also, when you use
rm with the -r option, consider using the -i option as well to prompt you before
you delete. Additional precautions employed by some users are to (1) use pwd
to make certain you are in the proper working directory before you delete
another directory and (2) use the full path to the directory you plan to delete,
because, if you mistype a name, the deletion is likely to fail rather than delete
the wrong directory.

Copying Files
In Chapter 2, you were introduced to the cp command for copying files, which we explore
further here. Its general form is as follows:

Syntax cp [-options] source destination

Dissection

■ Used to copy files or directories

■ Useful options include:
-i provides a warning before cp writes over an existing file with the same name
-s creates a symbolic link or name at the destination rather than a physical file (a symbolic
name is a pointer to the original file, which you learn about in Chapter 6)
-u prevents cp from copying over an existing file if the existing file is newer than the
source file

The cp command copies the file or files specified by the source path to the location specified
by the destination path. You can copy files into another directory, with the copies keeping
the same names as the originals. You can also copy files into another directory, with the
copies taking new names, or copy files into the same directory as the originals, with the
copies taking new names.

164 Chapter 4 UNIX/Linux File Processing

For example, assumeTom is in his home directory (/home/tom). In this directory,he has the
file reminder. Under his home directory, he has another directory, duplicates (/home/tom/
duplicates). He copies the reminder file to the duplicates directory with the following
command:

cp reminder duplicates

After he executes the command, a file named reminder is in the duplicates directory. It is a
duplicate of the reminder file in the /home/tom directory. Tom also has the file class_of_88
in his home directory.He copies it to a file named classmates in the duplicates directory with
the following command:

cp class_of_88 duplicates/classmates

After he executes the command, the file classmates is stored in the duplicates directory.
Although it has a different name, it is a copy of the class_of_88 file. Tom also has a file named
memo_to_boss in his home directory. He wants to make a copy of it and keep the copy in
his home directory. He enters the following command:

cp memo_to_boss memo.safe

After he executes this command, the file memo.safe is stored in Tom’s home directory. It is
a copy of his memo_to_boss file.

You can specify multiple source files as arguments to the cp command. For example,Tom
wants to copy the files project1, project2, and project3 to his duplicates directory. He enters
the following command:

cp project1 project2 project3 duplicates

The final entry in a multiple copy (cp) or move (mv) is a directory, as in the
preceding example. You learn about the move command in the next section.

After he executes the command, copies of the three files are stored in the duplicates
directory.

You can also use wildcard characters with the cp command.For example,Tom has a directory
named designs under his home directory (/home/tom/designs).He wants to copy all files in
the designs directory to the duplicates directory. He enters the following command:

cp designs/* duplicates

After he executes this command, the duplicates directory contains a copy of every file in the
designs directory. As this example illustrates, the cp command is useful not only for copying
but also for preventing lost data by making backup copies of files. You use the cp command
in Hands-On Project 4-7 to make copies in a backup directory.

Manipulating Files 165

4

Moving Files
Moving files is similar to copying them, except you remove them from one directory and
store them in another. However, as insurance, a file is copied before it is moved. To move a
file,use the mv (move) command along with the source file name and destination name. You
can also use the mv command to rename a file by moving one file into another file with a
different name.

Moving and renaming a file are essentially the same operation.

When you are moving files, using the -i option with the mv command can be a good idea
so that you don’t unexpectedly overwrite a destination file with the same name.

Syntax mv [-options] source destination

Dissection

■ Used to move and to rename files

■ Useful options include:
-i displays a warning prompt before overwriting a file with the same name
-u overwrites a destination file with the same name, if the source file is newer than the one
in the destination

Hands-On Project 4-8 enables you to use the mv command.

Finding Files
Sometimes, you might not remember the specific location of a file you want to access. The
find command searches for files that have a specified name. Use the find command to locate
files that have the same name or to find a file in any directory.

166 Chapter 4 UNIX/Linux File Processing

Syntax find [pathname] [-name filename]

Dissection

■ Used to locate files in a directory and in subdirectories

■ Useful options include:
pathname is the path name of the directory you want to search. The find command
searches recursively; that is, it starts in the named directory and searches down through all
files and subdirectories under the directory specified by pathname.
-name indicates that you are searching for files with a specific filename. You can use
wildcard characters in the file name. For example, you can use phone* to search for all file
names that begin with “phone.”
-iname works like -name, but ignores case. For example, if you search for phone* as the
search name, you’ll find all files that begin with “phone,” “Phone,” “PHONE,” or any
combination of upper and lowercase letters.
-mmin n displays files that have been changed within the last n minutes.
-mtime n displays files that have been changed within the last n days.
-size n displays files of size n, where the default measure for n is in 512-byte blocks (you
can also use nc,nk,nM, or nG for bytes kilobytes,megabytes, or gigabytes, such as find -size
2M to find files that are 2 megabytes). For other search conditions you can use with find,
refer to Appendix B,“Syntax Guide to UNIX/Linux Commands.”

When you are using the find command, you can only search areas for which you have
adequate permissions. As the search progresses, the find command might enter protected
directories; you receive a “Permission denied” message each time you attempt to enter a
directory for which you do not have adequate permissions. Also, when you use find, it is
useful to note that some UNIX versions require the -print option after the file name to
display the names of files.

Try Hands-On Project 4-9 to use the find command.

Combining Files
In addition to viewing and creating files, you can use the cat command to combine files. You
combine files by using a redirection operator, but in a somewhat different format than you
use to create a file. As you already know, if you enter cat > janes_research,you can then type
information into the file and end the session by typing Ctrl+d, creating the file janes_
research. Assume that Jane has created such a file containing research results about bighorn

Manipulating Files 167

4

sheep.Now assume that there is also the file marks_research,which contains Mark’s research
on the same topic. You can use the cat command to combine the contents of both files into
the total_research file by entering the following:

cat janes_research marks_research > total_research

Hands-On Project 4-10 enables you to use this technique for combining files.

Combining Files with the paste Command
The paste command combines files side by side,whereas the cat command combines files end
to end. When you use paste to combine two files into a third file, the first line of the output
contains the first line of the first file followed by the first line of the second file.For example,
consider a simple file, called vegetables, containing the following four lines:

Carrots
Spinach
Lettuce
Beans

Also, the bread file contains the following four lines:

Whole wheat
White bread
Sourdough
Pumpernickel

If you execute the command paste vegetables bread > food, the vegetables and bread files are
combined, line by line, into the file food. The food file’s contents are shown in Figure 4-3.

The paste command normally sends its output to stdout (the screen). To capture
it in a file, use the redirection operator.

168 Chapter 4 UNIX/Linux File Processing

Syntax paste [-options] source files [> destination file]

Dissection

■ Combines the contents of one or more files to output to the screen or to another file

■ By default, the pasted results appear in columns separated by tabs

■ Useful options include:
-d enables you to specify a different separator (other than a tab) between columns
-s causes files to be pasted one after the other instead of in parallel

As you can see, the paste command is most useful when you combine files that contain
columns of information. When paste combines items into a single line, it separates them with
a tab. For example, look at the first line of the food file:

Carrots Whole wheat

When paste combined “Carrots” and “Whole wheat,” it inserted a tab between them. You
can use the -d option to specify another character as a delimiter. For example, to insert a
comma between the output fields instead of a tab, you would enter:

paste -d',' vegetables bread > food

After this command executes, the food file’s contents are:

Carrots,Whole wheat
Spinach,White bread

Figure 4-3 Using the paste command to merge files

Manipulating Files 169

4

Lettuce,Sourdough
Beans,Pumpernickel

Try Hands-On Project 4-11 to begin learning to use the paste command.

Extracting Fields Using the cut Command
You have learned that files can consist of records, fields, and characters. In some instances,
you might want to retrieve some, but not all, fields in a file. Use the cut command to remove
specific columns or fields from a file. For example, in your organization, you might have a
vendors file of businesses from which you purchase supplies. The file contains a record for
each vendor, and each record contains the vendor’s name, street address, city, state, zip code,
and telephone number; for example, Office Supplies: 2405 S.E. 17th Street: Boulder:
Colorado: 80302:303-442-8800. You can use the cut command to quickly list only the
names of vendors, such as Office Supplies, in this file. The syntax of the cut command is as
follows:

Syntax cut [-f list] [-d char] [file1 file2 . . .] or cut [-c list] [file1 file2 . . .]

Dissection

■ Removes specific columns or fields from a file

■ Useful options include:
-f specifies that you are referring to fields
list is a comma-separated list or a hyphen-separated range of integers that specifies the
field. For example, -f 1 indicates field 1, -f 1,14 indicates fields 1 and 14, and -f 1-14
indicates fields 1 through 14.
-d indicates that a specific character separates the fields
char is the character used as the field separator (delimiter), for example, a comma. The
default field delimiter is the tab character.
file1, file2 are the files from which you want to cut columns or fields
-c references character positions. For example, -c 1 specifies the first character and -c 1,14
specifies characters 1 and 14.

Recall the example vegetables and bread files discussed in the preceding section. Assume
that you also have the file meats. When you use the command paste vegetables bread meats >
food, the contents of the food file are now as follows:

Carrots Whole wheat Turkey
Spinach White bread Chicken
Lettuce Sourdough Beef
Beans Pumpernickel Ham

170 Chapter 4 UNIX/Linux File Processing

Next, assume that you want to extract the second column of information (the bread list)
from the file and display it on the screen. You enter the following command:

cut -f2 food

The option -f2 tells the cut command to extract the second field from each line. Tab
delimiters separate the fields, so cut knows where to find the fields. The result of the cut -f2
food command is output to the screen, as shown in Figure 4-4.

Another option is to extract the first and third columns from the file using the following
command:

cut -f1,3 food

The result of the command is:

Carrots Turkey
Spinach Chicken
Lettuce Beef
Beans Ham

Hands-On Project 4-12 enables you to practice using the cut command.

Sorting Files
Use the sort command to sort a file’s contents alphabetically or numerically. UNIX/Linux
display the sorted file on the screen by default, but you can specify that you want to store the
sorted data in a particular file by using a redirection operator.

Figure 4-4 Using the cut command

Manipulating Files 171

4

Syntax sort [-options] [filename]

Dissection

■ Sorts the contents of files by individual lines

■ Useful options include:
-k n sorts on the key field specified by n
-t indicates that a specified character separates the fields
-m merges input files that have been previously sorted (does not perform a sort)
-o redirects output to the specified file
-d sorts in alphanumeric or dictionary order
-g sorts by numeric (general) order
-r sorts in reverse order

The sort command offers many options, which Appendix B also describes. The following is
an example of its use:

sort file1 > file2

In this example, the contents of file1 are sorted and the results are stored in file2. (If the
output is not redirected, sort displays its results on the screen.) If you are sorting a file of
records and specify no options, for instance, the values in the first field of each record are
sorted alphanumerically. A more complex example is as follows:

sort -k 3 food > sortedfood

This command specifies a sorting key. A sorting key is a field position within each line.
The sort command sorts the lines based on the sorting key. The -k is the key field within the
file.For instance, -k 3 in the preceding example sorts on the third field in the food file,which
is the listing of meats, and writes the results of the sort to the file sortedfood (see Figure 4-5).
Notice in Figure 4-5 that the third field in the first record is Beef (and all of the records are
sorted by the third field).

Hands-On Project 4-13 enables you to use the sort command. Also, try Hands-On Project
4-14 to use the cat, cut, paste, and sort commands in a project that puts together in one place
what you have learned so far.

CREATING SCRIPT FILES

As you have seen, command-line entries can become long, depending on the number of
options you need to use. You can use the shell’s command-line history retrieval feature to
recall and reexecute past commands. This feature can work well for you if you need
to repeat commands shortly after executing them,but it is a problemif you need to perform

172 Chapter 4 UNIX/Linux File Processing

the same task a few days later. Also, there might be other people, such as an assistant or
supervisor, who need to execute your stored commands and cannot access them from their
own user accounts. MS-DOS and Windows users resolve this problem by creating batch
files,which are files of commands that are executed when the batch file is run.UNIX/Linux
users do the same: They create shell script files to contain command-line entries. Like
MS-DOS/Windows batch files, script files contain commands that can be run sequentially
as a set.For example, if you often create a specific report using a combination of the cut,paste,
and sort commands,you can create a script file containing these commands. Instead of having
to remember the exact commands and sequence each time you want to create the report,
you instead execute the script file. Creating script files in this way can save you a significant
amount of time and aggravation.

After you determine the exact commands and command sequence, use the vi or Emacs
editor to create the script file. (See Figure 4-6.) Next,make the script file executable by using
the chmod command with the x argument, as you learned in Chapter 2. Finally, use the ./
command to run a script, such as typing ./myscript and pressing Enter to run the script file
myscript.

Script files can range from the simple to the complex. In Hands-On Project 4-15, you get
a basic introduction to using these files. Chapters 6 and 7, “Introduction to Shell Script
Programming” and “Advanced Shell Programming,” give you much more experience with
script files (or scripts for short).

Figure 4-5 Results of sorting on the third field in the food file

Creating Script Files 173

4

USING THE JOIN COMMAND ON TWO FILES

Sometimes, it is useful to know how to link the information in two files. You can use the join
command to associate lines in two files on the basis of a common field in both files. If you want
the results sorted,you can either sort the files on a common field before you join the information
or sort on a specific field after you join the information from the files.For example, suppose you
have a file that contains the employee’s last name in one field, the employee’s company ID in
another field, and the employee’s salary in the final field, as follows:

Brown:82:53,000
Anders:110:32,000
Caplan:174:41,000
Crow:95:36,000

Also, you have another file that contains each employee’s last name, first name,middle initial,
department, telephone number, and other information, but that file does not contain salary
information, as follows:

Brown:LaVerne:F:Accounting Department:444-7508: . . .
Anders:Carol:M:Sales Department:444-2130: . . .
Caplan:Jason:R:Payroll Department:444-5609: . . .
Crow:Lorretta:L:Shipping Department:444-8901: . . .

You want to create a new third file to use for budgeting salaries that contains only the
employee’s last name, first name, department, and salary. To do this, you could use the join
command to create a file with the following contents:

Brown:LaVerne:Accounting Department:53,000
Anders:Carol:Sales Department:32,000
Caplan:Jason:Payroll Department:41,000
Crow:Lorretta:Shipping Department:36,000

Figure 4-6 Sample script file

174 Chapter 4 UNIX/Linux File Processing

In this simple example, the common field for the two original files is the employee’s last
name. Note that in this context, the common field provides a key for accessing and joining
the information to create a report or to create another file with the joined information. (Also
refer back to Figure 4-2(c) for an example of a key-based file structure.)

The join command is also associated with linking information in complex
databases. The use of these databases, such as relational databases, is beyond the
scope of this book. However, learning the join command to manipulate data in flat
files, as used in this book, can be useful. It is used here as another file manipulation
tool to complement your knowledge of the paste, cut, and sort commands.

Syntax join [-options] file1 file2

Dissection

■ Used to associate information in two different files on the basis of a common field or key
in those files

■ file1, file2 are two input files that must be sorted on the join field—the field you want to use
to join the files. The join field is also called a key. You must sort the files before you can join
them. When you issue the join command,UNIX/Linux compare the two fields.Each output
line contains the common field followed by a line from file1 and then a line from file2. You
can modify output using the options described next. If records with duplicate keys are in the
same file,UNIX/Linux join on all of them. You can create output records for unpairable lines,
for example, to append data from one file to another without losing records.

■ Useful options include:
-1 fieldnum specifies the common field in file1 on which to join
-2 fieldnum specifies the common field in file 2 on which to join
-o specifies a list of fields to output. The list contains blank-separated field specifiers in the
form m.n, where m is the file number and n is the position of the field in the file. Thus,
-o 1.2 means “output the second field in the first file.”
-t specifies the field separator character. By default this is a blank, tab, or new line
character. Multiple blanks and tabs count as one field separator.
-a filenum produces a line for each unpairable line in the file filenum. (In this case, filenum
is a 1 for file1 or a 2 for file2.)
-e str replaces the empty fields for the unpairable line in the string specified by str. The string
is usually a code or message to indicate the condition, for example, -e “NoVendor Record.”

Hands-On Project 4-16 gives you an opportunity to use the join command.

Using the join Command on Two Files 175

4

A BRIEF INTRODUCTION TO THE AWK PROGRAM

Awk, a pattern-scanning and processing language, helps to produce reports that look
professional. Although you can use the cat and more commands to display the output file that
you create with your join command, the awk command (which starts theAwk program when
you enter it on the command line) lets you do the same thing more quickly and easily.

The name Awk is formed from the initials of its inventors, (Alfred) Aho, (Peter)Weinberger,
and (Brian) Kernighan. They have provided a rich and powerful programming environment
in UNIX/Linux that is well worth the effort to learn, because it can perform actions on files
that range from the simple to the complex—and can be difficult to duplicate using a
combination of other commands.

In Fedora, Red Hat Enterprise Linux, SUSE and some other versions of UNIX and
Linux, you actually use gawk, which includes enhancements to awk and was
developed for the GNU Project by Paul Rubin and Jay Fenlason. When you type
awk at the command line, you really execute gawk—or you can just type gawk.

Syntax awk [- Fsep] [‘pattern {action} ..’] filenames

Dissection

■ awk checks to see if the input records in the specified files satisfy the pattern and, if they do,
awk executes the action associated with it. If no pattern is specified, the action affects every
input record.

■ -F: means the field separator is a colon

The awk command is used to look for patterns in files. After it identifies a pattern, it
performs an action that you specify. One reason to learn awk is to have a tool at your
fingertips that lets you manipulate data files very efficiently. For example, you can often do
the same thing in awk that would take many separate commands using a combination of
paste, cut, sort, and join. Another reason for learning awk is that you might have a project you
simply can’t complete using a combination of paste, cut, sort, and join, but you can complete
it using awk.

Some of the tasks you can do with awk include:

■ Manipulate fields and records in a data file.

■ Use variables. (You learn more about variables in Chapter 6.)

176 Chapter 4 UNIX/Linux File Processing

■ Use arithmetic, string, and logical operators. (You learn more about these types of
operators in Chapters 6 and 7.)

■ Execute commands from a shell script.

■ Use classic programming logic, such as loops. (You learn more looping logic in
Chapter 6.)

■ Process and organize data into well-formatted reports.

Consider a basic example in which you want to print text to the screen. The following is a
simple awk command-line sequence that illustrates the syntax:

awk 'BEGIN { print "This is an awk print line." }'

When you type this at the command line, the following appears on the screen:

This is an awk print line.

The awk command-line sequence to produce this output does the following things:

1. awk starts the Awk program to process the command-line actions.

2. The pattern is signaled by BEGIN.

3. The pattern and the action are enclosed in single quotation marks.

4. The action in the curly brackets { } is processed by the Awk program.

5. The Awk print command is executed to print the string inside the double
quotation marks (input from the keyboard or stdin) so that it appears on the
screen (stdout).

Using a more advanced example, you can use awk to process input from a data file and
display a report as output. Consider the following sample awk command-line sequence:

awk -F: '{printf "%s\t %s\n", $1, $2}' datafile

In this example, the following happens:

1. awk -F: starts the Awk program and tells Awk that the field separator between
records in the input file (datafile) is a colon.

2. The pattern and action are enclosed within the single quotation marks.

3. printf is a command used in the Awk program to print and format the output.
(You learn more about printf in Chapter 5,“Advanced File Processing”.) In
this case, the output goes to the screen (stdout).

4. $1 and $2 signify that the fields to print and format are the first ($1) and sec-
ond ($2) fields in the specified input file, which is datafile.

5. datafile is the name of the input file that contains records divided into fields.

Try Hands-On Projects 4-17 and 4-18 for a further introduction to awk.

A Brief Introduction to the Awk Program 177

4

awk is presented here to give you a first, experiential taste of this powerful tool.
There is a lot to learn about using awk, and you learn more in later chapters. For
now, consider this brief introduction of awk as a natural follow-on to your
introduction to the join command—like a musician sight-reading new music as
a rudimentary step to learning more about it. For more information about awk,
type man awk to read the online documentation.

CHAPTER SUMMARY

UNIX/Linux support regular files, directories, character special files, and block special
files. Regular files contain user information. Directories are system files for maintaining
the file system’s structure.Character special files are related to serial input/output devices,
such as printers. Block special files are related to devices, such as disks.

Files can be structured in several ways. UNIX/Linux store data, such as letters, product
records,or vendor reports, in flat ASCII files.File structures depend on the kind of data being
stored. Three kinds of regular files are unstructured ASCII characters, records, and trees.

Often, flat ASCII data files contain records and fields. They typically use one of two
formats: variable-length records and fixed-length records. Variable-length records usually
have fields that are separated by a delimiter, such as a colon. Fixed-length records have
fields that are in specific locations, such as a column range, within a record.

When performing commands, UNIX/Linux process data—they receive input from the
standard input device and then send output to the standard output device. UNIX/Linux
refer to the standard devices for input and output as stdin and stdout, respectively. By
default, stdin is the keyboard and stdout is the monitor. Another standard device, stderr,
refers to the error file that defaults to the monitor. Output from a command can be
redirected from stdout to a disk file. Input to a command can be redirected from stdin to
a disk file. The error output of a command can be redirected from stderr to a disk file.

The touch command updates a file’s time stamp and date stamp and creates empty files.

The rmdir command removes an empty directory. Also, the rm command can be used to
delete a file, and the rm command with the -r option can be used to delete a directory that
contains files and subdirectories.

The cut command extracts specific columns or fields from a file. Select the fields you want
to cut by specifying their positions and separator character, or you can cut by character
positions, depending on the data’s organization.

To combine two or more files, use the paste command. Where cat appends data to the end
of the file, the paste command combines files side by side. You can also use paste to
combine fields from two or more files.

Use the sort command to sort a file’s contents alphabetically or numerically.UNIX/Linux
display the sorted file on the screen by default, but you can also specify that you want to
store the sorted data in a particular file.

178 Chapter 4 UNIX/Linux File Processing

To automate command processing, include commands in a script file that you can later
execute as a program. Use the vi editor to create the script file, and use the chmod
command to make it executable.

Use the join command to extract information from two files sharing a common field. You
can use this common field to join the two files. You must sort the two files on the join
field—the one you want to use to join the files. The join field is also called a key. You
must sort the files before you can join them.

Awk is a pattern-scanning and processing language useful for creating a formatted report
with a professional look. You can enter the Awk language instructions in a program file
using the vi editor and call it using the awk command.

COMMAND SUMMARY: REVIEW OF CHAPTER 4 COMMANDS

Command Purpose Options Covered in This Chapter
awk Starts the awk program to

format output
-F identifies the field separator.
-f indicates code is coming from a disk file,
not the keyboard.

cat Views the contents of a
file, creates a file, merges
the contents of files

cp Copies one or more files -i provides a warning before cp writes over
an existing file with the same name.
-s creates a symbolic link or name at the
destination rather than a physical file.
-u prevents cp from copying over an exist-
ing file, if the existing file is newer than the
source file.

cut Extracts specified columns
or fields from a file

-c refers to character positions.
-d indicates that a specified character sepa-
rates the fields.
-f refers to fields.

find Finds files -iname specifies the name of the files you
want to locate, but the search is not case
sensitive.
-name specifies the name of the files you
want to locate, but the search is case
sensitive.
-mmin n displays files that have been
changed within the last n minutes.
-mtime n displays files that have been
changed within the last n days.
-size n displays files of size n.

Command Summary: Review of Chapter 4 Commands 179

4

Command Purpose Options Covered in This Chapter
join Combines files having a

common field
-a n produces a line for each unpairable
line in file n.
-e str replaces the empty fields for an
unpairable file with the specified string.
-1 and -2 with the field number are used
to specify common fields when joining.
-o outputs a specified list of fields.
-t indicates that a specified character sepa-
rates the fields.

mv Moves one or more files -i displays a warning prompt before over-
writing a file with the same name.
-u overwrites a destination file with the
same name, if the source file is newer than
the one in the destination.

paste Combines fields from two
or more files

-d enables you to specify a different sepa-
rator (other than a tab) between columns.
-s causes files to be pasted one after the
other instead of in parallel.

rm Removes one or more files -i specifies that UNIX/Linux should request
confirmation of file deletion before remov-
ing the files.
-r specifies that directories should be recur-
sively removed.

rmdir Removes an empty
directory

sort Sorts the file’s contents -k n sorts on the key field specified by n.
-t indicates that a specified character sepa-
rates the fields.
-m means to merge files before sorting.
-o redirects output to the specified file.
-d sorts in alphanumeric or dictionary
order.
-g sorts by numeric (general) order.
-r sorts in reverse order.

touch Updates an existing file’s
time stamp and date stamp
or creates empty new files

-a specifies that only the access date and
time are to be updated.
-m specifies that only the modification
date and time are to be updated.
-c specifies that no files are to be created.

180 Chapter 4 UNIX/Linux File Processing

KEY TERMS

fixed-length record — A record structure in a file in which each record has a specified
length, as does each field in a record.
flatASCII file — A file that you can create,manipulate, and use to store data, such as letters,
product reports, or vendor records. Its organization as an unstructured sequence of bytes is
typical of a text file and lends flexibility in data entry, because it can store any kind of data
in any order. Any operating system can read this file type.However,because you can retrieve
data only in the order you entered it, this file type’s usefulness is limited. Also called an
ordinary file or regular file.
key — A common field in every file record shared by each of one or more files. The
common field, or key, enables you to link or join information among the files, such as for
creating a report.
regular file — A UNIX/Linux reference to ASCII/text files and binary files. Also called an
ordinary file.
relational database — A database that contains files that UNIX/Linux treat as tables,
records that are treated as rows, and fields that are treated as columns and that can be joined
to create new records. For example, using the join command, you can extract information
from two files in a relational database that share a common field.
shell script — A text file that contains sequences of UNIX/Linux commands that do not
need to be converted into machine language by a compiler.
sorting key — A field position within each line of a file that is used to sort the lines. For
instance, in the command sort -k 2 myfile,myfile is sorted by the second field in that file. The
sort command sorts the lines based on the sorting key.
stderr — An acronym used by programmers for standard error. When UNIX/Linux detect
errors in programs and program tasks, the error messages and analyses are directed to stderr,
which is often the screen (part of the IEEE Std 1003.1 specification).
stdin — An acronym used by programmers for standard input and used in programming to
read input (part of the IEEE Std 1003.1 specification).
stdout — An acronym used by programmers for standard output and used in programming
to write output (part of the IEEE Std 1003.1 specification).
variable-length record — A record structure in a data file in which the records can have
variable lengths and are typically separated by a delimiter, such as a colon.

Key Terms 181

4

REVIEW QUESTIONS

1. You are starting a new year and need to create 10 empty files for your accounting
system. Which of the following commands or operators enable you to quickly create
these files? (Choose all that apply.)
a. mkfile
b. >
c. newfile
d. ;

2. Your project team uses a group of the same files and tracks whether they are still in
use by looking at the last modified date. You need to show that a series of files are
still in use by changing the last modified date to today. What command do you use?
a. date -m
b. chdate
c. touch
d. update

3. Which of the following are ways in which you can structure a record containing
data? (Choose all that apply.)
a. prosasium
b. scanned
c. fixed-length
d. variable-length

4. You need to delete 30 files that all start with the letters “customer,” such as
customer_accounts, customer_number, and so on. Which of the following com-
mands enables you to quickly delete these files?
a. removeall customer
b. omit customer
c. -customer
d. rm customer*

5. You are in your home directory and need to copy the file MemoRequest to a folder
under your home directory called Memos. Which of the following commands do
you use?
a. cp MemoRequest Memos
b. duplicate MemoRequest Memos
c. mv MemoRequest /
d. link / Memos MemoRequest

182 Chapter 4 UNIX/Linux File Processing

6. You have a personnel file that contains the names, addresses, and telephone numbers
of all employees. The first field in the personnel file is the employee number and the
second field is the employee last name. The third field is the first name and middle
initial. Because there are no employees with the same last name, you want to check
the file by last name to make certain all employees are included. Which of the fol-
lowing commands should you use?
a. paste -l2 personnel
b. cut -f2 personnel
c. capture personnel 2
d. join 2.0 personnel

7. You are doing some “house cleaning” and want to delete several empty directories.
Which of the following commands can you use? (Choose all that apply.)
a. rmdir
b. dirdel
c. deldir
d. clear -d

8. You are trying to use the command sort -t: +5 datastore, but you get an error message
each time you try it. How can you save the error message in a file called error, so
you can e-mail the file to your computer support person?
a. Enter error sort -t: +5 datastore.
b. Enter stderr sort -t: +5 datastore.
c. Enter sort -t: +5 datastore << error.
d. Enter sort -t: +5 datastore 2> error.

9. Which of the following commands would you use to make a backup copy of the file
AR2008?
a. bak AR2008
b. AR2008 <<
c. cp AR2008 AR2008.bak
d. comp AR2008 < bak

10. You have a lot of subdirectories under your home directory and know that you saved
the file supplemental in one of them, but you are not sure which one. After you use
cd to change to your home directory, which of the following commands enables you
to search all of your subdirectories for the file?
a. search / supplemental
b. mv -s supplemental
c. dirsearch supplemental
d. find -name supplemental

Review Questions 183

4

11. You have created a script file called sum_report in your home directory and have
made it executable. What command do you use to run the script?
a. ./sum_report
b. rm sum_report
c. go sum_report
d. #sum_report

12. Standard output is referred to as which of the following?
a. out_put
b. stdout
c. termout
d. outsource

13. Which of the following conditions must be met for you to combine two files using
the join command? (Choose all that apply.)
a. The two files must be exactly the same length.
b. Both files must have a field that contains a numbered identifier.
c. The two files must have a common field, such as last name.
d. Both files must use a colon as the field separator.

14. Which of the following commands can you use to sort the file vendor_name and
display the results on the screen?
a. sort > vendor_name
b. sort vendor_name <
c. sort vendor_name stdin
d. sort vendor_name

15. When you use the paste command, columns of information are separated by a tab.
However, your boss wants the columns separated by a colon. What option enables
you to specify the colon as the separator?
a. -s:
b. -d:
c. --sep :
d. --div:

184 Chapter 4 UNIX/Linux File Processing

16. You are examining your addresses file, which contains the first and last names of people
you know as well as their street address, city, state, zip code, and telephone number. You
want to print a list of last names, which is field 1, and telephone numbers, which is
field 7. Which of the following commands enables you to print this list?
a. cat 1:7 addresses
b. sort -t: 1-7 addresses
c. cut -f1,7 addresses
d. paste r:1:7 addresses

17. You keep a yearly record of the birds you’ve seen in your town. The name of the file
is birds. The file contains the following fields: name (field 1), markings (field 2),
year(s) viewed (field 3), and location (field 4). You want to review the contents of
the file, sorted by location. Which of the following commands do you use?
a. sort -k 4 birds
b. sort birds >4
c. paste birds -s:45
d. cut birds .4

18. Which of the following can be accomplished with the mv command? (Choose all
that apply.)
a. move a file
b. modify the contents of a file
c. rename a file
d. change a file’s owner

19. Your boss asks you to create a professional-looking report from the contents of two
files. Which of the following tools enables you to produce a polished report?
a. cat
b. awk
c. touch
d. finetouch

20. What command enables you to sort the contents of a file in reverse order?
a. cut -r
b. paste -b
c. sort -t
d. sort -r

Review Questions 185

4

21. You want to combine two files, data07 and data08, into a file called data_all. Which
of the following commands do you use?
a. cut data07 + data08 2>> data_all
b. paste data07/data08 to data_all
c. sort data 07 data08 <<2 data_all
d. cat data07 data08 > data_all

22. How can you use the touch command to create four new files called sum, datanew,
results, and calcs (using one command line)?

23. Create a command that sorts on the second field in the file addresses and then writes
the sorted results to the new file, sorted_addresses.

24. Create a command that enables you to copy all of the files in the spreadsheets direc-
tory to the accounts directory (when both directories are first-level directories under
your home directory and you are currently in your home directory).

25. You play guitar and keep two files on your computer. One file, called strings, lists the
different brands of strings you keep on hand. Another file, called music, lists the
music books and scores you own. When you enter the command paste strings music,
what happens?

HANDS-ON PROJECTS

Remember that you can type clear and press Enter at the end of any project to
start with a fresh screen display.

Project 4-1
You can handle input and output in UNIX/Linux in many ways. In this project, you create
a file that feeds commands into the vi editor. (For this and all projects in the chapter, log in
using your own account, rather than logging in as root.)

To create a file from which the vi editor reads commands:

1. Use the vi editor to create and then save the file testfile containing the following text
(ensure that you don’t enter a blank line after the last line):

This is line 1.
This is line 2.
This is line 3.
This is line 4.

2. Type cat testfile and press Enter to check your work.

186 Chapter 4 UNIX/Linux File Processing

3. Next, using the vi editor, create and save another text file named commands with
one line containing the following vi commands: 2GddGp:x. (See Figure 4-7.)

4. Type cat commands and press Enter to verify the contents of the commands file.

5. Type vi testfile < commands and press Enter. (Because the input is from a file
and not the keyboard, you might see a warning that the input is not from a terminal.
Simply ignore the warning.) This loads testfile into the vi editor and redirects vi’s
input to the text in the commands file. The text in the commands file is treated as
commands typed on the keyboard.

6. Type cat testfile and press Enter. You see the contents of testfile after the vi com-
mands execute. The contents are:

This is line 1.
This is line 3.
This is line 4.
This is line 2.

Project 4-2
In this project, you use the 2> redirection operator to write an error message to a file.

To redirect an error message:

1. Force the ls command to display an error message by giving it an invalid argument.
Assuming you have no file or directory in your home directory named oops, type ls
oops and press Enter. You see the following error message:

ls: oops: No such file or directory

Figure 4-7 Using vi to create the commands file

Hands-On Projects 187

4

2. Redirect the error output of the ls command. Type ls oops 2> errfile and press
Enter. There is no output on the screen.

3. Type cat errfile and press Enter. You see errfile’s contents:

ls: oops: No such file or directory

4. See Figure 4-8.

Project 4-3
In this project, you practice using the > redirector to create an empty file.

To create an empty file:

1. Type > newfile1 and press Enter. This creates an empty file called newfile1.

2. To list the new file, type ls -l newfile1 and press Enter.

3. You see only the information listed next, where jean is your user name.

-rw-r--r-- 1 jean jean 0 Nov 1 16:57 newfile1

4. To create another new file, type > newfile2 and press Enter.

Project 4-4
This project shows you how to use the touch command to create a file and to change its
time stamp.

To create a file and alter its date/time stamp with the touch command:

1. Type touch newfile3 and press Enter. This command creates the file newfile3.

Figure 4-8 Creating the errfile and viewing its contents

188 Chapter 4 UNIX/Linux File Processing

2. Type ls -l newfile3 and press Enter. You see a long listing for the newfile3 file.
Note its modification date and time.

3. Wait at least one minute.

4. Type touch newfile3 and press Enter. This updates the file’s access and modifica-
tion date stamp and time stamp with the system date and time.

5. Type ls -l newfile3 and press Enter. Look at the file’s modification time. It should
be different now. (Figure 4-9 shows the time stamp changed after 10 minutes.)

Project 4-5
In this project, you delete two of the files you created previously.

To delete a file from the current directory:

1. Type rm newfile1 and press Enter. This permanently deletes newfile1 from the
current directory.

2. Type rm -i newfile2 and press Enter. You see the message, rm: remove regular
empty file ‘newfile2’?

3. Type y for yes and press Enter.

To delete a group of files using wildcards:

1. You can specify multiple file names as arguments to the touch command. Type touch
file1 file2 file3 filegood filebad and press Enter. This command creates these
files: file1, file2, file3, filegood, and filebad.

2. Type ls file* and press Enter. You see the listing for the files you created in Step 1.

Figure 4-9 Using touch to create a file and change its time stamp

Hands-On Projects 189

4

3. Type rm file* and press Enter.

4. Type ls file* and press Enter. The files have been erased. (See Figure 4-10.)

Project 4-6
In this project, you create a directory and then use the rmdir command to remove it. Then,
you use the rm command to delete a directory that contains subdirectories.

To create a directory and then remove it with the rmdir command:

1. Type mkdir newdir and press Enter. This creates a new directory named newdir.

2. Use a relative path with the touch command to create a new file in the newdir
directory. Type touch newdir/newfile and press Enter. This creates the file new-
file in the newdir directory.

3. Type ls newdir and press Enter to see a listing of the newfile file.

4. To attempt to remove the directory, type rmdir newdir and press Enter. You see
an error message similar to:

rmdir: newdir: Directory not empty

5. Use a relative path with the rm command to delete newfile. Type rm
newdir/newfile and press Enter.

6. The directory is now empty. Type rmdir newdir and press Enter.

7. Type ls and press Enter. The newdir directory is no longer there.

Figure 4-10 Deleting files with the rm command

190 Chapter 4 UNIX/Linux File Processing

To recursively remove a directory with several subdirectories:

1. Create a directory with several subdirectories. Type mkdir company and press
Enter. Type mkdir company/sales and press Enter. Type mkdir
company/marketing and press Enter. Type mkdir company/accounting and
press Enter.

2. Create three empty files in the company directory. Type touch company/file1
company/file2 company/file3 and press Enter.

The commands you type next in Step 3 are very similar. You can reduce
your typing by using the up arrow key to recall the first command and then
modify it.

3. Copy the files to the other directories by doing the following:

Type cp company/file1 company/file2 company/file3 company/sales and
press Enter.

Type cp company/file1 company/file2 company/file3 company/
marketing and press Enter.

Type cp company/file1 company/file2 company/file3 company/
accounting and press Enter.

4. Use the ls command to verify that the files were copied into all three directories.

5. Remove the company directory and everything it contains. Type rm -r company
and press Enter.

6. Type ls and press Enter. The company directory is removed.

Project 4-7
The cp command is especially useful for preventing data loss; you can use it to make backup
copies of your files. In this project, you create three new files, and then copy them to a
different directory Then, you duplicate one file and give it a different name.

To create three files and copy them to a directory:

1. If you do not already have a subdirectory called source, be certain you’re in your home
directory and then create the directory. Type mkdir source and then press Enter.

2. To create three files in your home directory, type > file1 and press Enter, type >
file2 and press Enter, and then type > file3 and press Enter.

3. Now, you can copy the three files to the source directory. Type cp file1 file2 file3
source and press Enter. (Or to save time, you can type cp file* source.)

4. Next, copy one of the files and give it a different name, so you can distinguish it as a
backup file. Type cp file1 file1.bak and press Enter. (See Figure 4-11.)

Hands-On Projects 191

4

Now your working directory contains two files with identical contents but different names.

Project 4-8
In this project, you use the mv command to practice moving files.

To move a file from one directory to another:

1. To create the new file thisfile in your home directory, type > thisfile and then press
Enter.

2. Type mv thisfile source and press Enter to move the new file to the source
directory.

3. Type ls and press Enter. thisfile is not listed. Type ls source and press Enter. You
see thisfile listed.

4. To move more than one file, type the file names before the directory name. For
example, type mv file1 file1.bak source and press Enter.

5. To create the new file my_file, type > my_file and press Enter.

6. To rename my_file to your_file, type mv my_file your_file and press Enter.

7. Type ls and press Enter. You see your_file listed, but my_file is not listed.

Figure 4-11 Copying files to a new subdirectory and creating a backup file

192 Chapter 4 UNIX/Linux File Processing

Project 4-9
In this project, you use the find command to find every file named file1 in the /home
directory and all its subdirectories.

To find a file:

1. Type find /home -name file1 and press Enter.

2. In what directories do you find the file? If there are other users on the system, can
you view their home directories to see if file1 exists there?

Although Linux does not require it, some UNIX versions require the -print
option after the file name to display the names of files the find command
locates.

Project 4-10
In the next projects, you practice creating simple data files to gain initial experience in
manipulating those files using UNIX/Linux commands.For this project, you begin by using
the cat command with a redirection operator to practice creating and combining the
product1 and product2 files and to further explore the versatility of the redirection operator.
The basic files that you work with, in this instance, are sample product description files,with
each record (line) containing the name of the product (in the first field) and a number to
further help identify that product (in the second field). Figure 4-12 illustrates a conceptual
example of the contents of the two files you create.

File name: product1

Lobby Furniture 1201
Ballroom Specialties 1221
Poolside Carts 1320
Formal Dining Specials 1340
Reservation Logs 1410

File name: product2

Plumbing Supplies 1423
Office Equipment 1361
Carpeting Services 1395
Auto Maintenance 1544
Pianos and Violins 1416

Figure 4-12 Two sample product description files

Hands-On Projects 193

4

To use the cat command to combine files:

1. Type cat > product1 and press Enter.

2. Type the following text, pressing Enter at the end of each line:

Lobby Furniture:1201
Ballroom Specialties:1221
Poolside Carts:1320
Formal Dining Specials:1340
Reservation Logs:1410

3. Press Ctrl+d.

4. Now, you can redirect the output of cat to create the product2 file in your home
directory. This file also contains two colon-separated fields.

5. After the command prompt, type cat > product2 and press Enter.

6. Type the following text, pressing Enter at the end of each line:

Plumbing Supplies:1423
Office Equipment:1361
Carpeting Services:1395
Auto Maintenance:1544
Pianos and Violins:1416

7. Press Ctrl+d.

8. Now, you can combine the two files in a master products file. After the $ command
prompt, type cat product1 product2 > products3 and press Enter.

9. To list the contents of products, type more products3 and press Enter. You see the
following list (see Figure 4-13 for the entire command sequence):

Lobby Furniture:1201
Ballroom Specialties:1221
Poolside Carts:1320
Formal Dining Specials:1340
Reservation Logs:1410
Plumbing Supplies:1423
Office Equipment:1361
Carpeting Services:1395
Auto Maintenance:1544
Pianos and Violins:1416

194 Chapter 4 UNIX/Linux File Processing

Project 4-11
In Hands-On Project 4-10,you learned how to combine files using the cat command. In this
project, you combine files using a different method, the paste command. Here, you combine
the two product files you created in Project 4-10 to display the records in these files in two
separate columns.

To use the paste command to combine files:

1. Type clear and press Enter to clear the screen, if you are continuing directly from
Project 4-10.

2. Type paste product1 product2 and press Enter.

This command-line sequence means “combine the file called product1 with the file
called product2 and show the results on the screen using a separate column for the
contents of each file” (see Figure 4-14). The columns appear uneven, because the
records in the files are of different lengths and are separated into columns by tab
characters (which you don’t see on the screen).

3. How can you write the output of the paste command to a file instead of to the
screen in this example?

Figure 4-13 Creating and combining files with the cat command

Hands-On Projects 195

4

Project 4-12
The cut command offers versatility in manipulating and presenting the contents of basic data
files. In this project, you begin by creating two files: corp_phones1 and corp_phones2. The
corp_phones1 file includes five records of variable size, and a colon separates each field in the
record. Figure 4-2(c), shown earlier in the chapter, illustrates this type of file structure. The
corp_phones2 file also includes five records of fixed length, illustrated in Figure 4-2(b).
Figure 4-15 illustrates the contents of the two files. You can use the cut command with either
file to extract a list of names.

To create the corp_phones1 and corp_phones2 files:

1. Use the vi or Emacs editor to create the file corp_phones1.

2. Type the following lines of text, exactly as they appear. Press Enter at the end of
each line:

219:432:4567:Harrison:Joel:M:4540:Accountant:09-12-1985
219:432:4587:Mitchell:Barbara:C:4541:Admin Asst:12-14-1995
219:432:4589:Olson:Timothy:H:4544:Supervisor:06-30-1983
219:432:4591:Moore:Sarah:H:4500:Dept Manager:08-01-1978
219:432:4527:Polk:John:S:4520:Accountant:09-22-1998

3. Save the file, and create a new file named corp_phones2.

4. Type the following lines of text, exactly as they appear. Consult Figure 4-15 for the
precise position of each character. Press Enter at the end of each line. In this file, you
are creating fixed-length records, which means that each field must start in a specific
column and exactly line up under one another. For example, the telephone area code

Figure 4-14 Using the paste command to combine files

196 Chapter 4 UNIX/Linux File Processing

219 is in columns 1 through 3. The person’s last name starts in column 14 and can
go through column 25.

219 432 4567 Harrison Joel M 4540 Accountant 09-12-1985
219 432 4587 Mitchell Barbara C 4541 Admin Asst 12-14-1995
219 432 4589 Olson Timothy H 4544 Supervisor 06-30-1983
219 432 4591 Moore Sarah H 4500 Dept Manager 08-01-1978
219 432 4527 Polk John S 4520 Accountant 09-22-1998

5. Save the file, and exit the editor.

Next, you extract the first and last names from the corp_phones1 file. This file includes
variable-length records and fields separated by colon characters. You can select the fields you
want to cut by specifying their positions and separator character (which is a colon in this
case).

To use the cut command to extract fields from variable-length records:

1. Type cut -f4-6 -d: corp_phones1 and press Enter.

This command means “cut the fields (-f) in positions four through six (4–6) that the
colon character (-d:) delimits in the corp_phones1 file.”

You see the list of names:

Harrison:Joel:M
Mitchell:Barbara:C
Olson:Timothy:H
Moore:Sarah:H
Polk:John:S

File name: corp_phones1 (Variable-length Records - fields separated by colon :)

219:432:4567:Harrison:Joel:M:4540:Accountant:09-12-1985
219:432:4587:Mitchell:Barbara:C:4541:Admin Asst:12-14-1995
219:432:4589:Olson:Timothy:H:4544:Supervisor:06-30-1983
219:432:4591:Moore:Sarah:H:4500:Dept Manager:08-01-1978
219:432:4527:Polk:John:S:4520:Accountant:09-22-1998

Storage space = 279 bytes

File name: corp_phones2 (Fixed-length records)

Character positions
1-3 5-7 9-12 14-25 26-35 36 38-41 43-58 59-68
==
219 432 4567 Harrison Joel M 4540 Accountant 09-12-1985
219 432 4587 Mitchell Barbara C 4541 Admin Asst 12-14-1995
219 432 4589 Olson Timothy H 4544 Supervisor 06-30-1983
219 432 4591 Moore Sarah H 4500 Dept Manager 08-01-1978
219 432 4527 Polk John S 4520 Accountant 09-22-1998

Storage space = 345 bytes

Figure 4-15 Two versions of a sample telephone file structure for a company

Hands-On Projects 197

4

Now, you extract the first and last names from the corp_phones2 file. This file includes
fixed-length records, instead of records containing colons to separate the fields, so you can
cut by specifying character positions.

To use the cut command to extract fields from fixed-length records:

1. Type cut -c14-25,26-35,36 corp_phones2 and press Enter.

This command means“cut the characters (-c) in positions 14 through 25,26 through 35,
and position 36 (14–25,26–35,36) in the corp_phones2 file.”

You see the list of names:

Harrison Joel M
Mitchell Barbara C
Olson Timothy H
Moore Sarah H
Polk John S

Also, see Figure 4-16 for an example of how your screen will look after using the cut
command on the corp_phones1 and then the corp_phones2 files.

Be certain not to include a space in the code sequence after the dash (-) options
in the cut command. For example, the correct syntax is cut (space) -c14-25,26-
35,36 (space) corp_ phones2.

Figure 4-16 Comparing the cut command results of a variable- versus a fixed-length file

198 Chapter 4 UNIX/Linux File Processing

Using the cut command with variable-length or fixed-length records produces similar results.
Cutting from fixed-length records creates a more legible display but requires more storage space.
For example, corp_phones2 requires about 345 bytes, and corp_phones1 requires about 279.

Project 4-13
Sorting the corp_phones1 and corp_phones2 files you created in Hands-On Project 4-12 is
relatively easy because you can refer to field numbers. In the first two steps of this project,
you sort the corp_phones1 file by last name and first name, respectively. In the third and
fourth steps, you do the same thing with corp_phones2.Notice that the output of these four
steps goes to stdout (the screen). The final step uses the -o option, instead of output
redirection, to write the sorted output to a new disk file, sorted_phones.

In earlier versions of UNIX/Linux, you had to specify character positions of fields
to sort a fixed-length file, such as the corp_phones2 file in our project examples.
This was done by using the +F.C option, where F is the number of the field and
.C is the character position. The +F.C option is still available in some systems,
but it is easier to use the -k option.

To sort the corp_phones1 file:

1. After the $ prompt, type sort -t: -k 4 corp_phones1 and press Enter.

In this example, the -t option indicates the separator character between fields, which is
a colon (:). The -k option specifies sorting on the fourth field, or the last name field in
this instance. You see the following on your screen:

219:432:4567:Harrison:Joel:M:4540:Accountant:09-12-1985
219:432:4587:Mitchell:Barbara:C:4541:Admin Asst:12-14-1995
219:432:4591:Moore:Sarah:H:4500:Dept Manager:08-01-1978
219:432:4589:Olson:Timothy:H:4544:Supervisor:06-30-1983
219:432:4567:Polk:John:S:4520:Accountant:09-22-1998

2. Type sort -t: -k 5 corp_phones1 and press Enter.

This sorts the variable-length records (-t: indicates that the fields are delimited by a
colon) starting at the first name field (-k 5). You see the following on your screen:

219:432:4587:Mitchell:Barbara:C:4541:Admin Asst:12-14-1995
219:432:4567:Harrison:Joel:M:4540:Accountant:09-12-1985
219:432:4567:Polk:John:S:4520:Accountant:09-22-1998
219:432:4591:Moore:Sarah:H:4500:Dept Manager:08-01-1978
219:432:4589:Olson:Timothy:H:4544:Supervisor:06-30-1983

Hands-On Projects 199

4

3. Type sort -k 4 corp_phones2 and press Enter.

This sorts the fixed-length file by last name, starting at the fourth field. In this example,
no separator is specified, because fixed-length files don’t use a separator. You see the
following on your screen:

219 432 4567 Harrison Joel M 4540 Accountant 09-12-1985
219 432 4587 Mitchell Barbara C 4541 Admin Asst 12-14-1995
219 432 4591 Moore Sarah H 4500 Dept Manager 08-01-1978
219 432 4589 Olson Timothy H 4544 Supervisor 06-30-1983
219 432 4527 Polk John S 4520 Accountant 09-22-1998

4. Type sort -k 5 corp_phones2 and press Enter.

This sorts the file by first name, starting at the fifth field. You see the following on your
screen:

219 432 4587 Mitchell Barbara C 4541 Admin Asst 12-14-1995
219 432 4567 Harrison Joel M 4540 Accountant 09-12-1985
219 432 4527 Polk John S 4520 Accountant 09-22-1998
219 432 4591 Moore Sarah H 4500 Dept Manager 08-01-1978
219 432 4589 Olson Timothy H 4544 Supervisor 06-30-1983

5. Type clear and press Enter to clear the screen for easier viewing.

6. To sort by first name and create the output file sorted_phones, type sort -t: -k 5 -o
sorted_phones corp_phones1 and press Enter. This sorts the corp_phones1 file
by first name and creates an output file, sorted_phones. Type cat sorted_phones
and press Enter to verify that you successfully created the sorted_phones file. (See
Figure 4-17.)

Figure 4-17 Sorting the corp_phones1 file by first name and storing the result in
sorted_phones

200 Chapter 4 UNIX/Linux File Processing

Project 4-14
In this project, you use the many file-processing tools you’ve learned, to help reinforce your
knowledge to this point.First,use the cat command to create the vendors file. The records in the
vendors file consist of two colon-separated fields: the vendor number and vendor name.

To create the vendors file:

1. Type cat > vendors and press Enter.

2. Type the following text, pressing Enter at the end of each line:

1201:Cromwell Interiors
1221:Design Extras Inc.
1320:Piedmont Plastics Inc.
1340:Morgan Catering Service Ltd.
1350:Pullman Elevators
1360:Johnson Office Products

3. Press Ctrl+d.

In the next steps, use the cat command to create the products file. The records in the
products file consist of three colon-separated fields: the product number, the product
description, and the vendor number.

To create the products file:

1. Type cat > products and press Enter.

2. Type the following text, pressing Enter at the end of each line, including the last line
(use all zeros in the first and last fields, including in S0107, for example):

S0107:Lobby Furniture:1201
S0109:Ballroom Specialties:1221
S0110:Poolside Carts:1320
S0130:Formal Dining Specials:1340
S0201:Reservation Logs:1410

3. Type Ctrl+d to end the cat command.

4. Figure 4-18 shows conceptual examples of the vendors and products files you have
created.

Now use the cut, paste, and sort commands to create a single-example vendor report. You
start by using the cut command to extract product descriptions and vendor numbers from
the products file and storing them in separate files, p1 and p2. Then extract vendor numbers
and names from the vendors file, and store them in v1 and v2. Use the paste command to
combine the two vendor files (v1 and v2) in a third file, v3. Then combine the two product
files (p1 and p2) in a file called p3. Sort and merge the v3 and p3 files, and send their output
to the vrep file, the vendor report.

To use the cut, paste, and sort commands to create a report:

1. Type cut -f2 -d: products > p1 and press Enter.

Hands-On Projects 201

4

This means “extract the data from the second field delimited by a colon in the products
file, and store it in the p1 file.” It stores these product descriptions in the p1 file
(remember you can use the cat command to verify the contents):

Lobby Furniture
Ballroom Specialties
Poolside Carts
Formal Dining Specials
Reservation Logs

2. Type cut -f3 -d: products > p2 and press Enter.

This means “extract the data from the third field delimited by a colon in the products
file, and store it in the p2 file.” It stores these vendor numbers in the p2 file:

1201
1221
1320
1340
1410

3. Type cut -f1 -d: vendors > v1 and press Enter.

This means “extract the data from the first field delimited by a colon in the vendors file,
and store it in the v1 file.” It stores these vendor numbers in the v1 file:

File name: vendors

Vendor Vendor Name
Number
=================================
1201:Cromwell Interiors
1221:Design Extras Inc.
1320:Piedmont Plastics Inc.
1340:Morgan Catering Service Ltd.
1350:Pullman Elevators
1360:Johnson Office Products

File name: products

Prod Product Vendor
Number Description Number
=================================
S0107:Lobby Furniture:1201
S0109:Ballroom Specialties:1221
S0110:Poolside Carts:1320
S0130:Formal Dining Specials:1340
S0201:Reservation Logs:1410

Figure 4-18 Vendors and products files

202 Chapter 4 UNIX/Linux File Processing

1201
1221
1320
1340
1350
1360

4. Type cut -f2 -d: vendors > v2 and press Enter.

This means “extract the data from the second field delimited by a colon in the vendors
file, and store it in the v2 file.” It stores these product descriptions in the v2 file:

Cromwell Interiors
Design Extras Inc.
Piedmont Plastics Inc.
Morgan Catering Service Ltd.
Pullman Elevators
Johnson Office Products

5. Type paste v1 v2 > v3 and press Enter.

This means “combine the data in v1 and v2, and direct it to the file v3. It stores these
vendor numbers and product descriptions in the v3 file:

1201 Cromwell Interiors
1221 Design Extras Inc.
1320 Piedmont Plastics Inc.
1340 Morgan Catering Service Ltd.
1350 Pullman Elevators
1360 Johnson Office Products

6. Type paste p2 p1 > p3 and press Enter.

This means “combine the data in p2 and p1, and direct it to a file called p3.” It stores
these vendor numbers and product descriptions in the p3 file:

1201 Lobby Furniture
1221 Ballroom Specialties
1320 Poolside Carts
1340 Formal Dining Specials
1410 Reservation Logs

7. Type sort -o vrep -m v3 p3 and press Enter.

This means “merge the data in v3 and p3, and direct the output to a file called vrep.” It
stores these vendor numbers and product descriptions in the vrep file:

1201 Cromwell Interiors
1201 Lobby Furniture
1221 Ballroom Specialties
1221 Design Extras Inc.
1320 Piedmont Plastics Inc.
1320 Poolside Carts
1340 Formal Dining Specials

Hands-On Projects 203

4

1340 Morgan Catering Service Ltd.
1350 Pullman Elevators
1360 Johnson Office Products
1410 Reservation Logs

At this point, your screen should look similar to Figure 4-19. In one project, you have
accomplished quite a lot. You’ve used the cat command to create files and used the cut, paste,
and sort commands to extract information from the files, combine the information, and then
sort and merge the information into a new file.

Project 4-15
You might encounter many situations in which you must process files and create reports in
the same way. You might do this on a weekly basis, for example, as the contents of files
change and you want to create new reports or informational files to have on hand. Creating
a script gives you a way to remember and reuse a sequence of commands that you can run
over and over again. In this project, you create a simple script to process the products and
vendors files and write your results to the vrep file.

To use the vi editor to create a script:

1. Use the vi editor to create your script file. Type vi ven_report and press Enter.

2. The vi editor starts and creates a new file, ven_report.

Figure 4-19 Using cat, cut, paste, and sort together to create and process files

204 Chapter 4 UNIX/Linux File Processing

3. Enter insert mode (press i), and then type the following, pressing Enter at the end of
every line:

cut -f2 -d: products > p1
cut -f3 -d: products > p2
cut -f1 -d: vendors > v1
cut -f2 -d: vendors > v2
paste v1 v2 > v3
paste p2 p1 > p3
sort -o vrep -m v3 p3

These are the same commands you used in Hands-On Project 4-14 to create the vrep
vendor report. Figure 4-20 illustrates how the vi editor screen should look after you
have entered the commands.

4. Press Esc.

5. Type :wq or :x and press Enter to exit the vi editor.

Now, you can make the script executable with the chmod command. The chmod command
sets file permissions. In the example that follows, the chmod command and its ugo+x option
make the ven_report file executable by users (owners), group, and others.

To make the script executable:

1. Type chmod ugo+x ven_report and press Enter.

(See Chapter 2 for more information on the chmod command.)

2. Type rm vrep and press Enter to delete the vrep file you created in Hands-On
Project 4-14. Next, to ensure the script works, type ./ven_report and press Enter.
(The ./ command enables you to run a script.)

Figure 4-20 Creating the ven_report script file using the vi editor

Hands-On Projects 205

4

3. Type cat vrep and press Enter to verify the vrep file contents look identical to
those shown in Step 7 of Hands-On Project 4-14.

In addition to making a shell script executable, it is a good idea to specify the
shell for which the script is designed to run. For example, if you have designed
a script for the Bash shell, you can place #!/bin/bash as the first line in the script.
You learn how to do this in Chapter 7.

Project 4-16
The products and vendors files that you have created offer an opportunity to begin
exploring what you can do with the join command. This command is potentially more
complex than many you have learned so far. In this project, you get a start in using the join
command by creating a sample vendor report from the products and vendors files.

To use the join command to create a report:

1. Type join -a1 -e “No Products” -1 1 -2 3 -o '1.2 2.2' -t: vendors products
> vreport ; cat vreport and press Enter. (Remember that if you make a typing
mistake, you can use the up arrow to recall a command, press the left arrow key to
correct the mistake, and then run the command again.)

In this command, the -1 and -2 options indicate the first or second specified file, such
as vendors or products. The numbers following -1 and -2 specify field numbers used for
the join or match. Here, you use the first field of the vendors file to join the third field
of the products file.

The -a option tells the command to print a line for each unpairable line in the file
number. In this case, a line prints for each vendor record that does not match a product
record.

The -e option lets you display a message for the unmatched (-a1) record, such as “No
Products.”

The -o option sets the fields that will be output when a match is made.

The 1.2 indicates that field two of the vendors file is to be output along with 2.2, field
two of the products file.

The -t option specifies the field separator, the colon. This join command redirects its
output to a new file, vreport. The cat command displays the output on the screen.

See Figure 4-21 to view the output of the report.

206 Chapter 4 UNIX/Linux File Processing

Project 4-17
This project gives you a brief introduction to using the awk command for creating a more
polished vendor report than in Hands-On Project 4-16 and gives you a glimpse of the next
step in creating reports.

To generate and format the vendor report:

1. Type awk -F: ‘{printf “%-28s\t %s\n”, $1, $2}’ vreport and then press Enter.

You see the vendor report, including vendor names and product descriptions, as
illustrated in Figure 4-22.

The parts of the awk command you typed in Step 1 are:

awk -F: calls the Awk program and identifies the field separator as a colon.

‘{printf “%-28s\t %s\n”, $1, $2}’ represents the action to take on each line that is read in.
Single quotation marks enclose the action.

printf is a print formatting function from the C programming language. It lets you specify
an edit pattern for the output. The code inside the double quotation marks defines this
pattern. The code immediately following the % tells how to align the field to be printed.
The - sign specifies left alignment. The number that follows, 28, indicates how many
characters you want to display. The trailing s means that the field consists of nonnumeric
characters, also called a string. The \t inserts a tab character into the edit pattern. The %s
specifies that another string field should be printed. You do not need to specify the string
length in this case, because it is the last field printed (the product name). The \n specifies
to skip a line after printing each output record. The $1 and $2, separated with a comma,
indicate that the first and second fields in the input file should be placed in the edit pattern
where the two s characters appear. The first field is the vendor name,and the second is the

Figure 4-21 vreport output from the join command

Hands-On Projects 207

4

product description. (You learn much more about printf in Chapter 10, “Developing
UNIX/Linux Applications in C and C++”; it is presented here to provide you a brief
introduction on which to build as you progress through the book.)

vreport is the name of the input file.

Project 4-18
To refine and automate the vendor report, you can create a shell script that uses the awk
command. This new script, however, includes only the awk command, not a series of
separate commands. You then call the Awk program using awk with the -f option. This
option tells Awk that the code is coming from a disk file,not from the keyboard. You present
the action statements inside the Awk program file, in a different way, which resembles
programming code. The program file includes additional lines needed to print a heading and
the current date for the report.

The next steps show what happens when you enter the Awk program in a file like this. You
use the FS variable to tell the program what the field separator is—in this example, a colon.
FS is one of many variables that awk uses to advise the program about the file being
processed. Other codes you see here set up an initial activity that executes once when the
program loads. BEGIN followed by the opening curly brace ({) indicates this opening
activity. The closing curly brace (}) marks the end of actions performed when the program
first loads. These actions print the headings, date, and dash lines that separate the heading
from the body of the report.

To create the awk script:

1. Type vi awrp and press Enter to start the vi editor and create the file awrp. Press i
to start insert mode.

Figure 4-22 Vendor report created via the awk command

208 Chapter 4 UNIX/Linux File Processing

2. Type the following code. (Note: In the seventh line of code, enter 52 equal signs,
keeping them on the same line as shown in Figure 4-23.)

BEGIN {
{ FS = ":"}
{ print "\t\tVendors and Products\n" }
{ "date" | getline d }
{ printf "\t %s\n",d }
{ print "Vendor Name\t\t\t Product Names\n" }
{ print"======================================\n" }

}
{ printf "%-28s\t%s\n",$1, $2 }

In the code you have typed, the getline option is used. Getline is designed to read input.
In this case, it reads the date and places it into the d variable, which then is printed via
the printf command.

Your vi edit session should look like the one in Figure 4-23.

3. Press Esc.

4. Type :wq or :x and press Enter to exit the vi editor.

5. Type awk -f awrp vreport > v_report and press Enter.

This means “using the Awk program, combine the fields from the awrp file with the
fields from the vreport file, and send them to a new file called v_report.”

6. Type cat v_report and press Enter. Your screen should look similar to Figure 4-24.

7. To print the report on the default printer, type lpr v_report and press Enter.

Figure 4-23 Creating the awrp file using the vi editor

Hands-On Projects 209

4

DISCOVERY EXERCISES

1. How can you create a file called history by using a redirection operator?

2. Wait one minute or more and then change the time stamp on the history file you
just created.

3. Back up the history file to the file history.bak.

4. Sort the corp_phones1 file by the last four digits of the phone number.

5. Create and use a command that displays only the last names and telephone numbers
(omitting the area code) of people in the corp_phones2 file. Place a space between
the telephone number and the last name.

6. Assume you have a subdirectory named datafiles directly under your current working
directory, and you have two files named data1 and data2 in your current directory.
What command can you use to copy the data1 and data2 files from your current
working directory to the datafiles directory?

7. Assume you have four files: accounts1, accounts2, accounts3, and accounts4. Write
the paste command that combines these files and separates the fields on each line
with a “/” character, displaying the results to the screen.

8. How would you perform the action in Exercise 7, but write the results to the file
total_accounts?

9. Assume you have 10 subdirectories and you want to locate all files that end with the
extension “.c”. What command can you use to search all 10 of your subdirectories
for this file?

Figure 4-24 Viewing the contents of v_report

210 Chapter 4 UNIX/Linux File Processing

10. After you create a script file, what are the next steps to run it?

11. Change the awk script that you created earlier so that the column headings are “Ven-
dor” and “Product” and the name of the report is “Vendor Data.”

12. Create the subdirectory mytest. Copy a file into your new subdirectory. Delete the
mytest subdirectory and its contents using one command.

13. Use the cut command to create a file called descriptions that contains only the prod-
uct descriptions from the products file you created earlier in this chapter.

14. You are worried about copying over an existing or newer file in another directory
when you use the move command. What are your options in this situation?

15. What command enables you to find all empty files in your source directory?

16. How can you find all files in your home directory that were modified in the last
seven days?

17. How can you put the contents of each line of the product1 file side by side with the
contents of the product2 file, but with only a dash between them instead of a tab?

18. Make a copy of the corp_phones2 file and call it testcorp. Next, create a single-line
command that enables you to cut characters in the fifth column of the testcorp file
and paste them back to the first column in the same file. (Hint: Two good solutions
exist, one in which you use a semicolon and one with more finesse in which you
use a pipe character.)

19. How can you use a command you have learned in this chapter to list the names of
all users on your system? (Hint: Find out the name of the file in which user informa-
tion is stored.)

20. Type who and press Enter to view a list of logged-in users, along with other
information. Now use the who command (which you learned about in Chapter 1)
with a command you learned in this chapter to view who is logged in, but to sup-
press all other information that normally accompanies the who command.

Discovery Exercises 211

4

This page intentionally left blank

ADVANCED FILE PROCESSING
After reading this chapter and completing the

exercises, you will be able to:
♦ Use the pipe operator to redirect the output of one command to

another command
♦ Use the grep command to search for a specified pattern in a file

♦ Use the uniq command to remove duplicate lines from a file

♦ Use the comm and diff commands to compare two files

♦ Use the wc command to count words, characters, and lines in a file

♦ Use manipulation and transformation commands, which include sed,
tr, and pr

♦ Design a new file-processing application by creating, testing, and
running shell scripts

W ith file-processing commands, you can manage files through sorting,
cutting, formatting, translating, comparing, and using other processing

techniques. Your UNIX/Linux abilities are strengthened from knowing the
versatility of these commands. In this chapter, you learn many new file-
processing, selection, manipulation, and transformation commands to put into
your expanding toolbox.

You begin by learning new file-processing commands and progress to using
more complex manipulation and format commands. In the second portion of
the chapter, you put your knowledge to work by designing an application in a
step-by-step process. The beginning steps involve designing a file structure.
Next, you use commands to determine ways to extract information from the
files.Then, you build small shell scripts of commands and test each one.After
you have the small scripts individually built, you combine them into a larger
application that you run.

CHAPTER

5

213

Some of the capabilities that you discover in this chapter can also be performed
using graphical utilities from a GUI-based desktop, such as GNOME or KDE. By
learning how to use these capabilities through commands instead of GUI tools,
you often have the advantage of being able to do more—and do it faster. Also,
you can often perform actions from the command line that you cannot perform
with the same versatility from a GUI desktop tool.

ADVANCING YOUR FILE-PROCESSING SKILLS

In Chapter 4, “UNIX/Linux File Processing,” you learned to use several UNIX/Linux
commands to extract and organize information from existing files and transform that
information into a useful format. Now you build on those skills and learn to use new
file-processing commands and operators.The commands you use for file processing can be
organized into two categories: selection commands and manipulation and transformation
commands.

Selection commands focus on extracting specific information from files, such as using the
comm command to compare file contents.Table 5-1 lists the selection commands you have
already mastered plus new commands you learn in this chapter.

Table 5-1 Selection commands
Command Purpose
comm Compares sorted files and shows differences
cut Selects columns (fields)
diff Compares and selects differences in two files
grep Selects lines or rows
head Selects lines from the beginning of a file
tail Selects lines from the end of a file
uniq Selects unique lines or rows (typically preceded by a sort)
wc Counts characters, words, or lines in a file

Manipulation and transformation commands alter and transform extracted informa-
tion into useful and appealing formats.Table 5-2 lists these commands.

Table 5-2 Manipulation and transformation commands
Command Purpose
awk Invokes Awk, a processing and pattern-scanning language
cat Concatenates files
chmod Changes the security mode of a file or directory
join Joins two files, matching row by row
paste Pastes multiple files, column by column
pr Formats and prints
sed Edits data streams

214 Chapter 5 Advanced File Processing

Table 5-2 Manipulation and transformation commands (continued)

Command Purpose
sort Sorts and merges multiple files
tr Translates and deletes character by character

USING THE SELECTION COMMANDS

You used the head and tail commands in Chapter 1,“The Essence of UNIX and Linux,” and
the cut command in Chapter 4. You also learned to use redirection operators.Now you learn
a new redirection operator, called a pipe, and work with the grep, diff, uniq, comm, and wc
commands for processing files.

See Appendix B, “Syntax Guide to UNIX/Linux Commands,” for additional
information about these commands.

Using the Pipe Operator
As you have learned,most UNIX/Linux commands take their input from stdin (the standard
input device) and send their output to stdout (the standard output device).You have also
used the > operator to redirect a command’s output from the screen to a file, and you have
used the < operator to redirect a command’s input from the keyboard to a file.The pipe
operator (|) redirects the output of one command to the input of another command.The
pipe operator is used in the following way:

first_command | second_command

The pipe operator connects the output of the first command with the input of the second
command. For example,when you list the contents of a large directory, such as /etc or /sbin
using the ls -l command, the output races across the screen and you really see only the end
of the listing. If you are using a terminal window, you might be able to use the scroll bar to
go backward through the listing, but this might not be as convenient as other ways to view
the output, or the terminal window or command-line access on your system might not
support fully scrolling back.An alternative is to pipe output of the ls -l command to use as
input of the more command.For example,when you enter the following command using the
pipe operator, you can view the contents of the /sbin directory one screen at a time and use
the spacebar to advance to the next screen.

ls -l /sbin | more

Hands-on Project 5-1 enables you to use the pipe operator for a directory listing.

Using the Selection Commands 215

5

You can also use the less command with a directory to view its contents one
screen at a time, such as less /sbin.

The pipe operator can connect several commands on the same command line, in the
following manner:

first_command | second_command | third_command ...

This technique can be useful, for example, when you want to list and then sort in reverse
order the contents of a large directory and display the result one screen at a time, as shown
in Figure 5-1 for the contents of the /etc directory. Try Hands-on Project 5-2 to use the
pipe operator to combine commands on one line.

Using the grep Command
Use the grep command to search for a specified pattern in a file, such as a particular word or
phrase. UNIX/Linux find and then display the line containing the pattern you specify.

Figure 5-1 Combining commands using the pipe operator

216 Chapter 5 Advanced File Processing

Syntax grep [-options] pattern [filename]

Dissection

■ Finds and displays lines containing a particular search pattern

■ Can be used on text and binary regular files

■ Can search multiple files in one command

■ Useful options include:
-i ignores case
-l lists only file names
-c counts the number of lines instead of showing them
-r searches through files under all subdirectories
-n includes the line number for each line found
-v displays only lines that don’t contain the search pattern

Three typical meanings are associated with grep: Global Regular Expression
Print, Global Regular Expression Parser, and Get Regular Expression Processing.

Consider a situation in which you have written a document for a company in which you
refer multiple times to the Computer Resources Committee. Further, your company’s
management is contemplating broadening the focus of the committee and calling it the
Computer and Telecommunications Resources Committee.When company management
asks you to determine how often existing company documentation in the /documentation
directory refers to the Computer Resources Committee, you can use the grep command to
find out. Here is an example of what you would enter:

grep –r Computer Resources Committee /documentation

In some cases, when you use grep, it is helpful to enter the character pattern you are trying
to find in single or double quotes. For example, this is true when you are looking for two or
more words, so that the words can be distinguished from a file, as in the command: grep ‘red
hat’ operating_system. In this example,‘red hat’ is the character pattern and operating_system
is the file you are searching. If you enter red hat without quotes you are likely to get an error
because grep interprets hat as a file name. In Hands-on Project 5-3, you use the grep
command to search for and extract specific text.

Using the Selection Commands 217

5

Many UNIX/Linux systems offer a combination of four grep-type commands:
grep, egrep, fgrep, and zgrep. For example, besides grep there is egrep (also
executed as grep -E), which is used for “extended” or more complex
expressions. fgrep (or grep -F on most systems) searches for fixed or text strings
only and not expressions. zgrep is used to perform searches on files that are
compressed or zipped.

Using the uniq Command
The uniq command removes duplicate lines from a file. Because it compares only consecu-
tive lines, the uniq command requires sorted input.The syntax of the uniq command is as
follows:

Syntax uniq [-options] [file1 > file2]

Dissection

■ Removes consecutive duplicate lines from one file and writes the result to another file

■ Useful options include:
-u outputs only the lines of the source file that are not duplicated
-d outputs one copy of each line that has a duplicate, and does not show unique lines
-i ignores case
-c starts each line by showing the number of each instance

In its simplest form, the uniq command removes successive identical lines or rows from a file.
For example, consider a simple file called parts that contains the following entries:

muffler

muffler

shocks

alternator

battery

battery

radiator

radiator

coil

spark plugs

spark plugs

coil

218 Chapter 5 Advanced File Processing

You can use the uniq command to create an output file called inventory that removes all the
successive duplicates.The command to use is as follows (see Figure 5-2):

uniq parts > inventory

Notice in Figure 5-2 that coil is still listed twice. This is because in the original parts file, the
two occurrences of coil are not successive. In the parts file, the first instance of coil is just
before the first listing for spark plugs, and the second instance of coil is after the second
instance of spark plugs.

The -u option instructs uniq to generate as output only the lines of the source file that are
not duplicated successively. (If a line is repeated successively, it is not generated as output.)
Here is an example (see Figure 5-3):

uniq -u parts > single_items

In Figure 5-3, coil is also listed twice because in the original parts file, the two occurrences
of coil are not successive.

The -d option instructs uniq to generate as output one copy of each line that has a successive
duplicate line. Unduplicated lines are not generated as output. Here is an example:

uniq -d parts > multi_items

Hands-on Project 5-4 enables you to use the uniq command.

Figure 5-2 Using uniq to remove duplicate entries and create a new output file

Using the Selection Commands 219

5

Using the comm Command
Like the uniq command, the comm command identifies duplicate lines. Unlike the uniq
command, it doesn’t delete duplicates, and it works with two files rather than one.The comm
command locates identical lines within two identically sorted files. It compares lines
common to file1 and file2, and produces three-column output:

■ The first column contains lines found only in file1.

■ The second column contains lines found only in file2.

■ The third column contains lines found in both file1 and file2.

The syntax of comm is as follows:

Syntax comm [-options] file1 file2

Dissection

■ Compares two sorted files for common lines and generates three columns of output to
show which lines are unique to each file and which are common to both files

Figure 5-3 Creating a file containing only lines not duplicated

220 Chapter 5 Advanced File Processing

■ Useful options include:
-1 do not display lines that are only in file1
-2 do not display lines that are only in file2
-3 do not display lines appearing in both file1 and file2

Hands-on Project 5-5 uses the comm command.

Using the diff Command
The diff command shows lines that differ between two files and is commonly used to
determine the minimal set of changes needed to convert file1 to file2. The command’s
output displays the line(s) that differ. Differing text in file1 is preceded by the less-than
symbol (<), and for file2 is preceded by the greater-than symbol (>).

Syntax diff [-options] file1 file2

Dissection

■ Shows lines that differ between two files

■ Useful options include:
-b ignores blanks that repeat
-B does not compare for blank lines
-i ignores case
-c shows lines surrounding the line that differs (for context)
-y display the differences side-by-side in columns

Consider a comparison of two files, zoo1 and zoo2, that contain variable-length records of
food supplies for zoo animals. You create these files in Hands-on Project 5-4, and they
contain the following lines. File zoo1 contains:

Monkeys:Bananas:2000:850.00
Lions:Raw Meat:4000:1245.50
Lions:Raw Meat:4000:1245.50
Camels:Vegetables:2300:564.75
Elephants:Hay:120000:1105.75
Elephants:Hay:120000:1105.75

File zoo2 contains:

Monkeys:Bananas:2000:850.00
Lions:Raw Meat:4000:1245.50
Camels:Vegetables:2300:564.75
Elephants:Hay:120000:1105.75

Using the Selection Commands 221

5

When you enter diff zoo1 zoo2, the first lines of output are as follows:

3d2
< Lions:Raw Meat:4000:1245.50

In this example line of output, the code 3d2 indicates that to make the files the same, you
need to delete the third line in file1, so file1 matches file2.The d means delete, the 3 means
the third line from file1, and the 2 means that file1 and file2 will be the same up to, but not
including, line 2.

In another example, assume that you reverse the order of the files in the comparison by
entering diff zoo2 zoo1 and the first lines of output are as follows:

2a3
> Lions:Raw Meat:4000:1245.50

The code 2a3 indicates you need to add a line to file1, so file1 matches file2.The a means
to add a line or lines to file1.The 3 means line 3 is to be added from file1 to file2.The 2
indicates that the line must be added in file2 following line 2.

The diff command is an example of a command that is easier to understand after you use it.
Try Hands-on Project 5-6 to further explore how this command works.

Using the wc Command
Use the wc command to count the number of lines (option -l), words (option -w), and bytes
or characters (option -c) in text files.You can specify all three options in the command line,
such as -lwc or any other combination. If you enter the command without options, you see
counts of lines, words, and characters in that order. (See Figure 5-4.)

Syntax wc [-options] [files]

Dissection

■ Calculates the line, word, and byte count of the specified file(s)

■ Useful options include:
-c shows byte count
-l shows line count
-w shows word count

Hands-on Project 5-7 gives you experience using the wc command.

222 Chapter 5 Advanced File Processing

USING MANIPULATION AND TRANSFORMATION COMMANDS

In addition to the commands that you learned in Chapter 4 that are used to manipulate and
format data, you can also use the sed, tr, and pr commands to edit and transform data’s
appearance before you display or print it.

Introducing the sed Command
When you want to make global changes to large files, you need a different kind of tool than
an interactive editor, such as vi and Emacs. Another UNIX/Linux editor, sed, is designed
specifically for this purpose, and is sometimes called a stream editor because input to sed is
rendered in standard output (to display on the screen).The minimum requirements to run
sed are an input file and a command that lets sed know what actions to apply to the file. sed
commands have two general forms: (1) provided as part of the command line and (2)
provided as input from a script file.

Figure 5-4 Using wc to count lines, words, and bytes in a file

Using Manipulation and Transformation Commands 223

5

Syntax sed [-options] [command] [file(s)]
sed [-options] [-f scriptfile] [file(s)]

Dissection

■ sed is a stream editor that can be used on one or more files, and is particularly useful for
making global changes on large files.

■ The first form lets you specify an editing command on the command line.

■ The second form lets you specify a script file containing sed commands.

■ Useful options include:
d deletes lines specified by the -n option (no hyphen in front of the d option)
p prints to output the lines specified by the -n option (no hyphen in front of the p option)
s substitutes specified text (no hyphen in front of this s option)
a\ appends text (no hyphen in front of this option)
-e specifies multiple commands on a command line
-n specifies line numbers on which to work

For example, you can use sed to work with a new file, to display only certain lines—such as
only lines 3 and 4—and then to work on or replace only those lines.You learn to use sed in
this way by working through Hands-on Project 5-8, entering the edit commands from the
command line.

To append new lines in sed, you must use the a\ command.This command appends lines after
the specified line number. Like all other sed commands, it operates on all lines in the file if
you do not specify a line number. In Hands-on Project 5-9, you create and manipulate a
document’s contents by using the a\ command from a script.

Translating Characters Using the tr Command
The tr or translate command (also called the translate characters command) copies data from
the standard input to the standard output, substituting or deleting characters specified by
options and patterns.The patterns are strings and the strings are sets of characters.

Syntax tr [-options] [“string1”“string2”]

Dissection

■ In its simplest form, tr translates each character in string1 into the character in the
corresponding position in string2.The strings typically need to be “quoted” with either
single or double quotation marks.

224 Chapter 5 Advanced File Processing

■ Useful options include:
-d deletes characters
-s substitutes or replaces characters

A popular use of tr is to convert lowercase characters to uppercase characters. For example,
you can translate the contents of a file from lowercase to uppercase characters by using [a-z]
to specify the lowercase characters and [A-Z] to specify the uppercase characters. Other
commonly used applications are to use the -d option to delete characters and -s to replace
or substitute characters.

When translating characters, you often need to use either single quotation marks or double
quotation marks in the command line around the characters you intend to translate.
Consider the following examples:

tr "c" " " < constants

and

tr 'c' ' ' < constants

Both of these commands accomplish the same thing.They replace all occurrences of the
letter “c” with one blank space in the file constants (the input file), and display the translated
result to the screen.

You use the tr command in Hands-on Project 5-10.

Using the pr Command to Format Your Output
The pr command prints the specified files on the standard output in paginated form. If you
do not specify any files or you specify a file name of “-”, pr reads the standard input.

By default, pr formats the specified files into single-column pages of 66 lines. Each page has
a five-line header, which, by default, contains the current file’s name, its last modification
date, the current page, and a five-line trailer consisting of blank lines.

Syntax pr [-options] [file ...]

Dissection

■ Formats one or more files by providing pagination, columns, and column heads

■ Common options include:
-h (header format) lets you customize your header lines
-d double-spaces output
-l n sets the number of lines per page

Hands-on Project 5-11 enables you to use the pr command.

Using Manipulation and Transformation Commands 225

5

DESIGNING A NEW FILE-PROCESSING APPLICATION

One reason for learning UNIX/Linux selection, manipulation, and transformation com-
mands is to develop an application.Whether you are creating an application for yourself or
for others, the most important phase in developing a new application is creating a design.
The design defines the information an application needs to produce.The design also defines
how to organize this information into files, records, and fields, which are called logical
structures because each represents a logical entity, such as a payroll file, an employee pay
record, or a field for an employee Social Security number. Files consist of records, and
records consist of fields.You learned about records and fields in Chapter 4.

This chapter gives you a preliminary look at developing an application by starting with
record design considerations. How you set up records in a file can influence what you can
do with an application. It also affects the ways in which you can use selection,manipulation,
and transformation commands. If you pack the file with more information or fields than are
needed, you make accessing data for a specific purpose inefficient or difficult. If you fail to
include data that is needed, the application has limited value to the user, and the versatility
of data-handling commands is underused.

Another consideration when you design records is how specific fields in one file might have
particular importance for data handling. As you learned in Chapter 4, some fields can be used as
key fields.These fields are important for enabling useful sorts and for linking the contents of two
or more files through the join command. For example, by placing an employee’s last name in a
separate field without the first name and middle initial, you can sort on the last name or use the
last name as a common field between two files you want to link.

Some organizations also give employees or students a special ID that can be used in records,
such as in human resources or student information records.This ID can be a valuable key
field for sorting, selecting, joining, and handling all types of information. For example, in a
four-character ID, the first two characters might represent a department and the second two
might represent the individual employee in that department. A user or programmer can use
this field to sort employee records by department in a report. Another option is to use the
grep command to create a specialized report for a particular department. A last name or ID
field can also make it easier to evaluate duplicate records using the uniq and comm commands.

In this portion of the book,you begin by considering record design and key fields.Next,you
apply this information and you use the tools you have learned to create an example
Programmer Activity Status Report, such as might be developed for a company or
organization. The report will show programmers’ names and the number of projects on
which each programmer is working. As you work your way through the next sections, be
certain to stop and perform the Hands-on Projects referenced in each section before you
move on to the next section.

In the following sections, you start by learning file, record, and field design, and then use the
selection, manipulation, and transformation commands to select, manipulate, and format

226 Chapter 5 Advanced File Processing

information—all in preparation for formulating the Programmer Activity Status Report.
You also learn more about shell scripts—how to use them in an application and how to run
them using alternate methods. Finally, you create and test scripts that implement your
knowledge and culminate in the Programmer Activity Status Report.

Designing Records
The first task in the record design phase is to define the fields in the records. These
definitions take the form of a record layout that identifies each field by name and data type
(such as numeric or nonnumeric). Design the file record to store only those fields relevant
to the record’s primary purpose. For example, to design your Programmer Activity Status
Report in the Hands-on Projects, you need two files: one for programmer information and
another for project information. You include a field for the programmer’s name in the
programmer file record and a field for the project description in the project file record.
However, you do not store a programmer’s name in a project file, even though the
programmer might be assigned to the project.Also, you do not store project names in the
programmer files.This structure is intended to give you an idea of how actual data files might
be set up, so that each type of file can be used for a different purpose in a larger system of
files and programs.

Allocating the space needed for only the necessary fields of the records keeps records brief
and to the point. Short records, like short sentences, are easier to understand. Likewise, the
simpler you make your application, the better it performs. However, you also want to be
certain to include a field that uniquely identifies each record in the file. For instance, the
programmer file record in this example includes a programmer number field to separate
programmers who might have the same name.

The programmer number field in the programmer file record should be numeric.
Numeric fields are preferable to nonnumeric fields for uniquely identifying
records because the computer interprets numbers faster than nonnumeric data
in the fields. The project record can use a nonnumeric project code to uniquely
identify each project record, such as EA-100.

Linking Files with Keys
As you learned in Chapter 4, multiple files can be joined by a key—a common field shared
by each of the linked files. Another important task in the design phase is to plan a way to join
files, if necessary. For example, the programmer-project application uses the programmer’s
number to link the programmer to the project file. In Hands-on Project 5-12,you create two
data files, the programmer and the project files, that both contain the programmer’s number
field for use as a key on which to manipulate and join data.

Before you begin to consider the process of creating files for the Programmer Activity Status
Report project, review the record layouts for the programmer and project files illustrated in
Figure 5-5.

Designing a New File-Processing Application 227

5

A sampling of records for the programmer file is as follows:

101:Johnson:John:K:39000
102:King:Mary:K:39800
103:Brown:Gretchen:K:35000
104:Adams:Betty:C:42000
...

In this record design, the first field contains the programmer number, such as 101 in the first
record.The programmer number is included as a key field to allow all kinds of data handling,
such as using the sort, comm, and join commands—as you do in Hands-on Project 5-15, for
example.The next three fields include the programmer’s last name, first name, and middle
initial. Dividing the full name into three fields opens the way for many data-handling

Programmer file – record layout

Field name Data type Example

programmer_number Numeric 101

Iname Alpha Johnson

fname Alpha John

midinit Alpha K

salary Numeric 39000

Field separator is a colon :

Sample record:

101:Johnson:John:K:39000

Project file – record layout

Field name Data type Example

project_code Alpha EA-100

project_status Numeric 1 (*See Note)

project_name Alpha Reservation Plus

programmer_number Numeric 110

Field separator is a colon :

Sample record:

EA-100:1:Reservation Plus:110

*Note: Project status codes 1=Unscheduled 2=Started 3=Completed 4=Canceled

Figure 5-5 Programmer and project file record layouts

228 Chapter 5 Advanced File Processing

techniques, including sorting by last name or using all three fields for identifying duplicate
records.The final field contains the employee’s salary, which can be useful for printing salary
information reports related to employee evaluations and raises.

A sampling of the records for the project file created in Hands-on Project 5-12 is as follows:

EA-100:1:Reservation Plus:110
EA-100:1:Reservation Plus:103
EA-100:1:Reservation Plus:107
EA-100:1:Reservation Plus:109
...

The first field in the record is a code to identify a specific project, such as EA-100. An
organization might use such a code to not only identify the project, but also to identify the
persons, project team, department, division, or subsidiary who requests the project. In this
example, the first two letters (EA) represent the department and the last three digits (100)
represent the unique project number for that department. The second field contains the
project status:

■ 1=Unscheduled

■ 2=Started

■ 3=Completed

■ 4=Cancelled

The third field contains the name of the project, such as“Reservation Plus.” The fourth field
is the programmer number to show which programmer is working on that project. One
reason the programmer number is important to the records in the project file is that it can
be used as a key field to link specific information in the project file with information in the
programmer file.

Creating the Programmer and Project Files
Now that you have reviewed the basic elements of designing and linking records, you can
begin the steps to implement your application design. Recall from Chapters 2 and 3
(“Exploring the UNIX/Linux File Systems and File Security”and“Mastering Editors”) that
UNIX/Linux file processing can use flat files.Working with these files is easy, because you
can create and manipulate them with text editors, such as vi and Emacs.The flowchart in
Figure 5-6 provides an overview and analysis of programmer project assignments as derived
from the programmer and project files used in this example.

A first step in this process is to create the programmer and project files and fill them with
records,which you do in Hands-on Project 5-12.The files use a variable-record format,with
a colon between each field as the delimiter.

Designing a New File-Processing Application 229

5

101:Johnson:John:K:39000
102:King:Mary:K:39800
103:Brown:Gretchen:K:35000
104:Adams:Betty:C:42000
105:Utley:Amos:V:36000
106:Wilson:Patricia:B:39000
107:Culligan:Thomas:F:39000
108:Mitchell:Hillary:N:32800
109:Arbuckle:Margaret:F:46700
110:Ford:Terrence:H:44700
111:Greene:Sarah:L:41700
112:Rose:Richard:P:40200
113:Daniels:Allan:S:30500
114:Edwards:George:J:38500

EA-103:3:Personnel Evaluations:106
WE-206:1:Reservations:102
WE-207:4:Accounting - Basic:101
WE-208:2:Executive-Decision-Maker:102
NE-300:1:Region P & L:103
NE-302:1:Housekeeping Logs:104
NE-304:4:Maintenance Logs:105

File name: programmer File name: project

Flowchart Logic

No

Programmer

Program
closes

file

End of
file?

No

project.prog_no
=

programmer.prog_no
?

Program
reads a record
from the file

Project

Program
closes

file

End of
file?

Program reads
a record from

the file

Yes (programmer) Yes (project)

Program writes
unmatched

record

File T3

No

YesYes

Figure 5-6 Overview and analysis of programmer assignments

230 Chapter 5 Advanced File Processing

As you read these sections, plan to complete each Hands-on Project as it is
mentioned before reading further.

Formatting Output
Chapter 4 introduced the awk command and Awk programming language, which simplify
preparation of formatted output.You get another introductory lesson in using awk here,
because the printf capability in awk can be very powerful for creating a polished report for an
application—and specifically for the Programmer Activity Status Report you are developing
in the Hands-on Projects. As you have learned, Awk is a full-featured programming
language and could have a chapter unto itself.The limited presentation in this chapter gives
you another glimpse of Awk by introducing the use of the printf function within the awk
command, which formats output.The printf function has the following syntax:

Syntax printf (format, $expr1, $expr2, $expr3)

Dissection

■ format is always required. It is an expression with a string value that contains literal text and
specifications of how to format expressions in the argument list. Each specification begins
with a percentage character (%), which identifies the code that follows as a modifier (- to
left-justify; width to set size; .prec to set maximum string width or digits to the right of the
decimal point; s for an array of characters (string); d for a decimal integer; f for a
floating-point decimal number). Enclosed in double quotation marks (" "), format is often
referred to as a mask that overlays the data fields going into it.

■ $expr1, $expr2, $expr3 represent data fields.These expressions typically take the form $1,
$2, $3, and so on. In the programmer file, the expression $1 indicates the programmer
number (the first field), $2 indicates the programmer’s last name (the second field), and $3
indicates the programmer’s first name (the third field).

You can use the awk command and printf function to print the following information from
the programmer file: programmer number, programmer last name, and programmer first
name, all left-justified.The command line to accomplish this is:

awk -F: '{printf "%d %-12.12s %-10.10s\n", $1, $2, $3}' programmer

Hands-on Project 5-13 enables you to use this command on the programmer file. Each %
symbol in the format string corresponds with a $ field, as follows:

■ %d indicates that field $1 (programmer number) is to appear in decimal digits.

■ %-12.12s indicates that field $2 (programmer name) is to appear as a string.The
hyphen (-) specifies the string is to be left-justified.The 12.12 indicates the string
should appear in a field padded to 12 spaces, with a maximum size of 12 spaces.

Designing a New File-Processing Application 231

5

■ %-10.10s indicates that field $3 (programmer salary) is to appear as a string.The
hyphen (-) specifies the string is to be left-justified.The 10.10 indicates the string
should appear in a field padded to 10 spaces, with a maximum size of 10 spaces.

The spaces that appear in the format string are printed exactly where they appear in relation
to the awk and printf parameters—a space is between each % parameter (that is, after %d), for
example, but spaces after each field designator, such as after $1, are, in this one case, optional.
The trailing \n tells awk to skip a line after displaying the three fields. See Figure 5-7 for an
example of the output of the report from this awk command.

The awk command provides a shortcut when compared to other UNIX/Linux file-
processing commands, when you need to extract and format data fields for output. For
example, although it takes a few lines of code, you can use the cut, paste, and cat commands
to extract and display the programmers’ last names and salaries.As an alternative, you can do
the same thing using a one-line awk command. Hands-on Project 5-14 enables you to
compare using both techniques.Also, try Hands-on Project 5-15 for more experience using
the cut, sort, uniq, comm, and join commands.

Using a Shell Script to Implement the Application
The report-generating application you are developing in the Hands-on Projects consists of
many separate commands that must run in a certain order. As you recall from Chapter 4,you
can create a script file to simplify the application.You store commands in a script file, which

Figure 5-7 awk report using printf to display the three fields

232 Chapter 5 Advanced File Processing

in effect becomes a program.When you develop an application, you should usually test and
debug each command before you place it in your script file.You can use the vi or Emacs
editor to create script files. (Chapters 6 and 7,“Introduction to Shell Script Programming”
and “Advanced Shell Programming,” cover shell script programming in more detail.)

A shell script should contain not only the commands to execute, but also comments to
identify and explain the shell script so that users or programmers other than the script’s
author can understand how it works. Comments also enable the original author to
remember the logic of the script over time. Use the pound (#) character in script files to
mark comments. This tells the shell that the words following # are a comment, not a
UNIX/Linux command. Hands-on Project 5-16 enables you to build a shell script for a set
of commands that create a temporary file showing information about the number of
programs on which programmers are currently working.This script and temporary file will
become a part of the process used to produce the Programmer Activity Status Report.

Running a Shell Script
You can run a shell script in virtually any shell that you have on your system. In this book,
you use the Bourne Again Shell, or Bash, which is commonly used in Linux systems. In
different shells, some incompatibilities often exist in terms of the exact use, syntax, and
options associated with commands. One advantage to using the Bash shell is that it accepts
more variations in command structures than the original Bourne shell; Bash is a freeware
derivative of the Bourne and Korn shells.

When you create a shell script to run in Bash, you can immediately run the script by typing
sh (to call the Bash shell interpreter) and then the name of the script, as follows:

sh testscript

Another advantage of using sh is that you can accompany it with several debugging options
to help you troubleshoot problems with your script. (You learn more about these debugging
options in Chapter 6.) For your beginning experiences with shell scripts in this chapter, you
use sh simply to run your scripts.

In UNIX systems, sh calls the shell command interpreter for the shell that is the
default to the particular UNIX system. In Linux, including Fedora, Red Hat
Enterprise Linux, and SUSE, you can use either sh or bash to run a shell script
and call the Bash shell interpreter. In these systems, sh is actually a link to the
Bash shell.

Another way to run a shell script,which you learn more about in Chapter 6 (and already got
a glimpse of in Hands-on Project 4-15 in Chapter 4), is to make it executable by using the
x permission and then typing ./ prior to the script name when you run the script itself. In
addition, when you write a script, it is advisable to specify with what shell the script is
intended to be used.You do this by including a command—such as #!/bin/bash for the Bash

Designing a New File-Processing Application 233

5

shell—on the first line of the script. Chapter 7 shows you how to implement this practice as
your shell scripts become more advanced.

In Hands-on Project 5-17, you use the sh command to run the script created in Hands-on
Project 5-16. In Hands-on Projects 5-18 and 5-19, you create and run scripts that are the
next steps in creating the final Programmer Activity Status Report.

Putting It All Together to Produce the Report
An effective way to develop applications is to combine small scripts into a larger script file.
In this way, it is easier to complete a large task by dividing it into a series of smaller ones—a
basic programming rule. Also, through this approach, you can test each small script to ensure
it works. In Hands-on Projects 5-16 through 5-19, you create, execute, and test individual
small scripts in the process of preparing to create a Programmer Activity Status Report.After
the scripts are tested, you can place the contents of each smaller script into a larger script file
in the proper sequence to produce the final Programmer Activity Status Report. Hands-on
Project 5-20 pulls together your smaller projects into one large task to generate the report.

CHAPTER SUMMARY

The UNIX/Linux file-processing commands can be organized into two categories:
(1) selection commands and (2) manipulation and transformation commands. Selection
commands extract information. Manipulation and transformation commands alter and
transform extracted information into useful and appealing formats.

The grep command searches for a specific pattern in a file.

The uniq command removes duplicate lines from a file.You must sort the file because uniq
compares only consecutive lines.

The comm command compares lines common to two different files, file1 and file2, and
produces three-column output that reports variances between the files.

The diff command attempts to determine the minimum set of changes needed to convert
the contents of one file to match the contents of another file.

When you want to know the byte, word, or line count in a file, use the wc command.

The sed command is a stream editor designed to make global changes to large files.
Minimum requirements to run sed are an input file and a command that tells sed what
actions to apply to the file. Input to the sed action can be from the command line or
through a script file.

The tr command copies data read from the standard input to the standard output,
substituting or deleting the characters specified by options and patterns.

The pr command prints the standard output in pages.

234 Chapter 5 Advanced File Processing

The design of a file-processing application reflects what the application needs to produce.
The design also defines how to organize information into files, records, and fields, which
are also called logical structures.

Use a record layout to identify each field by name and data type (numeric or
nonnumeric). Design file records to store only those fields relevant to each record’s
primary purpose.

Shell scripts should contain commands to execute and comments to identify and explain
the script.The pound (#) character is used in script files for comments.

Write shell scripts in stages so that you can test each part before combining them into one
script.Using small shell scripts and combining them in a final shell script file is an effective
way to develop applications.

COMMAND SUMMARY: REVIEW OF CHAPTER 5 COMMANDS

Command Purpose Options Covered in This Chapter
comm Compares and outputs

lines common to
two files

-1 do not display lines that are only
in file1
-2 do not display lines that are only
in file2
-3 do not display lines appearing
in both file1 and file2

diff Compares two files and
determines which
lines differ

-b ignores blanks that repeat
-B does not compare for blank lines
-i ignores case
-c shows lines surrounding the line that
differs (for context)
-y displays the differences side-by-side in
columns

grep Selects lines or rows -i ignores case
-l lists only file names
-c only counts the number of lines
matching the pattern instead of
showing them
-r searches through files under all
subdirectories
-n includes the line number for each
line found
-v displays only lines that don’t contain
the search pattern

pr Formats a specified file -d double-spaces the output
-h customizes the header line
-l n sets the number of lines per page

Command Summary: Review of Chapter 5 Commands 235

5

Command Purpose Options Covered in This Chapter
printf Tells the Awk program

what action to take for
formatting and printing
information

sed Specifies an editing
command or a script file
containing sed
commands

a\ appends text after a line
p displays lines
d deletes specified text
s substitutes specified text
-e specifies multiple commands on
one line
-n indicates line numbers on which
to work

sh Executes a shell script
tr Translates characters -d deletes input characters found in

string1 from the output
-s checks for sequences of string1
repeated consecutive times

uniq Removes duplicate lines
to create unique output

-u outputs only the lines of the source file
that are not duplicated
-d outputs one copy of each line that has
a duplicate, and does not show
unique lines
-i ignores case
-c starts each line by showing the number
of each instance

wc Counts the number of
lines, bytes, or words in
a file

-c counts the number of bytes or
characters
-l counts the number of lines
-w counts the number of words

KEY TERMS

logical structure — The organization of information in files, records, and fields, each of
which represents a logical entity, such as a payroll file, an employee’s pay record, or an
employee’s Social Security number.
manipulation and transformation commands — A group of commands that alter and
format extracted information so that it’s useful and can be presented in a way that is
appealing and easy to understand.
pipe operator (|) —The operator that redirects the output of one command to the input
of another command.
record layout — A program and data file design step that identifies the fields, types of
records, and data types to be used in data files.
selection commands — The file-processing commands that are used to extract
information.

236 Chapter 5 Advanced File Processing

REVIEW QUESTIONS

1. You have just finished a 25-page paper that you have written using Emacs.The file
containing the paper is called /assignments/data_sources.After your instructor has
briefly looked at the paper, she recommends that you change all instances of the ref-
erence “data is” to “data are” before you submit it.Which of the following com-
mands can you use to locate these references in the file for a quick assessment of
how much you have to change?
a. find - i 'data is' /assignments/data_sources
b. test /assignments/data_sources "data is"
c. grep "data is" /assignments/data_sources
d. scan -t data is /assignments/data_sources

2. You are interested in determining the number of words in your /assignments/
data_sources file mentioned in Question 1.Which of the following commands should
you use?
a. wc -w /assignments/data_sources
b. wc -m /assignments/data_sources
c. counter /assignments/data_sources
d. counter -c /assignments/data_sources

3. Which of the following are examples of manipulation and transformation
commands? (Choose all that apply.)
a. sed
b. pr
c. join
d. paste

4. Which of the following is true of the pipe operator? (Choose all that apply.)
a. Only one pipe operator can be used on a single command line.
b. It is used to perform division on the results of a numerical command operator.
c. It is used instead of the colon (:) for entering multiple commands
d. It redirects the output of one command to the input of another command.

5. Because the data was formatted the same in two inventory files, you decided to com-
bine their contents into one file. Now you want to determine if there are duplicate
entries on consecutive lines in the new file.Which of the following commands
enables you to find the duplicate entries?
a. dup
b. pr
c. uniq
d. cat

Review Questions 237

5

6. Your friend is using the command comm entryfile, but is getting an error message.
What is the problem? (Choose all that apply.)
a. entryfile contains only numbers, but the comm command must be used on a file

with text.
b. It is necessary to use either the -m or -t option with the comm command.
c. entryfile is too long, because the comm command can only be used on a file under

100 KB in size.
d. It is necessary to specify two files when you use the comm command.

7. Your boss is trying to import the customers file into her spreadsheet program, but
the data goes into the spreadsheet incorrectly.This is because the fields are separated
by dashes (-) and the spreadsheet program requires the fields to be separated by
colons (:).Which of the following commands can you use to convert the
customers file?
a. replace - : customers
b. tr "-" ":" < customers
c. sed %- %: > customers
d. cat -r -/: customers

8. How can you link multiple files to manipulate the data in those files?
a. with a linker
b. with a project field
c. with a common or key field
d. with an operator entry

9. While in the Bash shell, you have written a simple script file and now want to
execute the script.Which of the following commands enables you to run the script?
a. sh
b. go
c. ex
d. !!

10. You are using the grep command, but it is only searching through files in your imme-
diate home directory.What option enables you to search through subdirectories
below your home directory?
a. -s
b. --sub
c. -c
d. -r

238 Chapter 5 Advanced File Processing

11. Your software has a bug in that it enables you to create a vendors file in which there
are duplicate entries of vendors.Which of the following methods enables you to
remove the duplicate vendors in this text file?
a. Sort the file and then use the comm command to remove the duplicates, inputting the

result into the same file.
b. Sort the file in reverse order and then use the dump command to remove the

duplicates.
c. Sort the file and then use the uniq command to remove the duplicates, inputting the

result in a new file.
d. Reverse sort the file, use the join command, and output the results back into the

vendors file.

12. Each time you list the files in your home directory, the output scrolls by so fast you
can’t read it.Which of the following enables you to view the output one screen at
a time?
a. cat -pause
b. ls -l | more
c. window ls -a
d. dir < display

13. You are creating a file to send over the Internet via a satellite connection that only
allows you to send files under 250 KB.Which of the following commands enables
you to determine the number of bytes in the file before you try to send it?
a. cat -s
b. tr -b
c. counter -k
d. wc -c

14. In the command sed -f fixit notes > instructions, what is “fixit”?
a. a script file
b. an operator
c. a function
d. a formatting interpreter

15. When you design a record layout, you should do which of the following? (Choose
all that apply.)
a. identify each field by data type
b. plan to delimit fields using a dash
c. identify each field by name
d. store only fields relevant to the record’s purpose

Review Questions 239

5

16. What sed command option enables you to append new text to a file?
a. p
b. -n
c. a\
d. |add

17. Your boss has two salary scale files, salary and salary1, and wants to compare their
contents side by side to see if there are any differences in the files.Which of the fol-
lowing commands should he use?
a. diff -S salary > salary1
b. comm salary salary1
c. uniq salary < salary1
d. sed --comp salary salary1

18. When you use the pr command how can you limit the output to only a screen full
of text to view. (Choose all that apply.)
a. Maximize your terminal window to hold 24 lines.
b. Pipe the output into more.
c. Use the -l 23 option.
d. Pipe the less command into the more command.

19. When you use the Awk printf capability, what does the dollar sign ($) represent?
a. a field size limit
b. a multiplier
c. a command to put text in lowercase
d. a data field

20. Your boss is trying to delete the word “difficult” as it appears in a text file containing
his speech about motivation.The name of the file is motivate.When he decides to
use the tr command to delete this word, it instead deletes characters throughout the
text.Which of the following commands is he likely to have used?
a. tr -d "difficult" < motivate
b. tr difficult motivate
c. tr -o 'difficult' > motivate
d. tr --eliminate difficult motivate

21. When you enter the command grep Linux /info/Linux_ features | head, what is the
maximum number of lines that will be displayed?
a. 24 lines
b. 23 lines
c. 15 lines
d. 10 lines

240 Chapter 5 Advanced File Processing

22. List four examples of selection commands.

23. What is the general format for using the pipe operator?

24. Briefly explain what you can accomplish with the sed command.

25. You want to create a file of your friends’ and relatives’ names, addresses, telephone
numbers, and other information.When you mention this to your sister-in-law, she
recommends having separate fields for the first, middle, and last names. Briefly
explain why this is a good idea.

HANDS-ON PROJECTS

Complete these projects from the command line, such as from a terminal
window, and log in using your own account and home directory.

Project 5-1
The pipe operator directs the output of one command to the input of another. In
UNIX/Linux, this operator is very useful for combining commands on one line and
yielding output that is easier to read or use. In this project,you use the pipe operator to direct
the output of the ls command to the input of the more command so you can more easily view
the contents of a large directory.

To redirect the output of the ls command to the more command:

1. Type ls -l /etc and press Enter. Notice that the output of the command scrolls by
quickly.

2. Type ls -l /etc | more and press Enter. (See Figure 5-8.)

3. Notice the output fills the screen and pauses with the prompt “More” displayed on
the bottom line. Each time you press the spacebar, the output advances to the next
screen. Press the spacebar to scroll a screen at a time or press Enter to advance one
line at a time until the command has finished.You also can type q at any point to
exit the display of the directory contents.

Project 5-2
The pipe operator enables you to combine multiple commands on a single line. In this
project, you pipe the contents of a directory listing into the sort command and then pipe the
result into the more command.

Hands-On Projects 241

5

To connect several commands with the pipe operator:

1. Type ls /etc|sort -r|more and press Enter.This command redirects the directory
listing of the /etc directory to the sort -r command. sort -r sorts the directory listing
in reverse order.The sort command’s output is redirected to the more command.

2. After you execute the command, you should see the directory listing of /etc in
reverse order. (Refer back to Figure 5-1.)

3. Press the spacebar until the displayed output is finished.

Project 5-3
In this project, you use several features of the grep command and you learn to combine it
with the head command for more manageable output.As you recall from Chapter 1, you can
use the head command to retrieve the first 10 lines of a file.You can combine the grep and
head commands to retrieve only the first 10 lines containing the word or phrase. For
example, here you use grep with head to find the first 10 lines in /etc/termcap that contain
the characters “IBM.” (Knoppix does not have the /etc/termcap file used in this project.
Consult with your instructor about using a suitable file with Knoppix.)

To display lines in a file containing a particular word or phrase:

1. To see all the lines in the /etc/termcap file that contain the characters “IBM,” type
grep IBM /etc/termcap, and press Enter. Many lines fit the criteria, and the out-
put scrolls by quickly.

Figure 5-8 Piping ls -l into more

242 Chapter 5 Advanced File Processing

2. Redirect the output of the grep command to the input of the more command.Type grep
IBM /etc/termcap | more and press Enter. (Remember, you can recall and then add
on to commands used previously by pressing the up arrow.) (See Figure 5-9.)

3. Press the spacebar until the command output is finished.

4. Type clear and press Enter to clear the screen.

5. Redirect the output of the grep command to the head command.Type grep IBM
/etc/termcap|head and press Enter.

The command that you typed in Step 5 told grep to look for“IBM”in the /etc/termcap file,
and then display the first 10 lines that are found. See Figure 5-10 for an example of the
command’s results.

The grep command’s options and wildcard support allow powerful search operations. In the
next set of steps, you learn more about these options, such as performing searches on the
basis of capitalization and by ignoring capitalization.You also learn to search using wildcard
and metacharacter options to extend the range of your searching.

To expand the grep command’s search capabilities through its options and regular
expression support:

1. To see each line in the /etc/termcap file that contains the word “Linux,” type grep
Linux /etc/termcap, and press Enter. (Be certain to capitalize the “L” in Linux.)

Figure 5-9 Using the grep command with the more command

Hands-On Projects 243

5

2. Some lines in the file contain the word “linux” (with a lowercase l).The search you
performed in Step 1 only displayed the lines that contain “Linux.” The -i option tells
grep to ignore the case of the search characters.Type grep -i linux /etc/termcap
and press Enter.You see the lines that contain either “Linux” or “linux.”

3. Type clear and press Enter for better viewing of the next step.

4. The grep command supports regular expression characters in the search string.To see
all the lines of the /etc/termcap file that start with “lin” followed by any set of char-
acters, type grep -i "^lin" /etc/termcap, and press Enter. (See Figure 5-11.)

The ^ character is a special grep expression called a metacharacter. Its purpose
is to search for words that begin with the string that immediately follows it. In
Step 4, the ^ character is searching for words that begin with the string “lin”.

5. The grep command can process multiple files one after another.Type grep linux
/etc/* and press Enter.You see the lines that contain “linux” from all the files in
the /etc directory.

6. Type clear and press Enter.

7. The -l (lowercase L) option instructs grep to display only the names of the files that
contain the search string.Type grep -l linux /etc/* and press Enter.You see the

Figure 5-10 Using grep with head

244 Chapter 5 Advanced File Processing

names of the files in the /etc directory that contain “linux.” For what files is infor-
mation displayed?

8. Type clear and press Enter.

The grep command also searches files for phrases that contain spaces, as long as the phrase is
specified on the command line inside quotation marks. For example, grep can search for the
phrase “IBM PC,” as demonstrated in the next set of steps.

To search a file for a phrase:

1. Type grep "IBM PC" /etc/termcap and press Enter.You see all lines in the
/etc/termcap file that contain the phrase IBM PC.

2. Type clear and press Enter.

In the previous examples, grep searches the file specified on the command line. grep can also
take its input from another command, through the pipe operator.

To redirect the output of a command to the grep command:

1. Type ls /etc|grep magic and press Enter.You see a list of the files whose names
contain the word “magic.”

2. Type clear and press Enter.

Figure 5-11 Using a metacharacter for a grep search

Hands-On Projects 245

5

Project 5-4
This project illustrates common uses of the uniq command.To perform the project, start by
using the vi editor to create a new file, zoo1, in your working directory.This is a simple data
file example, containing variable-length records that list animal names, food descriptions,
pounds eaten daily, and food costs.Type the duplicate records in Step 1 as shown.After you
create the file, use the uniq command to remove the duplicate records.

To remove duplicate lines with the uniq command:

1. Type vi zoo1 and press Enter to open the vi editor. Press i and type the following
text, pressing Enter at the end of each line except the final line:

Monkeys:Bananas:2000:850.00
Lions:Raw Meat:4000:1245.50
Lions:Raw Meat:4000:1245.50
Camels:Vegetables:2300:564.75
Elephants:Hay:120000:1105.75
Elephants:Hay:120000:1105.75

2. Press Esc to switch to command mode.Type :wq or :x and press Enter.

3. To use uniq to remove duplicate lines from the zoo1 file and use the output redirec-
tion operator to create the new file zoo2, type uniq zoo1 > zoo2, and press Enter.

4. Type cat zoo2 and press Enter.

5. You see the contents of zoo2 as listed next. Notice that the uniq command removed
the duplicate lines.

Monkeys:Bananas:2000:850.00
Lions:Raw Meat:4000:1245.50
Camels:Vegetables:2300:564.75
Elephants:Hay:120000:1105.75

Project 5-5
In this project, you explore the comm command.You start by creating the file my_list. Next,
you duplicate the file, and then use the comm command to compare the two files.

To use the comm command to compare files:

1. To create the file my_list, at the command prompt, type cat > my_list and
press Enter.

2. Type the following text, pressing Enter at the end of each line:

Football
Basketball
Skates
Soccer ball

3. Press Ctrl+d.

246 Chapter 5 Advanced File Processing

4. To copy my_list to a second file, your_list, type cp my_list your_list, and
press Enter.

5. Now use the comm command to compare my_list to your_list.Type comm my_list
your_list and press Enter.

6. You see the three-column output. (Note that the text showing column headings is
inserted for your reference.This text does not appear on your screen.) Notice that
the lines in the third column are those that both files contain. (How your columns
line up will vary depending on the operating system.) The files are identical.

Column 1 Column 2 Column 3
Football
Basketball
Skates
Soccer ball

7. Now add a new line to my_list.Type cat >> my_list and press Enter.

8. Type Golf ball and press Enter.

9. Press Ctrl+d.

10. Use comm to compare my_list to your_list again.Type comm my_list your_list and
press Enter.

11. You see the three-column output, with the unique new line in my_list in column 1.
(Again note that your columns might line up differently.)

Column 1 Column 2 Column 3
Football
Basketball
Skates
Soccer ball

Golf ball

12. Add a new line to your_list.Type cat >> your_list and press Enter.

13. Type Tennis ball and press Enter.

14. Press Ctrl+d.

15. Type comm my_list your_list and then press Enter for another comparison. (See
Figure 5-12.)

Project 5-6
In this project, you use the diff command to compare the contents of the zoo1 and zoo2 files
you created previously in Hands-on Project 5-4.

To use diff to find differences between two files:

1. Review the contents of zoo1 and zoo2 by typing more zoo1 zoo2 and pressing
Enter. Press the spacebar to see the second file’s contents. (See Figure 5-13.)

Hands-On Projects 247

5

Figure 5-12 Comparing files using comm

Figure 5-13 Viewing the contents of the zoo1 and zoo2 files

248 Chapter 5 Advanced File Processing

2. Type diff zoo1 zoo2 and press Enter.

3. You see this information:

3d2
< Lions:Raw Meat:4000:1245.50
6d4
< Elephants:Hay:120000:1105.75

This means that you need to delete the third and sixth lines from zoo1 so the file
matches zoo2. (Note that in some versions of UNIX/Linux, you might see 5d4 instead
of 6d4 because another way to match the files is to delete the fifth line in zoo1, which
is the same as the sixth line.)

4. To reverse the comparison order, type diff zoo2 zoo1, and press Enter.You see this
information:

2a3
> Lions:Raw Meat:4000:1245.50
4a6
> Elephants:Hay:120000:1105.75

This means that you need to add the two lines shown in zoo2, so the file matches zoo1.
You would add the third line of zoo1 to go after the second line in zoo2. And, you
would add the sixth line of zoo1 to go after the fourth line of zoo2.

Project 5-7
In this project, you use the wc command to count the number of lines in a new file called
counters.

To create a file and count its lines:

1. Type cat > counters and press Enter.

2. Type this text, pressing Enter at the end of each line:

Linux is a full featured UNIX clone.
Linux is available in free and commercial versions.

3. Type Ctrl+d.

4. To find the number of lines in counters, type wc -l counters, and press Enter.
UNIX/Linux report that the file contains two lines.

5. To find the number of bytes in counters, type wc -c counters, and press Enter.
UNIX/Linux report that the file contains 89 bytes.

6. To find the number of words in counters, type wc -w counters, and press Enter.
UNIX/Linux report that the file contains 15 words.

7. To count words, characters, and lines in counters, type wc -lwc counters, and press
Enter. UNIX/Linux report the counts for lines (2), words (15), and bytes (89).
(Note that if you enter wc counters, you get the same output as entering wc -lwc
counters.) See Figure 5-14 to view the output of the wc command.

Hands-On Projects 249

5

Project 5-8
sed is a stream editor that enables you to work on specific lines in a file and modify their
contents. In this project,you use sed to display specific lines and edit a file that you create.The
focus of this project is on using sed commands from the command line.

To use sed to manipulate a file:

1. Create the new file, unix_stuff, in your working directory by using the vi or Emacs
editor.The unix_stuff file should contain the following lines (press Enter after typing
each line—excluding after the final line—to have five lines of text):

Although UNIX supports other database systems,
UNIX has never abandoned the idea of working with
flat files. Flat files are those that are based on pure
text with standard ASCII codes. Flat files
can be read by any operating system.

2. To display only lines 3 and 4, type sed -n 3,4p unix_stuff, and press Enter. (The
-n option prevents sed from displaying any lines except those specified with the p
command.)

This means “find lines numbered (-n) 3 and 4 in the file unix_stuff and display
them (p).”

Figure 5-14 Using the wc command

250 Chapter 5 Advanced File Processing

You see lines 3 and 4:

flat files. Flat files are those that are based on pure
text with standard ASCII codes. Flat files

3. In sed, you can place two commands on one line. If you want to delete lines 3 and 4
and then display the file, you must use the -e option to specify multiple commands
on the same line.To delete lines 3 and 4 from unix_stuff and display the results, type
sed -n -e 3,4d -e p unix_stuff, and press Enter.

You see this text:

Although UNIX supports other database systems,
UNIX has never abandoned the idea of working with
can be read by any operating system.

Lines 3 and 4 are not actually deleted from the file, but simply filtered out so that they
are not displayed on the output to the screen.

4. To display only lines containing the word “Flat,” type sed -n /Flat/p unix_stuff,
and press Enter.

You see this text:

flat files. Flat files are those that are based on pure
text with standard ASCII codes. Flat files

5. To replace all instances of the word “Flat” with “Text,” type sed -n s/Flat/Text/p
unix_stuff, and press Enter. (Be certain that you capitalize the words “Flat” and
“Text”.) The s command substitutes one string of characters for another.

You see the following text. (See Figure 5-15.)

flat files. Text files are those that are based on pure
text with standard ASCII codes. Text files

Project 5-9
You continue working with the sed command in this project, so that you learn how to
append lines from one file to another. First, you use the vi editor to create a new script file,
more_stuff. You use the append command, a\ , in the more_stuff file with the lines to be
appended by sed to the file unix_stuff. (You could accomplish the same outcome by using cat
more_stuff >> unix_stuff, but the purpose here is to show you the versatility of sed.)You must
terminate each line, except for the final line of the file being added, with a backslash
character. In this project, the $ preceding the a\ symbol tells sed to append more_stuff to
unix_stuff after the final line in unix_stuff; without $, sed repeatedly adds all the lines in
more_stuff after each line in unix_stuff.

Hands-On Projects 251

5

To create a script file to append lines to another file using sed:

1. Use the vi editor to create the script file more_stuff to have the following lines (press
i to go into the insert mode and press Enter at the end of each line, except at the
end of the final line):

$a\
Informix and Oracle, two major relational database\
companies have installed their RDBMS packages on UNIX\
systems for many years.

2. After you enter the information, press Esc to switch to command mode.Type :wq
or :x and press Enter to save the file and exit vi.

3. To use the sed command to run the script file, type sed -f more_stuff unix_stuff,
and press Enter.

You see the following text. (See Figure 5-16.)

Although UNIX supports other database systems,
UNIX has never abandoned the idea of working with
flat files. Flat files are those that are based on pure
text with standard ASCII codes. Flat files
can be read by any operating system.
Informix and Oracle, two major relational database
companies have installed their RDBMS packages on UNIX
systems for many years.

Figure 5-15 Using sed to display and edit the output of the unix_stuff file

252 Chapter 5 Advanced File Processing

4. Use vi to create the file stuff_replace. Press i to go into the insert mode and insert
the following sed commands into the file:

s/UNIX/Linux/
s/abandoned/given up/
s/standard/regular/

The lines in the file instruct sed to replace all occurrences of “UNIX” with “Linux,”
“abandoned” with “given up,” and “standard” with “regular.”

After you enter the lines, press Esc to switch to command mode.Type :wq or :x and
press Enter.

5. Type clear and press Enter to clear your work area on the screen.

6. Execute sed, with the script file you created in Step 4, on the unix_stuff file. Redirect
sed’s output to the file unix_stuff 2.Type sed -f stuff_replace unix_stuff >
unix_stuff 2 and press Enter.

7. Type cat unix_stuff 2 and press Enter.You see the file with the changes specified
by the stuff_replace script file, as shown in Figure 5-17.

Figure 5-16 Creating and running a script to use sed

Hands-On Projects 253

5

Project 5-10
The tr command is used to translate characters in files, such as converting from lowercase to
uppercase letters, deleting specified characters, and replacing characters. In this project, you
do all of these in the following steps.You use the counters file you created in Hands-on
Project 5-7.

To translate lowercase characters to uppercase characters in the file counters:

1. Type tr [a-z] [A-Z] < counters and press Enter.

You see these lines:

LINUX IS A FULL FEATURED UNIX CLONE.
LINUX IS AVAILABLE IN FREE AND COMMERCIAL VERSIONS.

You can also use the -d option with the tr command to delete input characters found in
string1 from the output.This is helpful when you need to remove an erroneous character
from the file.

To delete specified characters from the counters file:

1. To delete the characters “full” from the output, type tr -d "full" < counters, and
press Enter.

You see this text:

Linx is a eatred UNIX cone.
Linx is avaiabe in ree and commercia versions.

Figure 5-17 sed changes written to the unix_stuff2 file

254 Chapter 5 Advanced File Processing

Notice that the command deleted all characters in “full”—every f, u, and l from the
output—rather than occurrences of the word “full.” (See Figure 5-18.)

The -s option of the tr command checks for sequences of a character or string of characters
repeated several consecutive times.When this happens, tr replaces the sequence of repeated
characters with the character or string you specify. For example, use the -s option when you
need to change a field delimiter in a flat file from one character to another. For instance, in
the file zoo2, use tr to replace the field delimiter “:” with a space character,“ ”. First, use cat
to display the file.

To replace characters in the file counters:

1. Type cat zoo2 and press Enter.

You see this text:

Monkeys:Bananas:2000:850.00
Lions:Raw Meat:4000:1245.50
Camels:Vegetables:2300:564.75
Elephants:Hay:120000:1105.75

2. Type tr -s ":" " " < zoo2 and press Enter.

Figure 5-18 Using tr to translate characters in a file

Hands-On Projects 255

5

You see this text:

Monkeys Bananas 2000 850.00
Lions Raw Meat 4000 1245.50
Camels Vegetables 2300 564.75
Elephants Hay 120000 1105.75

Project 5-11
In this project, you employ the pr command to format the unix_stuff file that you created in
Hands-on Project 5-8. You use the pipe operator (|) to send the output to the more
command so that the output screen does not flash by too fast to read.

To format a file:

1. Type pr -h "UNIX Files & Databases" < unix_stuff | more and press Enter.
Type q to exit after you have viewed the text display.

Now, you can type the same command, but add the -l 23 option to limit the number of
lines per page to 23. Because the standard number of lines on most monitors is 24, you
do not need to send the output to the more or less commands to hold the screen.

2. Type pr -l 23 -h "UNIX Files & Databases" < unix_stuff and press Enter. See
Figure 5-19 to view how the screen should look.

Figure 5-19 Results of the pr command using the -l option

256 Chapter 5 Advanced File Processing

Project 5-12
Beginning with this project, you now start a series of related projects to design and
implement various programmer and project reports, building up to creating a polished
Programmer Activity Status Report. In this project, you create two files to be used for
reporting, the programmer and project files.

To create the programmer file:

1. Type vi programmer and press Enter.

2. Type i to switch to insert mode, and then type the following text, pressing Enter at
the end of each line except for the final line:

101:Johnson:John:K:39000
102:King:Mary:K:39800
103:Brown:Gretchen:K:35000
104:Adams:Betty:C:42000
105:Utley:Amos:V:36000
106:Wilson:Patricia:B:39000
107:Culligan:Thomas:F:39000
108:Mitchell:Hillary:N:32800
109:Arbuckle:Margaret:F:46700
110:Ford:Terrence:H:44700
111:Greene:Sarah:L:41700
112:Rose:Richard:P:40200
113:Daniels:Allan:S:30500
114:Edwards:George:J:38500

3. Press Esc to switch to command mode.

4. Type :wq or :x and press Enter to write the file and exit vi.

To create the project file:

1. Type vi project and press Enter.

2. Type i to switch to insert mode, and type the following text, pressing Enter at the
end of each line except for the final line:

EA-100:1:Reservation Plus:110
EA-100:1:Reservation Plus:103
EA-100:1:Reservation Plus:107
EA-100:1:Reservation Plus:109
EA-101:2:Accounting-Revenues Version 4:105
EA-101:2:Accounting-Revenues Version 4:112
EA-102:4:Purchasing System:110
EA-103:3:Personnel Evaluations:106
WE-206:1:Reservations:102
WE-207:4:Accounting - Basic:101
WE-208:2:Executive-Decision-Maker:102
NE-300:1:Region P & L:103
NE-302:1:Housekeeping Logs:104
NE-304:4:Maintenance Logs:105

Hands-On Projects 257

5

3. Press Esc to switch to command mode.

4. Type :wq or :x and press Enter to write the file and exit from vi.

Project 5-13
In this project,you use the awk command to print a preliminary report of the contents of the
programmer file you created in Hands-on Project 5-12.

To print the fields in the programmer file using awk:

1. Type awk -F: '{printf "%d %-12.12s %-10.10s\n", $1, $2, $3}' programmer
and press Enter (use a single quotation mark around the curly brackets and not a
back quote). See Figure 5-7 for an example of the output.

Spacing is very important for this command. Note that there is a single space
after awk, -F:, ‘{printf, “%d, %-12.12s, %-10.10s\n”, and $1, $2, $3}’. Also,
be certain you type curly brackets and not straight ones.

Project 5-14
For this project, you compare creating a report of programmer information using three
command lines and temporary files via the cut, paste, and more commands, to using one
awk command line and no temporary files. In the first set of steps, you start by using the cut
command to extract the last name (field 2) from the programmer file, and store the output
in the temp1 file. Next, you use the cut command to extract the salary (field 5) from the
programmer file, and store the output in temp2. Then, you use the paste command to
combine temp1 and temp2, and create the file progsal. Finally, you use the more command to
display the output. In the second set of steps, you can accomplish the same task with one awk
command.

To extract and display information using cut, paste, and more:

1. Type cut -f 2 -d: programmer > temp1 and press Enter.

2. Type cut -f 5 -d: programmer > temp2 and press Enter.

3. Type paste temp1 temp2 > progsal and press Enter.

4. To use the more command to display the output, type more progsal, and
press Enter.

258 Chapter 5 Advanced File Processing

You see output similar to the following excerpt:

Johnson 39000
King 39800
Brown 35000
Adams 42000
Utley 36000
Wilson 39000
Culligan 39000
...

Note that for the longer names in the file, such as Culligan, the second column
might line up differently than for the shorter names because of the tab spacing.

To accomplish the same task with one awk command:

1. Type awk -F: '{printf "%-10.10s %7.0f \n", $2, $5}' programmer, and
press Enter.

You see output similar to the following excerpt:

Johnson 39000
King 39800
Brown 35000
Adams 42000
Utley 36000
...

There are two important differences between using the cut and paste com-
mands and using the awk command. First, you don’t have to create three extra
files when using awk. Second, the column display has a more even appearance
when using awk.

Project 5-15
When you manipulate the information in the programmer and project fields, you can
determine which programmers are not assigned a project, which is the focus of this
assignment.Here,you exercise your knowledge of the cut, sort,uniq, comm, and join commands
in one project.You select the programmer_number fields stored in the project file.These
fields identify programmers who are currently assigned to projects. Refer to Figure 5-5 as
you work through this project.

Start by cutting the programmer_number fields from the project file (field 4), and piping (|)
the output to the sort command to place any duplicate numbers together. Pipe the sorted
output to the uniq command to remove any duplicate programmer_numbers. Finally,
redirect the output to a temporary file, t1. (The t1 file is a list of programmer numbers that
identifies programmers who are assigned to projects.)

Hands-On Projects 259

5

To select fields from the project file:

1. Type cut -d: -f4 project|sort|uniq > t1 and press Enter.

2. To display the contents of t1, type cat t1, and press Enter.

You see the list of programmer numbers:

101
102
103
104
105
106
107
109
110
112

The next step is to cut the programmer_number fields (field 1) from the programmer
file, and pipe the output as you did in Step 1. Call the new temporary file t2, which is
a list of programmer numbers that identifies all of the programmers.

3. Type cut -d: -f1 programmer|sort|uniq > t2 and press Enter.

4. To display the contents of t2, type cat t2, and press Enter.

You see this list of programmer numbers:

101
102
103
104
105
106
107
108
109
110
111
112
113
114

Now that t1 and t2 are sorted in the same order, you can match them. Use the comm
command to select the lines from t1 that do not match lines in t2, and redirect the
output to another file, t3, which lists programmer numbers of all programmers who are
not assigned to projects.

5. Type comm -13 t1 t2 > t3 and press Enter.

6. To display the programmer numbers for programmers who are not working on
projects, type cat t3, and press Enter.

260 Chapter 5 Advanced File Processing

You see this list of programmer numbers:

108
111
113
114

To display the names of unassigned programmers,you can now sort the programmer file
in programmer_number order, and write the output to t4.

7. Type sort -t: -k 1 -o t4 programmer and press Enter.

Now use the join command to match programmer_numbers in t4 and t3, and redirect
the output to t5, which contains the names of all programmers who are not assigned to
a project.

8. Type join -t: -1 1 -2 1 -o 1.2 -o 1.3 -o 1.4 t4 t3 > t5 and press Enter.

9. To display the contents of t5, type cat t5, and press Enter.

You see the following list of programmer names:

Mitchell:Hillary:N
Greene:Sarah:L
Daniels:Allan:S
Edwards:George:J

Now, you can transform the output using the sed editor to eliminate the colon field
separators in t5.

10. Type sed -n 's/:/ /gp' < t5 and press Enter.

You see this list of programmer names:

Mitchell Hillary N
Greene Sarah L
Daniels Allan S
Edwards George J

Project 5-16
This project shows you how to add comments to your shell programs and creates a
temporary file of programmer projects that will be used in subsequent projects on the way
to building the Programmer Activity Status Report.You start by using the vi editor to create
the new script file, which is called pact. Notice that you begin by inserting comments to
identify and explain the script.

To create a script and add comments:

1. Type vi pact and press Enter.

2. Type a (you can type a as well as i) to switch to insert mode, and then type the fol-
lowing text, pressing Enter at the end of each line. (See Figure 5-20.)

Hands-On Projects 261

5

In Step 2, the line that starts with “cut -d: -f4...” and ends with “...> pnum” is
broken into two lines to fit on this text page. When you enter the same line in
the vi editor, place this all on one line as shown in Figure 5-20, or else your script
will not work properly.

===
Script Name: pact
By: Your initials
Date: November 2009
Purpose: Create temporary file, pnum, to hold the
count of the number of projects each
programmer is working on. The pnum file
consists of:
prog_num and count fields
===
cut -d: -f4 project | sort | uniq -c | awk '{printf "%s:
%s\n",$2,$1}' > pnum

cut prog_num, pipe output to sort to remove duplicates
and get count for prog/projects.
output file with prog_number followed by count

3. Press Esc to switch to command mode.

4. Type :x and press Enter to write the file and exit from vi.

Figure 5-20 Creating the pact script with comments

262 Chapter 5 Advanced File Processing

Project 5-17
In this project, you use the sh (shell) command to run the pact script from Hands-on
Project 5-16.After you run the script, you use the less command to display the contents of
the pnum file.

To run the pact script that you created earlier:

1. Type sh pact and press Enter.

2. Type less pnum and press Enter to view the contents of the pnum file that is cre-
ated by the pact script.

3. You see these programmer numbers and project count fields:

101: 1
102: 2
103: 2
104: 1
105: 2
106: 1
107: 1
109: 1
110: 2
112: 1

4. Press q to exit the text display and return to the command line.

Project 5-18
After completing Hands-on Project 5-17, you now have a file that contains programmer
numbers and the number of projects on which each programmer is working. In this project,
you create a script file, pnumname, to extract the programmer names and numbers from the
programmer file, and redirect the output to the file pnn.

To create another script file:

1. Type vi pnumname and press Enter.

2. Type a to switch to insert mode, and then type the following text, pressing Enter at
the end of each line:

===
Script Name: pnumname
By: Your initials
Date: November 2009
Purpose: Extract Programmer Numbers and Names
===
cut -d: -f1-4 programmer | sort -t: -k 1 | uniq > pnn
The above cuts out fields 1 through 4.
The output is piped to a sort by programmer number.
The sorted output is piped to uniq to remove
duplicates.
Uniq redirects the output to pnn.

Hands-On Projects 263

5

3. Press Esc to switch to command mode.

4. Type :wq or :x and press Enter to write the file and exit from vi.

5. To run the shell program and use the less command to display the contents of pnn,
type sh pnumname, and press Enter.

6. Type less pnn and press Enter.

7. You see the programmer names and numbers, with duplicates eliminated:

101:Johnson:John:K
102:King:Mary:K
103:Brown:Gretchen:K
104:Adams:Betty:C
105:Utley:Amos:V
106:Wilson:Patricia:B
107:Culligan:Thomas:F
108:Mitchell:Hillary:N
109:Arbuckle:Margaret:F
110:Ford:Terrence:H
111:Greene:Sarah:L
112:Rose:Richard:P
113:Daniels:Allan:S
114:Edwards:George:J

8. Press q to exit the text display.

Project 5-19
In this project, you create and run a script file, joinall, to join the files pnn and pnumname,
and redirect the output to pactrep.

To create a script file that joins two files:

1. Type vi joinall and press Enter.

2. Type a to switch to insert mode, and then type the following text, pressing Enter at
the end of each line:

===
Script Name: joinall
By: Your initials
Date: November 2009
Purpose: Join pnum and pnn to create a report file
===
Join the files including the unassigned programmers.
You do this by placing the programmer names (pnn) file,
first, in the join sequence.
===
join -t: -a1 -j1 1 -j2 1 pnn pnum > pactrep

264 Chapter 5 Advanced File Processing

3. Press Esc to switch to command mode.

4. Type :wq or :x and press Enter to write the file and exit from vi.

5. To run joinall and use less to display the contents of pactrep, type sh joinall, and
press Enter.

6. Type less pactrep and press Enter.

7. You see the programmer names, including unassigned programmers’ names:

101:Johnson:John:K: 1
102:King:Mary:K: 2
103:Brown:Gretchen:K: 2
104:Adams:Betty:C: 1
105:Utley:Amos:V: 2
106:Wilson:Patricia:B: 1
107:Culligan:Thomas:F: 1
108:Mitchell:Hillary:N
109:Arbuckle:Margaret:F: 1
110:Ford:Terrence:H: 2
111:Greene:Sarah:L
112:Rose:Richard:P: 1
113:Daniels:Allan:S
114:Edwards:George:J

8. Type q to exit, if necessary.

Project 5-20
Your work in earlier projects now pays off as you create the Programmer Activity Status
Report. In this project, you start by using the vi editor to create the shell script practivity.
You use the :r command to retrieve the pact, pnumname, and joinall scripts created earlier,
and place them in the practivity shell script.You then use the dd command in vi to remove
the lines indicated in the comments.

To create the final shell script:

1. Type vi practivity and press Enter.

2. Type a to switch to insert mode, and then type the following text, pressing Enter at
the end of each line:

==
Script Name: practivity
By: Your initials
Date: November 2009
Purpose: Generate Programmer Activity Status Report
==

3. Press Esc to switch to command mode.

Hands-On Projects 265

5

4. To retrieve the three script files, type :r pact, and press Enter. Move the cursor to
the end of the file, type :r pnumname, and press Enter. Move the cursor to the
end of the file, type :r joinall, and press Enter.

5. Use the dd command to delete all of the imported comments, leaving only the com-
ments entered in Step 2. For example, you could move the cursor to each line that
begins with a #, and then type dd.You could also move the cursor to the first line
beginning with a #, and then type 9dd to delete the current line and the eight com-
ment lines after it. Do the same for the remaining comment lines in the file.

Besides the comments from Step 2, only these three lines should remain in the script:

cut -d: -f4 project | sort | uniq -c | awk '{printf "%s:
%s\n",$2, $1}' > pnum

cut -d: -f1-4 programmer | sort -t: -k 1 | uniq > pnn
join -t: -a1 -j1 1 -j2 1 pnn pnum > pactrep

6. Type the following in the script at the end of the file:

Print the report
awk '
BEGIN {
{ FS = ":"}
{ print "\tProgrammer Activity Status Report\n" }
{ "date" | getline d }
{ printf "\t %s\n",d }
{ print "Prog# \t*--Name--* Projects\n" }
{ print "==\n" }
}
{ printf "%-s\t%-12.12s %-12.12s %s\t%d\n",

$1, $2, $3, $4, $5 } ' pactrep
remove all the temporary files
rm pnum pnn pactrep

For the column headings, create a space between Prog# and \t*--Name--* and
create 16 or 17 spaces between *--Name--* and Projects. Also, type the
characters very carefully, because a small mistake can prevent the script from
working properly.

7. Press Esc to switch to command mode. Be certain the script looks similar to the one
in Figure 5-21.

8. Type :wq or :x and press Enter to write the file and exit from vi.

9. Type sh practivity and press Enter. Figure 5-22 illustrates the report.

266 Chapter 5 Advanced File Processing

Figure 5-21 Entering the practivity script in vi

Figure 5-22 Programmer Activity Status Report

Hands-On Projects 267

5

DISCOVERY EXERCISES

1. Use a command to find the instances in which the word “host” is used in the /etc
directory.

2. What addition to the command you used in Exercise 1 can you use to slow the out-
put to one screen at a time?

3. How can you determine the number of lines and words in the /etc/termcap file?

4. Use a command to remove the letters “o” and “a” from the my_list file you created
in the Hands-on Projects—and write the output to the file changed_list.

5. Use a command to find out which lines in the my_list file contain the word “Foot.”

6. Create a file called trees, containing the following individual lines:

Oak tree
Pine tree
Spruce tree
Cottonwood
Maple tree

Use the vi editor to create a file called more_trees, and copy in the contents of the trees
file. Next, add the following trees at the end of the list.

Redwood
Willow tree

Use a command to compare the trees and more_trees files and that outputs the
differences in columns.

7. Use a command to compare the trees and more_trees files and show the differences
in terms of individual lines that differ.

8. Determine the number of bytes in both the trees and more_trees files using a one-
line command.

9. Use a command to replace the word “tree” with “plant” in the more_trees file and
display the output to the screen.

10. Create a new file, CD_list, and enter these lines in the file:

country:1000:210
rock:1001:380
classical:1002:52
alternative:1003:122
light rock:1004:151
light rock:1004:151
celtic:1005:44
jazz:1006:62
soundtracks:1007:32
soundtracks:1007:32

268 Chapter 5 Advanced File Processing

Use the sed command and a script file to add these lines to the end of the CD_list file:

hard rock:1008:70
misc:1009:22

11. Use a command to find the duplicate lines (records) in the CD_list file.

12. Use the uniq command to remove the duplicate lines in the CD_list file, placing the
corrected information in a file called CD_list_new.

13. In the CD_list_new file, replace the word “misc” with “other,” save the changes in
the file CD_list_replace, and then compare the contents of the CD_list file with the
CD_list_replace file to ensure your changes are implemented.

14. Use the grep command to find all the lines that contain the word “celtic” in the
CD_list_new file.

15. Use a command to make all letters uppercase in the CD_list_new file and save the
output to a file called CD_list_uppercase.

16. Use the sed command on the CD_list_new file to replace the words “light rock”
with “easy listening” and the word “alternative” with “experimental.”

17. Create a file called software with these fields:

Project Number, using the same numbers shown in the project file (which you
created earlier in this chapter)

Software Code, using any three-digit number

Software Description, such as Excel

Then write a small application joining records in the software file to matching records
in the project file, and use the Awk program to print a report describing the software for
each project you created earlier.

18. View the first 20 lines of /etc/termcap. Next use a command to change all charac-
ters in “version” to uppercase for only the first 20 lines in /etc/termcap.

19. Find a command to compare the differences between three files and that creates out-
put for individual lines.

Discovery Exercises 269

5

This page intentionally left blank

INTRODUCTION TO SHELL SCRIPT

PROGRAMMING
After reading this chapter and completing the

exercises, you will be able to:
♦ Understand the program development cycle

♦ Compare UNIX/Linux shells for creating scripts

♦ Use shell variables, operators, and wildcard characters

♦ Use shell logic structures

♦ Employ shell scripting to create a menu

♦ Use commands to help debug shell scripts

♦ Explain ways to customize your personal environment

♦ Use the trap command

♦ Develop a menu-based application

Shell script programming is a greatly valued ability among UNIX and Linux
users, programmers, and administrators because it gives flexibility in creat-

ing applications of all kinds. Some users create scripts to generate reports from
data files.Others use scripts to create and maintain data files, such as for tracking
projects, finances, or people. Still others perform system maintenance tasks
through scripts, including monitoring who is logged in or backing up files.

The focus of this chapter is to develop your shell script programming skills and
to show you how to build a menu-based application.You begin by getting an
overview of the application you will build and of the program development
cycle. Next, you learn about shell script programming tools that include using
variables, operators, and logic structures. Finally, in the Hands-on Projects, you
put to work what you’ve learned by building a menu-based application.

CHAPTER

6

271

PREVIEWING THE APPLICATION

As you learned in Chapters 4 and 5 (“UNIX/Linux File Processing” and “Advanced File
Processing”), commands such as grep, cut, paste, and awk are powerful commands for
manipulating data. Although these commands are powerful, they can be difficult for
nontechnical users, in part because they often must be combined in long sequences to
achieve the results you want. Repeatedly executing these command sequences can be
cumbersome,even for experienced technical users. You’ve discovered in earlier chapters that
shell scripts can help eliminate these problems.

One advantage of shell scripts is that you can create them to present user-friendly
screens—for example, screens that automatically issue commands such as grep and awk to
extract, format, and display information. This gives nontechnical users access to powerful
features of UNIX/Linux. For your own use, shell scripts save time by automating long
command sequences that you must perform often.

The shell script application you develop in this chapter and enhance in Chapter 7,
“Advanced Shell Programming,” is a simulated employee information system that stores and
displays employee data—such as you might commonly find in a human resources system in
an organization. It presents a menu of operations from which the user can choose. Among
other tasks, these operations automate the process of inputting, searching for, formatting, and
displaying employee records. For preliminary testing, you create and use a data file that
contains a sampling of employee records, similar to one that an experienced shell program-
mer might use for testing.

As you learn the tools needed to develop your application in this chapter, you gain
experience with the following scripting and programming features of the UNIX/
Linux shell:

■ Shell variables—Your scripts often need to keep values in memory for later use.
Shell variables temporarily store values in memory for use by a shell script. They
use symbolic names that can access the values stored in memory. In this case, a
symbolic name is a name consisting of letters, numbers, or characters and is used
to reference the contents of a variable; often the name reflects a variable’s purpose
or contents.

■ Shell script operators—Shell scripts support many shell script operators, including
those for assigning the contents of a shell variable, for evaluating information, for
performing mathematical operations, and for piping or redirection of input/
output.

■ Logic or control structures—Shell scripts support logic structures (also called
control structures), including sequential logic (for performing a series of com-
mands), decision logic (for branching from one point in a script to a different
point), looping logic (for repeating a command several times), and case logic (for
choosing an action from several possible alternatives).

272 Chapter 6 Introduction to Shell Script Programming

In addition, you learn special commands for formatting screen output and positioning the
cursor. Before you begin writing your application, it is important to understand more about
the program development cycle and the basic elements of programming.

THE PROGRAM DEVELOPMENT CYCLE

The process of developing an application is known as the program development cycle.
The steps involved in the cycle are the same whether you are writing shell scripts or
high-level language programs.

The process begins by creating program specifications—the requirements the application
must meet. The specifications determine what data the application takes as input, the
processes that must be performed on the data, and the correct output.

After you determine the specifications, the design process begins. During this process,
programmers create file formats, screen layouts, and algorithms. An algorithm is a sequence
of procedures, programming code, or commands that result in a program or that can be used
as part of a program.Programmers use a variety of tools to design complex applications. You
learn about some of the tools in this chapter and about additional tools in Chapter 7.

After the design process is complete,programmers begin writing the actual code,which they
must then test and debug. Debugging is the process of going through program code to
locate errors and then fix them. When programmers find errors, they correct them and
begin the testing process again. This procedure continues until the application performs
satisfactorily.

Figure 6-1 illustrates the program development cycle.

Using High-Level Languages
Computer programs are instructions often written using a high-level language, such as
COBOL,Visual Basic,C, or C++. A high-level language is a computer language that uses
English-like expressions. For example, the following COBOL statement instructs the
computer to add 1 to the variable COUNTER:

ADD 1 TO COUNTER.

Here is a similar statement, written in C++:

counter = counter + 1;

A program’s high-level language statements are stored in a file called the source file. This
is the file that the programmer creates with an editor such as vi or Emacs. The source file
cannot execute, however, because the computer can only process instructions written in
low-level machine language. As you recall from Chapter 3,“Mastering Editors,” machine-
language instructions are cryptic codes expressed in binary numbers. Therefore, the high-
level source file must be converted into a low-level machine language file, as described next.

The Program Development Cycle 273

6

The source file is converted into an executable machine-language file by a program called
a compiler. The compiler reads the lines of code that the programmer wrote in the source
file and converts them to the appropriate machine-language instructions. For example, the
Linux C and C++ compilers are named gcc and g++. The following command illustrates
how to compile the C++ source code file, datecalc.C, so that you can run it as the program
datecalc:

g++ datecalc.C -o datecalc

In this sample command, the -o option followed by datecalc instructs the compiler to create
an executable file, datecalc. The source file is datecalc.C. The command causes the compiler

Write
code

Errors
found?

Beginning
of process

Program
specifications

Program
design

Test
program

Correct
errors Yes

End of
process

No

Figure 6-1 Program development cycle

274 Chapter 6 Introduction to Shell Script Programming

to translate the C++ program datecalc.C into an executable machine-language program,
which is stored in the file datecalc. You learn more about C and C++ programming in
Chapter 10,“Developing UNIX/Linux Applications in C and C++.”

As you learn in Chapter 10, some important differences exist between
C and C++ source code, and therefore it is necessary to use the correct compiler
(gcc versus g++). Remember, when you invoke one of these compilers in Linux,
the gcc compiler expects C files to have the .c extension, whereas the g++
compiler expects C++ files to have the .C extension.

If a source file contains syntax errors (grammatical mistakes in program language use), it
cannot be converted into an executable file. The compiler locates and reports any syntax
errors, which the programmer must correct.

After compiling, the executable program might still contain fatal run-time errors
or logic errors. Fatal run-time errors cause the program to abort, for example,
due to an invalid memory location specified in the program code. Logic errors
cause the program to produce invalid results because of problems such as
flawed mathematical statements.

Another way to accomplish programming tasks is to develop UNIX/Linux shell scripts,
which you learn in this chapter.

Using UNIX/Linux Shell Scripts
First introduced in Chapter 4,UNIX/Linux shell scripts are text files that contain sequences
of UNIX/Linux commands. Like high-level source files, a programmer creates shell scripts
with a text editor. Unlike high-level language programs, shell scripts do not have to be
converted into machine language by a compiler. This is because the UNIX/Linux shell acts
as an interpreter when reading script files. As this interpreter reads the statements in a script
file, it immediately translates them into executable instructions, and causes them to run. No
executable file is produced because the interpreter translates and executes the scripted
statements in one step. If a syntax error is encountered, the execution of the shell script halts.

After you create a shell script, you tell the operating system that the file can be executed.
This is accomplished by using the chmod (“change mode”) command that you learned in
Chapters 2 and 4 (“Exploring the UNIX/Linux File Systems and File Security” and
“UNIX/Linux File Processing,”) to change the file’s mode. The mode determines how the
file can be used. Recall that modes can be denoted by single-letter codes: r (read), w (write),
and x (execute). Further, the chmod command tells the computer who is allowed to use the
file: the user or owner (u), the group (g), or all other users (o). For a description of the chmod
command, see Appendix B,“Syntax Guide to UNIX/Linux Commands.”

The Program Development Cycle 275

6

Recall from Chapter 4 that you can change the mode of a file so that UNIX/Linux
recognize it as an executable program (mode x) that everyone (user, group, and others) can
use. In the following example, the user is the owner of the file:

$ chmod ugo+x filename <Enter>

Alternatively, you can make a file executable for all users by entering either:

$ chmod a+x filename <Enter>

or

$ chmod 755 filename <Enter>

In chmod a+x, the a stands for all and is the same as ugo. Also, remember from Chapter 2 that
chmod 755 gives owner (in the first position) read, write, and execute permissions (7). It also
gives group (in the second position) read and execute permissions (5), and gives others (in
the third position) read and execute permissions (5).

After you make the file executable, you can run it in one of several ways:

■ You can simply type the name of the script at the system command prompt.
However, before this method can work, you must modify your default directory
path to include the directory in which the script resides. The directory might be
the source or bin directory under your home directory. If you use this method,
before any script or program can be run it must be retrieved from a path identified
in the PATH variable, which provides a list of directory locations where UNIX
or Linux looks to find executable scripts or programs. You learn how to tempo-
rarily modify the PATH variable in the“Variables” section later in this chapter; you
learn how to permanently modify the PATH variable in Chapter 7.

■ If the script resides in your current directory, which is not in the PATH variable,
you can run the script by preceding the name with a dot slash (./) to tell
UNIX/Linux to look in the current directory to find it, as follows:

$./filename <Enter>

■ If the script does not reside in your current directory and is not in the PATH
variable, you can run it by specifying the absolute path to the script. For example,
if the script is in the data directory under your home directory, you can type either
of the following (using Tom’s home directory as an example):

$ /home/tom/data/filename <Enter>

or
$ ~/data/filename <Enter>

Shell scripts run less quickly than compiled programs because the shell must interpret each
UNIX/Linux command inside the executable script file before it is executed. Whether a
programmer uses a script or a compiled program (such as a C++ program) is often related
to several factors:

■ Whether the programmer is more proficient in writing scripts than source code for
a compiler

276 Chapter 6 Introduction to Shell Script Programming

■ Whether there is a need for the script or program to execute as quickly as possible,
such as to reduce the load on the computer’s resources when there are multiple
users

■ Whether the job is relatively complex; if so, a compiled program might offer more
flexible options or features

Prototyping an Application
A prototype is a running model of your application, which lets you review the final results
before committing to the design. Using a shell script to create a prototype is often the
quickest and most efficient method because prototyping logic and design capabilities reside
within UNIX/Linux.

After the working prototype is approved, the script can be rewritten to run faster using a
compiled language such as C++. If the shell script performs well, however, you might not
need to convert it to a compiled program.

Using Comments
In Chapter 5, you were introduced to using comments to provide documentation about a
script. Plan to use comments in all of your scripts and programs, so that later it is easier to
remember how they work.

Comment lines begin with a pound (#) symbol, such as in the following example from the
pact script you created in Hands-on Project 5-16 in Chapter 5:

===
Script Name: pact
By: Your initials
Date: November 2009
Purpose: Create temporary file, pnum, to hold the
count of the number of projects each
programmer is working on. The pnum file
consists of:
prog_num and count fields
===
cut -d: -f4 project | sort | uniq -c | awk '{printf "%s:
%s\n",$2,$1}' > pnum
cut prog_num, pipe output to sort to remove duplicates
and get count for prog/projects.
output file with prog_number followed by count

In this example, comment lines appear at the beginning of the script and after the cut
command. You can place comment lines anywhere in a script to provide documentation.
For example, in the Hands-on Projects for this chapter, you typically place comments at the
beginning of a script to show the script name, the script’s author, the date the script was
written, and the script’s purpose. As you write code in this and later chapters, insert any

The Program Development Cycle 277

6

additional comment lines that you believe might be helpful for later reference. Some
examples of what you might comment include:

■ Script name, author(s), creation date, and purpose

■ Modification date(s) and the purpose of each modification

■ The purpose and types of variables used (You learn about variables in this chapter.)

■ Files that are accessed, created, or modified

■ How logic structures work (You create logic structures in this chapter.)

■ The purpose of shell functions (You create shell functions in Chapter 7.)

■ How complex lines of code work

■ The reasons for including specific commands

Although writing comments might take a little extra time, in the long run the comments can
save you much more time when you need to modify that script or incorporate it in an
application with other scripts.

THE PROGRAMMING SHELL

Before you create a script, choose the shell in which to run the script. As you learned in
Chapter 1, UNIX/Linux versions support different shells and each shell has different
capabilities. Also, recall that all Linux versions use the Bash shell (Bourne Again Shell) as the
default shell. Table 6-1 lists the three shells that come with most Linux distributions, their
derivations, and distinguishing features in relation to shell programming.

Table 6-1 Linux shells
Shell Name Original Shell from

Which Derived
Description in Terms of Shell Programming

Bash Bourne and Korn
shells

Offers strong scripting and programming lan-
guage features, such as shell variables, logic
structures, and math/logic expressions; com-
bines the best features of the Bourne and Korn
shells

csh/tcsh C shell Conforms to a scripting and programming lan-
guage format; shell expressions use operators
similar to those found in the C programming
language

ksh/zsh Korn shell Is similar to the Bash shell in many respects,
but also has syntax similar to that of C
programming; useful if you are familiar with
older Korn shell scripts

278 Chapter 6 Introduction to Shell Script Programming

The Bash shell offers improved features over the older Bourne and Korn shells and is fully
backward compatible with the Bourne shell. In addition, the Bash shell, when compared to
the other shells, has a more powerful programming interface. For these reasons, you use the
Bash shell for shell scripts in this book.

The manual pages in Fedora, Red Hat Enterprise Linux, and SUSE contain a
generous amount of documentation about the Bash shell. Just enter man bash
to access the documentation.

Now that you have selected the shell, it is important to learn about several basic features used
by shell scripts, including variables, shell operators, and special characters.

VARIABLES

Variables use symbolic names that represent values stored in memory. The three types of
variables discussed in this section are configuration variables, environment variables, and
shell variables. Configuration variables are used to store information about the setup of
the operating system, and after they are set up, you typically do not change them.

You can set up environment variables with initial values that you can change as needed.
These variables, which UNIX/Linux read when you log in, determine many characteristics
of your login session. For example, in Chapter 2 you learned about the PS1 environment
variable, which determines the way your prompt appears. In addition, UNIX/Linux use
environment variables to determine such things as where it should look for programs,which
shell to use, and the path of your home directory.

Shell variables (defined earlier) are those you create at the command line or in a shell script.
They are very useful in shell scripts for temporarily storing information.

Environment and Configuration Variables
Environment and configuration variables bear standard names, such as PS1, HOME, PATH,
SHELL,USERNAME,and PWD.(Configuration and environment variables are capitalized
to distinguish them from user variables.) A script file in your home directory sets the initial
values of environment variables. You can use these variables to set up and personalize your
login sessions. For example, you can set your PATH variable to search for the location
of shell scripts that other users have created, so you can more easily execute those scripts.
Table 6-2 lists standard Bash shell environment and configuration variables.

You can, at any time, use the printenv command to view a list of your current environment
and configuration variables, which you should typically do before you change any. (See
Figure 6-2.) Hands-on Project 6-1 enables you to view your environment variables.

Variables 279

6

Syntax printenv [-options] [variable name]

Dissection

■ Prints a listing of environment and configuration variables

■ Specifies one or more variables as arguments to view information only about those
variables

Besides the printenv command, consider using the set command (discussed
later in this chapter) with no arguments to view your current Bash shell
environment, including environment variables, shell script variables, and shell
functions. (You learn about shell functions in Chapter 7.) To learn more about
the environment and configuration variables used on your system, type man
bash at the command line. Scroll to the section, Shell Variables.

Figure 6-2 Viewing the environment variable listing

280 Chapter 6 Introduction to Shell Script Programming

Table 6-2 Standard Bash shell environment and configuration variables
Name Variable Contents Determined by
HOME Identifies the path name for user’s home

directory
System

LOGNAME Holds the account name of the user cur-
rently logged in

System

PPID Refers to the parent ID of the shell System
TZ Holds the time zone set for use by the

system
System

IFS Enables the user to specify a default
delimiter for use in working with files

Redefinable

LINEND Holds the current line number of a func-
tion or script

Redefinable

MAIL Identifies the name of the mail file
checked by the mail utility for received
messages

Redefinable

MAILCHECK Identifies the interval for checking and
received mail (example: 60)

Redefinable

PATH Holds the list of path names for directories
searched for executable commands

Redefinable

PS1 Holds the primary shell prompt Redefinable
PS2 Contains the secondary shell prompt Redefinable
PS3 and PS4 Holds prompts used by the set and select

commands
Redefinable

SHELL Holds the path name of the program for
the type of shell you are using

Redefinable

BASH Contains the absolute path to the Bash
shell, such as /bin/bash

User defined

BASH_VERSION Holds the version number of Bash User defined
CDPATH Identifies the path names for directories

searched by the cd command for
subdirectories

User defined

ENV Contains the file name containing com-
mands to initialize the shell, as in .bashrc
or .tcshrc

User defined

EUID Holds the user identification number (UID)
of the currently logged in user

User defined

EXINIT Contains the initialization commands for
the vi editor

User defined

FCEDIT Enables you to access a range of com-
mands in the command history file;
FCEDIT is a Bash shell utility and is the
variable used to specify which editor (vi by
default) is used when you invoke the FC
command

User defined

FIGNORE Specifies file name suffixes to ignore when
working with certain files

User defined

Variables 281

6

Table 6-2 Standard Bash shell environment and configuration variables (continued)

Name Variable Contents Determined by
FUNCNAME Contains the name of the function that is

running, or is empty if there is no shell
function running

User defined

GROUPS Identifies the current user’s group mem-
berships

User defined

HISTCMD Contains the sequence number that the
currently active command is assigned in
the history index of commands that
already have been used

User defined

HISTFILE Identifies the file in which the history of
the previously executed commands
is stored

User defined

HISTFILESIZE Sets the upward limit of command lines
that can be stored in the file specified by
the HISTFILE variable

User defined

HISTSIZE Establishes the upward limit of commands
that the Bash shell can recall

User defined

HOSTFILE Holds the name of the file that provides
the Bash shell with information about
its network host name (such as
localhost.localdomain) and IP address
(such as 129.0.0.24); if the HOSTFILE
variable is empty, the system uses the
file /etc/hosts by default

User defined

HOSTTYPE Contains information about the type of
computer that is hosting the Bash shell,
such as i386 for an Intel-based processor

User defined

INPUTRC Identifies the file name for the Readline
start-up file overriding the default of
/etc/inputrc

User defined

MACHTYPE Identifies the type of system, including
CPU, operating system, and desktop

User defined

MAILPATH Contains a list of mail files to be checked
by mail for received messages

User defined

MAILWARNING Enables (when set) the user to determine
if she has already read the mail currently
in the mail file

User defined

OLDPWD Identifies the directory accessed just
before the current directory

User defined

OPTIND Shows the index number of the argument
to be processed next, when a command is
run using one or more option arguments

User defined

OPTARG Contains the last option specified when a
command is run using one or more option
arguments

User defined

282 Chapter 6 Introduction to Shell Script Programming

Table 6-2 Standard Bash shell environment and configuration variables (continued)

Name Variable Contents Determined by
OPTERR Enables Bash to display error messages

associated with command-option argu-
ments, if set to 1 (which is the default
established each time the Bash shell is
invoked)

User defined

OSTYPE Identifies the type of operating system on
which Bash is running, such as linux-gnu

User defined

PROMPT_
COMMAND

Holds the command to be executed prior
to displaying a primary prompt

User defined

PWD Holds the name of the directory that is
currently accessed

User defined

RANDOM Yields a random integer each time it is
called, but you must first assign a value to
the RANDOM variable to properly initial-
ize random number generation

User defined

REPLY Specifies the line to read as input, when
there is no input argument passed to the
built-in shell command, which is read

User defined

SHLVL Contains the number of times Bash is
invoked plus one, such as the value 3
when there are two Bash (terminal) ses-
sions currently running

User defined

TERM Contains the name of the terminal type in
use by the Bash shell

User defined

TIMEFORMAT Contains the timing for pipelines User defined
TMOUT Enables Bash to stop or close due to inac-

tivity at the command prompt, after wait-
ing the number of seconds specified in the
TMOUT variable (TMOUT is empty by
default so that Bash does not automati-
cally stop due to inactivity.)

User defined

UID Holds the user identification number of
the currently logged in user

User defined

Shell Variables
Shell variables are variables that you can define and manipulate for use with program
commands that you employ in a shell. These are variables that are temporarily stored in
memory and that you can display on the screen or use to perform specific actions in a shell
script. For example, you might define the shell variableTODAY to store today’s date so you
can later recall it and then print it on a report generated from a shell script.

Variables 283

6

When you work with shell variables, keep in mind guidelines for handling them and for
naming them. Some basic guidelines for handling shell variables are:

■ Omit spaces when you assign a variable without using single or double quotation
marks around its value, such as when assigning a numerical value—use x=5 and
not x = 5. (This type of assignment also enables you to perform mathematical
operations on the assigned value.)

■ To assign a variable that must contain spaces, such as a string variable, enclose the
value in double or single quotation marks—use fname=“Thomas F. Berentino” and
not fname=Thomas F. Berentino. A string variable is a nonnumeric field of infor-
mation treated simply as a group of characters. Numbers in a string are considered
characters rather than digits.

■ To reference a variable, use a dollar sign ($) in front of it or enclose it in curly
brackets ({ }).

■ If the variable consists of an array (a set of values), use square brackets ([]) to refer
to a specific position of a value in an array—use myarray[0]=value1 for the first
value in the array, for example.

■ Export a shell variable to make the variable available to other shell scripts (as
discussed in the following section).

■ After you create a shell variable, you can configure it so that it cannot be changed
by entering the readonly command with the variable name as the argument, such as
readonly fname.

Sample guidelines for naming shell variables are:

■ Avoid using the dollar sign in a variable name, because this can create confusion
with using the dollar sign to reference the shell variable.

■ Use names that are descriptive of the contents or purpose of the shell variable—use
lname for a variable to contain a person’s last name, instead of var or x, for example.

■ Use capitalization appropriately and consistently—for instance, if you are defining
address information, use variable names such as city, state, zip and not City,
STATE, zip. Note that some programmers like to use all lowercase letters or all
uppercase letters for variable names. For example, many script, C, and C++
programmers prefer using all lowercase letters when possible.

■ If a variable name is to consist of two or more words, use underscores between the
words—use last_name and not last name, for example.

In the next section, you learn about shell operators, which are used to define and evaluate
variables, such as environment and shell variables.

284 Chapter 6 Introduction to Shell Script Programming

SHELL OPERATORS

Bash shell operators are divided into four groups:

■ Defining operators

■ Evaluating operators

■ Arithmetic and relational operators

■ Redirection operators

You learn about each of these groups of operators in the following sections. You also learn
how to use the export command to make a variable you have defined available to a shell
script. Finally, you look at how to modify the PATH environment variable to make it easier
to run shell scripts.

Defining Operators
Defining operators are used to assign a value to a variable. Evaluating operators are used
for actions such as determining the contents of a variable. The equal sign (=) is one of the
most common operators used to define a variable. For example, assume that you want to
create a variable called NAME and assign Becky as the value to be contained in the variable.
You would set the variable as follows:

NAME=Becky

The variable names or values that appear to the left and right of an operator are its
operands. The name of the variable you are setting must appear to the left of the =
operator. The value of the variable you are setting must appear to the right.

Notice there are no spaces between the = operator and its operands.

Sometimes, it is necessary to assign to a variable’s contents a string of characters that contain
spaces, such as Becky J. Zubrow. To make this kind of assignment, you surround the variable
contents with double quotation marks as follows:

NAME="Becky J. Zubrow"

Another way to assign a value to a shell variable is by using the back quote (‘) operator. (The
back quote is not the same as the apostrophe or single quotation mark; see the following
Tip.) This operator is used to tell the shell to execute the command inside the back quotes
and then store the result in the variable. For example, in the following:

LIST=‘ls‘

The ls command is executed and a listing of the current working directory is stored in the
LIST variable.

Shell Operators 285

6

On many standard keyboards, the key for the back quote operator is located in
the upper-left corner under the Esc key and is combined with the tilde (~) on
that key.

Evaluating Operators
When you assign a value to a variable, you might want to evaluate it by displaying its
contents via an evaluating operator. You can use the dollar sign ($) in front of the variable
along with the echo command to view the contents. For example, if you enter:

echo $NAME

you see the contents of the NAME variable you created earlier. You can also use the format
echo "$NAME" to view the variable’s contents. However, if you enter:

echo '$NAME'

using single quotation marks, the contents of NAME are suppressed and all you see is
$NAME echoed on the screen.

Try Hands-on Project 6-2 to use the defining and evaluation operators.

Arithmetic and Relational Operators
Arithmetic operators consist of the familiar plus (+) for addition, minus (-) for subtrac-
tion, asterisk (*) for multiplication, and slash (/) for division. Relational operators
compare the relationship between two values or arguments, such as greater than (>), less than
(<), equal to (=), and others.Table 6-3 explains the arithmetic and relational operators. For
a complete listing of arithmetic operators enter man bash and go to the section,
ARITHMETIC EVALUATION.

Table 6-3 Examples of the shell’s arithmetic and relational operators
Operator Description Example
-, + Unary minus

and plus
+R (denotes positive R)
-R (denotes negative R)

!, ~ Logical and bitwise
negation

!Y (returns 0 if Y is nonzero, returns 1 if Y is zero)
~X (reverses the bits in X)

*, /,% Multiplication,
division, and
remainder

A * B (returns A times B)
A / B (returns A divided by B)
A % B (returns the remainder of A divided by B)

+,- Addition,
subtraction

X + Y (returns X plus Y)
X - Y (returns X minus Y)

>,< Greater than and
less than

M > N (Is M greater than N?)
M < N (Is M less than N?)

=,!= Equality and
inequality

Q = R (Is Q equal to R?)
Q != R (Is Q not equal to R?)

286 Chapter 6 Introduction to Shell Script Programming

When using arithmetic operators, the usual mathematical precedence rules apply: Multiplication and
division are performed before addition and subtraction. For example, the value of the expression
6 + 4 * 2 is 14, not 20. Precedence can be overridden, however, by using parentheses. For
example, the value of the expression (6 + 4) * 2 is 20, not 14. Other mathematical rules also
apply; for example, division by zero is treated as an error.

To store arithmetic values in a variable, use the let statement. For example, the following
command stores 14 in the variable X (See Figure 6-3 using the echo command to show the
contents of X after using the let command.):

let X=6+4*2

Notice in the preceding example that there is one space between let and the expression that
follows it. Also, there are no spaces in the arithmetic equation following a let statement. In
this example, there are no spaces on either side of the equal (=), plus (+), and multiplication
(*) operators.

You can use shell variables as operands to arithmetic operators. Assuming the variable X has
the value 14, the following command stores 18 in the variableY:

let Y=X+4

Figure 6-3 Using let to set the contents of a shell variable

Shell Operators 287

6

Syntax let expression with operators

Dissection

■ Performs a given action on numbers that is specified by operators and stores the result in
a shell variable

■ Parentheses are used around specific expressions if you want to alter the mathematical
precedence rules or to simply ensure the result is what you intend.

let is a built-in command for the Bash shell. For documanetation about let, enter man
bash, and scroll down to the section SHELL BUILTIN COMMANDS. Try Hands-on
Project 6-3 to learn how to use the let command.

REDIRECTION OPERATORS

Recall that the > redirection operator overwrites an existing file. For example, in cat file1
> file2, the contents of file1 overwrite the contents of file2. If you write a shell script that
uses the > operator to create a file, you might want to prevent it from overwriting important
information. You can use the set command with the -o noclobber option to prevent a file from
being overwritten, as in the following example:

$ set -o noclobber <Enter>

Syntax set [-options] [arguments]

Dissection

■ With no options,displays the current listing of Bash environment and shell script variables

■ Useful options include:
-a exports all variables after they are defined
-n takes commands without executing them, so you can debug errors without affecting
data (Also see the sh -n command later in this chapter.)
-o sets a particular shell mode—when used with noclobber as the argument, it prevents files
from being overwritten by use of the > operator
-u shows an error when there is an attempt to use an undefined variable
-v displays command lines as they are executed

set is another built-in command for the Bash shell. For documentation about set, enter man
bash, and scroll down to the section SHELL BUILTIN COMMANDS.

288 Chapter 6 Introduction to Shell Script Programming

If you want to save time and automatically export all shell script variables you
have defined, use set with the -a option.

However, you can choose to overwrite a file anyway by placing a pipe character (|) after the
redirection operator:

$ set -o noclobber <Enter>
$ cat new_file > old_file <Enter>
bash: old_file: cannot overwrite existing file

$ cat new_file >| old_file <Enter>

Avoid employing the -o noclobber option if you are using the Bash shell in the
X Window interface with the KDE desktop. On some distributions, using the
option in this manner can unexpectedly terminate the command-line session.

Exporting Shell Variables to the Environment
Shell scripts cannot automatically access variables created and assigned on the command line
or by other shell scripts. To make a variable available to a shell script, you must use the export
command to give it a global meaning so that it is viewed by the shell as an environment
variable.

Syntax export [-options] [variable names]

Dissection

■ Makes a shell variable global so that it can be accessed by other shell scripts or programs,
such as shell scripts or programs called within a shell script

■ Useful options include:
-n undoes the export, so the variable is no longer global
-p lists exported variables

export is a built-in Bash shell command, which means you can find help documentation by
entering man bash and scrolling to the SHELL BUILTIN COMMANDS section. Try
Hands-on Project 6-4 to use the export command in the Bash shell.

Modifying the PATH Variable
Just as shell variables are not universally recognized until you export them, the same is true
for executing a shell script. Up to this point, you have used ./ to run a shell script. This is
because the shell looks for programs in the directories specified by the PATH variable. If you

Redirection Operators 289

6

are developing a shell script in a directory that is not specified in your PATH environment
variable, you must type ./ in front of the shell name. If you just type the name of the shell
by itself, the script doesn’t run because it is not in your currently defined path—which
means that the shell interpreter cannot find it to run. You need to type ./ to tell the shell
interpreter to look in your current working directory.

For example, in some UNIX/Linux systems, such as Fedora,Red Hat Enterprise Linux, and
SUSE, your home directory is not automatically defined in your current path. You can
verify this by typing the following to see what directories are in your path:

echo $PATH

In Fedora or Red Hat Enterprise Linux, for example, you will likely see a path such as the
following:

/usr/kerberos/bin:/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin:/
home/username/bin

Notice that each directory in the path is separated by a colon. Your home directory,
as represented by /home/username is not in the path by default, but another
directory, /home/username/bin, in which programs might be stored, is in the path
by default—although the actual directory, /home/username/bin, might not be created by
default on your system even though it is in the path.

Because new shell scripts are most often kept in the current directory while they are being
tested, you should add the current working directory to the PATH variable. Here is an
example command for how you can do this quickly:

PATH=$PATH:.

Remember, the shell interprets $PATH as the contents of the PATH variable. This sample
command sets the PATH variable to its current contents. The colon and dot (.) add the
current directory to the search path so that the shell program can locate the new program.

After you type this command, you can execute new shell scripts by simply using the name
of the script without prefacing it with the ./ characters. Hands-on Project 6-5 enables you
to try this.

When you type PATH=$PATH:., the current working directory is temporarily
stored as part of your path only for the duration of your login session.

290 Chapter 6 Introduction to Shell Script Programming

Configuring to have the current directory set in your path does involve some risk
if a hacker gains access to your account while you are logged in. For example,
a hacker might gain access through an open port (communication path in a
network protocol). If you choose to put your current working directory in the
PATH variable, be certain you have secured access to your account, such as
through closing unused ports. For more Information about operating system
security, including for UNIX/Linux systems, see Guide to Operating Systems
Security (Course Technology, ISBN 0-619-16040-3).

MORE ABOUT WILDCARD CHARACTERS

Shell scripts frequently use the asterisk (*) and other wildcard characters (such as ? and []),
which help to locate information containing only a portion of a matching pattern. For
example, to list all program files with names that contain a .c extension, use the following
command:

ls *.c

Wildcard characters are also known as glob characters. If an unquoted argument contains
one or more glob characters, the shell processes the argument for file name generation.Glob
characters are part of glob patterns, which are intended to match file names and words.
Special constructions that might appear in glob patterns are:

■ The question mark (?) matches exactly one character, except for the backslash and
period.

■ The asterisk (*) matches zero or more characters in a file name.

■ [chars] defines a class of characters. The glob pattern matches any single character
in the class. A class can contain a range of characters, as in [a-z].

For example, assume the working directory contains files chap1, chap2, and chap3. The
following command displays the contents of all three files:

more chap[1-3] <Enter>

The commands and variables used in shell scripts are organized into different logic
structures. In the next sections, you learn how to use logic structures for effective script
handling.

SHELL LOGIC STRUCTURES

Logic structures are techniques for structuring program code and affect the order in which
the code is executed or how it is executed, such as looping back through the code from a
particular point or jumping from one point in the code to another. The four basic logic
structures needed for program development are:

■ Sequential logic

■ Decision logic

Shell Logic Structures 291

6

■ Looping logic

■ Case logic

Each of these logic structures is discussed in the following sections.

Sequential Logic
Sequential logic works so that commands are executed in the order in which they appear
in the script or program.

For example, consider a sales manager in a company who begins each week by tallying sales
information.First, she runs the tally_all program to compute the year’s gross sales statistics up
to the current date.Then she runs the profit_totals program to tally the profit statistics.Next,
she runs the sales_breakdown report program that shows the sales performance of the 40
salespeople she manages. Finally, she runs the management_statistics report program to
provide the sales statistics needed by her management.The sales manager can automate her
work by creating a script that uses sequential logic, first running the tally_all program, then
the profit_totals, the sales_breakdown, and the management_statistics programs. Her shell
script with sequential logic would have the following sequence of commands (note that her
system is set up so that all she needs to do is to enter the programs names at the
commandline):

tally_all

profit_totals

sales_breakdown

management_statistics

The only break in sequence logic comes when a branch instruction changes the flow of
execution by redirecting to another location in the script or program. A branch
instruction is one that tells the program to go to a different section of code.

Many scripts are simple, straightforward command sequences. An example is the Program-
mer Activity Status Report script you wrote in Chapter 5, and is listed next. The shell
executes the script’s commands in the order they appear in the file. You use sequential logic
to write this type of application.

#==
Script Name: practivity
By: MP
Date: November 2009
Purpose: Generate Programmer Activity Status Report
#==
cut -d: -f4 project | sort | uniq -c | awk '{printf "%s:
%s \n",$2,$1}' > pnum
cut -d: -f1-4 programmer | sort -t: +0 -1 | uniq > pnn
join -t: -a1 -j1 1 -j2 1 pnn pnum > pactrep

292 Chapter 6 Introduction to Shell Script Programming

Print the report
awk '
BEGIN {
{ FS = ":" }
{ print "\tProgrammer Activity Status Report\n" }
{ "date" | getline d }
{ printf "\t %s\n",d }
{ print "Prog# \t*--Name--* Projects\n" }
{ print "==\n"}
}
{ printf "%-s\t%-12.12s %-12.12s %s\t%d\n",

$1, $2, $3, $4, $5 } ' pactrep
remove all the temporary files
rm pnum pnn pactrep

Hands-on Project 6-6 enables you to build a short script to demonstrate sequential logic as
well as practice the let command, and to build expressions using constants, variables, and
arithmetic operators.

Decision Logic
Decision logic enables your script or program to execute a statement or series of
statements only if a certain condition exists. In this usage, a statement is another name for
a line of code that performs an action in your program. The if statement is a primary
decision-making logic structure in this type of logic.

In decision logic, the script is programmed to make decisions as it runs. By using the if
statement,you can specify conditions for the script to evaluate before it makes a decision.For
example, if a occurs, then the script does b; but if x occurs instead, then the script does y.
Consider a situation in which a magazine publisher gives the reader two subscription
choices based on price. If the reader sends in $25, then the magazine publisher gives him 12
weeks of the publication, but if the reader sends in $50 dollars, then the magazine publisher
gives him 24 weeks of the publication.

Another way to use a decision structure is as a simple yes or no situation. For example, you
might use a portion of a script to enable the user to continue updating a file or to close the
file.When the script asks:“Do you want to continue updating (y or n)?”, if you answer y then
the script gives you a blank screen form in which to enter more information to put in the
file. If instead you answer n, then the script closes the file and stops.

Consider, for example, the following lines of code. In this shell script, the user is asked to
enter a favorite vegetable. If the user enters “broccoli,” the decision logic of the program
displays “Broccoli is a healthy choice.” If any other vegetable is entered, the decision logic
displays the line “Don’t forget to eat your broccoli also.”

echo -n "What is your favorite vegetable? "
read veg_name
if ["$veg_name" = "broccoli"]
then

Shell Logic Structures 293

6

echo "Broccoli is a healthy choice."
else

echo "Don’t forget to eat your broccoli also."
fi

Throughout the sample scripts, variables are always enclosed in double quota-
tion marks, as in “$veg_name”, “$choice”, “$looptest”, “$yesno”, “$guess”,
and “$myfavorite”, because of how the shell interprets variables. All shell
variables, unless declared otherwise, are strings, which are arrays of alphanu-
meric characters. If you do not enter data in the string variables, the variables
are treated as blank strings, which result in an invalid test. The enclosing double
quotation marks, therefore, maintain the validity of strings, with or without
data, and the test is carried out without producing an error condition.

You create and run this script in Hands-on Project 6-7. However, before you attempt the
project, let’s examine the contents of the script. The first statement uses the echo command
to display a message on the screen. The -n option suppresses the line feed that normally
appears after the message. The second statement uses the read command,which waits for the
user to type a line of keyboard input. The input is stored in the variable specified as the read
command’s argument. The line in the script reads the user’s input into the veg_name
variable.

The next line begins an if statement. The word “if ” is followed by an expression inside a set
of brackets ([]). (The spaces on either side that separate the [and] characters from the
enclosed expression are necessary.) The expression, which is tested to determine if it is true
or false, compares the contents of the veg_name variable with the string broccoli. (When
you use the = operator in an if statement’s test expression, it tests its two operands for
equality. In this case, the operands are the variable $veg_name and the string broccoli. If the
operands are equal, the expression is true—otherwise, it is false. If the contents of the
$veg_name variable are equal to broccoli, the statement that follows the word “then” is
executed. In this script, it is the echo statement,“Broccoli is a healthy choice.”

If the if statement’s expression is false (if the contents of the $veg_name variable do not equal
broccoli), the statement that follows the word “else” is executed. That statement reads,
“Don’t forget to eat your broccoli also.” In this script, it is a different echo statement.

Notice the last statement, which consists of the characters “fi.” fi (“if ” spelled backward)
always marks the end of an if or an if...else statement.

When you evaluate the contents of a variable using a logic structure, such as the
if statement, you need to define the variable first, such as through a read
statement.

You can nest a control structure, such as an if statement, inside another control structure. To
nest means that you layer statements at two or more levels under an original statement

294 Chapter 6 Introduction to Shell Script Programming

structure. For example, a script can have an if statement inside another if statement. The frst
if statement controls when the second if statement is executed, as in the following code
sample:

echo -n "What is your favorite vegetable? "
read veg_name
if ["$veg_name" = "broccoli"]
then

echo "Broccoli is a healthy choice."
else

if ["$veg_name" = "carrots"]
then

echo "Carrots are great for you."
else

echo "Don’t forget to eat your broccoli also."
fi

fi

As you can see, the second if statement is located in the first if statement’s else section. It is
only executed when the first if statement’s expression is false.

Decision logic structures, such as the if statement, are used in applications in which different
courses of action are required, depending on the result of a command or comparison.

Looping Logic
In looping logic, a control structure (or loop) repeats until a specific condition exists or
some action occurs. The basic idea of looping logic is to keep repeating an action until some
condition is met. For example, the logic might keep printing a list of people’s names until it
reaches the final name on the list, prints the final name, and stops. In another example, a
script might open an inventory file of mountain bike models, print the model and quantity
for the first bike, do the same for the second bike, and so on until there are no more bikes
listed in the file.

You learn two looping mechanisms in the sections that follow: the for and the while loop.

The For Loop

Use the for command to loop through a range of values. It causes a variable to take on each
value in a specified set, one at a time, and perform some action while the variable contains
each individual value. The loop stops after the variable has taken on the last value in the set
and has performed the specified action with that value.

An example of a for loop is as follows:

for USERS in john ellen tom becky eli jill
do
echo $USERS

done

In this for loop structure, the first line specifies the values that will be assigned, one at a time,
to the USERS shell variable.Because six values are in the set, the loop repeats six times.Each

Shell Logic Structures 295

6

time it repeats, USERS contains a different value from the set, and the statement between
the do and done statements is executed. The first time around the loop,“john” is assigned to
the USERS variable and is then displayed on the screen via the echo $USERS command.
Next,“ellen” is assigned to the USERS variable and displayed. The loop continues through
“tom,”“becky,”“eli,” and“jill.”After “jill” is assigned to USERS and displayed on the screen,
the looping comes to an end and the done command is executed to end the looping logic.

Hands-on Project 6-8 enables you to use a for loop in a shell script.

Executing Control Structures at the Command Line

Most shell script control structures, such as the if and for statements, must be written across
several lines. This does not prevent you from executing them directly on the command line,
however. For example, you can enter the for statement at the command prompt, enter the
variable name and elements to use for the variable, and press Enter. You go into a
command-line processor to execute the remaining statements in the loop, pressing Enter
after each statement. The shell knows more code comes after you type the first line. It
displays the > prompt, indicating it is ready for the control structure’s continuation. The
shell reads further input lines until you type the word “done,” which marks the end of the
for loop.

In the following lines, each of the elements tennis, swimming, movies, and travel are
displayed one line at a time until the loop ends after displaying travel. (See Figure 6-4.)

$ for myhobbies in tennis swimming movies travel <Enter>
> do <Enter>
> echo $myhobbies <Enter>
> done <Enter>

Hands-on Project 6-8 enables you to compare using the command line to using a shell script
for executing a simple for loop.

Using Wildcard Characters in a Loop

The [] wildcard characters can be very useful in looping logic. For example, consider that
you have four files that all start with the same four characters: chap1, chap2, chap3, and
chap4. You can use the wildcard notation chap[1234] to output the contents of all four file
names to the screen using the following statement:

for file in chap[1234]; do
more $file

done

Notice that in the first line, two commands are combined by using the semicolon (;)
character to run each on one line. Try Hands-on Project 6-9 to use brackets as wildcards.

296 Chapter 6 Introduction to Shell Script Programming

The While Loop
A second approach to looping logic is the while statement. The while statement continues to
loop and execute commands or statements as long as a given condition or set of conditions
is true. As soon as the condition or conditions are false, the loop is exited at the done
statement. The following is an example of a simple shell script that uses a while statement:

echo -n "Try to guess my favorite color: "
read guess
while ["$guess" != "red"]; do
echo "No, not that one. Try again. "; read guess
done

In this example, the first line asks the user to “Try to guess my favorite color: ” and the user’s
response is read into the variable guess.

The while loop tests an expression in a manner similar to the if statement. As long as the
statement inside the brackets is true, the statements inside the do and done statements repeat.
In this example, the expression inside the brackets is “$guess” != “red”, which tests to see if
the guess variable is not equal to the string,“red”. Note that != is the not-equal (inequality)
operator. (Refer to Table 6-3.) The while statement tests the two operands on either side of
the != operator and returns true if they are not equal. Otherwise, it returns false. In this
example, the echo and read statements inside the loop repeat until the user enters red, which
makes the expression “$guess” != “red” false.

Figure 6-4 Using the for loop from the command line

Shell Logic Structures 297

6

Hands-on Project 6-10 gives you the opportunity to program the sample code described
here and then to program a more complex example such as might be used to input name and
address information in a file.

Use looping logic in the form of for and while statements in applications in
which code must be repeated a determined or undetermined number of times.

Case Logic
The case logic structure simplifies the selection of a match when you have a list of choices.
It allows your script to perform one of many actions, depending on the value of a variable.

Consider a fund raiser in which contributors receive different premiums. If someone gives
$20 they get a free pen. If they give $30 they get aT-shirt and if they give $50 they get a free
mug. People who give $100 get a free CD. In case logic, you can take the four types of
contributions and associate each one with a different action. For example, when the user
types in 30 in answer to the question, “How much did you contribute?”, then the screen
displays “Your free gift is a T-shirt.” If the user types in 100, then the screen displays,“Your
free gift is a CD.”The advantage of case logic in this example is that it simplifies your work
by using fewer lines—you use one case statement instead of several if statements, for example.

One common application of the case logic structure is in creating menu selections on a
computer screen. A menu is a screen display that offers several choices. Consider, for
example, a menu used in a human resources application in which there is a menu option to
enter information for a new employee, another menu option to view employee name and
address information, another menu option to view salary information, and so on.Each menu
option branches to a different program. For example, if you select the option to enter
information for a new employee, this starts the employee data entry program. Or, if you
select to view employee salary information, a salary report program runs.

The following is a basic example of how the case statement works in case logic:

echo –n "Enter your favorite color: "; read color
case "$color" in
"blue") echo "As in My Blue Heaven.";;
"yellow") echo "As in the Yellow Sunset.";;
"red") echo "As in Red Rover, Red Rover.";;
"orange") echo "As in Autumn has shades of Orange.";;
*) echo "Sorry, I do not know that color.";;

esac

In this sample script, the case structure examines the contents of the color variable, and
searches for a match among the values listed. When a match is found, the statement that
immediately follows the case value is executed. For example, if the color variable contains
orange, the echo statement that appears after“orange”) is executed: “As inAutumn has shades

298 Chapter 6 Introduction to Shell Script Programming

of Orange.” If the contents of the color variable do not match any of the values listed, the
statement that appears after *) is executed: “Sorry, I do not know that color.”

Note the use of two semicolons (;;) that terminate the action(s) taken after the case
structure matches what is being tested. Also notice that the case structure is terminated by
the word “esac,” which is “case” spelled backward.

As you can see,case logic is designed to pick one course of action from a list of many,depending
on the contents of a variable. This is why case logic is ideal for menus, in which the user chooses
one of several values. Try Hands-on Project 6-11 to program using case logic.

USING SHELL SCRIPTING TO CREATE A MENU

When you create an application that consists of several shell scripts, it is often useful to create
a menu with options that branch to specific scripts. You create menus in the Hands-on
Projects section of this chapter. In preparation for creating a menu, you need to have one
more command under your belt, the tput command. This is one of the less-publicized
UNIX/Linux commands, but is important to know for developing an appealing and
user-friendly menu presentation.

Syntax tput [-options] arguments

Dissection

■ Can be used to initialize the terminal or terminal window display, position text, and
position the cursor

■ Useful options include:
bold=`tput smso` offbold=`tput rmso` enables/disables boldfaced type
clear clears the screen
cols prints the number of columns
cup positions the cursor and text on the screen

The tput command enables you to initialize the terminal display or terminal window, to
place text and prompts in desired locations, and to respond to what the user selects from the
menu. Some examples of what you can do with the tput command are:

■ tput cup 0 0 moves the cursor to row 0, column 0, which is the upper-left corner
of the screen.

■ tput clear clears the screen.

■ tput cols prints the number of columns for the current terminal display.

Using Shell Scripting to Create a Menu 299

6

■ bold=`tput smso` offbold=`tput rmso` sets boldfaced type by setting the bold shell
variable for stand-out mode sequence and by setting the offbold shell variable to
turn off stand-out mode sequence.

Hands-on Project 6-12 enables you to gain experience using the tput command. Hands-on
Project 6-15 uses the tput command so you can begin building a menu to use with an actual
application.

DEBUGGING A SHELL SCRIPT

As you have probably discovered by this point, sometimes a shell script does not execute
because there is an error in one or more commands within the script. For example, perhaps
you entered a colon instead of a semicolon or left out a bracket. Another common problem
is leaving out a space or not putting a space in the correct location.

Now that you have some experience developing shell scripts and have possibly encountered
some problems, you can appreciate why it is important to have a tool to help you
troubleshoot errors. The sh command that is used to run a shell script includes several
options for debugging.

Syntax sh [-options] [shell script]

Dissection

■ In UNIX and Linux, it calls the command interpreter for shell scripts; and in Linux, it uses
the Bash shell with the command interpreter

■ Useful options include:
-n checks the syntax of a shell script, but does not execute command lines
-v displays the lines of code while executing a shell script
-x displays the command and arguments as a shell script is run

Two of the most commonly used sh options are -v and -x. The -v option displays the lines
of code in the script as they are read by the interpreter. The -x option shows somewhat
different information by displaying the command and accompanying arguments line by line
as they are run.

By using the sh command with these options, you can view the shell script line by line as it
is running and determine the location and nature of an error on a line when a script fails.

Try Hands-on Project 6-13 to compare sh -v and sh -x to debug a shell script.

Further, sometimes you want to test a script that updates a file, but you want to give the
script a dry run without actually updating the file—particularly so that data in the file is not
altered if the script fails at some point.Use the -n option for this purpose because it reads and

300 Chapter 6 Introduction to Shell Script Programming

checks the syntax of commands in a script, but does not execute them. For example, if you
are testing a script that is designed to add new information to a file, when you run it with
the sh -n command, the script does not actually process the information or add it to the file.
If a syntax error exists, you see an error message so you know that you must fix the script
before using it on live data.

Now that you have an idea of how to create a menu script, it is helpful to learn some
additional shell features and commands before creating your application. You first learn
more about how to customize your personal environment and how to use the trap command
to clean up unnecessary files in your environment.

CUSTOMIZING YOUR PERSONAL ENVIRONMENT

When your work requirements center on computer programming and shell scripting,
consider customizing your environment by modifying the initial settings in the login scripts.
A login script is a script that runs just after you log in to your account. For example, many
programmers set up a personal bin directory in which they can store and test their new
programs without interfering with ongoing operations.The traditional UNIX/Linux name
for directories that hold executable files is bin.

A useful tool for customizing the command environment is the alias. An alias is a name that
represents another command. You can use aliases to simplify and automate commands you
use frequently. For example, the following command sets up an alias for the rm command.

alias rm="rm -i"

This command causes the rm -i command to execute any time the user enters the rm
command. This is a commonly used alias because it ensures that users are always prompted
before the rm command deletes a file. The following are two other common aliases that help
safeguard files:

alias mv="mv -i"
alias cp="cp -i"

Syntax alias [-options] [name =“command”]

Dissection

■ Creates an alternate name for a command

■ Useful options include:
-p prints a list of all aliases

alias is a built-in Bash shell command.You can learn more about alias by entering man bash
and find alias under the SHELL BUILTIN COMMANDS section. Hands-on Project 6-14
enables you to set aliases.

Customizing Your Personal Environment 301

6

The .bashrc file that resides in your home directory as a hidden file (enter ls -a to view
hidden files) can be used to establish customizations that take effect for each login session.
The .bashrc script is executed each time you generate a shell, such as when you run a shell
script. Any time a subshell is created, .bashrc is reexecuted. The following .bashrc file is
commented to explain how you can make your own changes.

.bashrc
Source global definitions
if [-f /etc/bashrc]; then

. /etc/bashrc # if any global definitions are defined
run them first

alias rm='rm -i' # make sure user is prompted before
removing files

alias mv='mv -i' # make sure user is prompted before
overlaying files

set -o ignoreeof # Do not allow Ctrl-d to log out
set -o noclobber # Force user to enter >| to write

over existing files
PS1="\w \$" # Set prompt to show working directory

In addition to knowing how to customize your work environment, you should also be
familiar with the trap command to clean your storage of temporary files.

THE TRAP COMMAND

trap is a command in the Bash shell that is used to execute another command when a
specific signal is received. For example, you might use trap to start a new program after it
detects through an operating system signal that a different program has terminated. Another
example is using trap to end a program when trap receives a specific signal, such as trapping
when the user types Ctrl-c and gracefully ending the currently running program.

The trap command is useful when you want your shell program to automatically remove any
temporary files that are created when the shell script runs. The trap command specifies that
a command, listed as the argument to trap, is read and executed when the shell receives a
specified system signal.

Syntax trap [command] [signal number]

Dissection

■ When a signal is received from the operating system, the argument included with trap is
executed.

■ Common signals used with trap include:
0 The completion of a shell script has occurred
1 A hang up or logout signal has been issued
2 An interrupt has been received, such as Ctrl+c

302 Chapter 6 Introduction to Shell Script Programming

3 A quit signal has been issued
4 An illegal instruction has been received
9 A termination signal has been issued
15 A program has been ended, such as through a kill command
19 A process has been stopped
20 A process has been suspended

■ Useful options include:
-l displays a listing of signal numbers and their associated signal designations

Here is an example of a use for the trap command:

trap "rm ~/tmp/* 2> /dev/null; exit" 0

This command has two arguments: a command to be executed and a signal number from the
operating system. The command rm ~/tmp/* 2> /dev/null; exit deletes everything in the
user’s tmp directory, redirects the error output of the rm command to the null device (so it
does not appear on the screen), and issues an exit command to terminate the shell. The signal
specified is 0,which is the operating system signal generated when a shell script is exited. So,
if this sample command is part of a script file, it causes the specified rm command to execute
when signal 0 is sent by the operating system.

The programmer often sets up ~/tmp (a subdirectory of the user’s home directory) to store
temporary files. When the script file exits, any files placed in ~/tmp can be removed. This
is called “good housekeeping” on the part of the programmer.

The trap command is another example of a built-in Bash shell command. You can learn
more about trap by entering man bash and finding the trap command listed in the SHELL
BUILTIN COMMANDS section.

PUTTING IT ALL TOGETHER IN AN APPLICATION

In this chapter,you learned all of the pieces necessary to create a multifunctional application.
You learned how to:

■ Assign and manage variables

■ Use shell operators

■ Employ shell logic structures

■ Use additional wildcard characters

■ Use tput for managing screen initialization and screen text placement

■ Use the trap command to clean up temporary files used by an application

In Hands-on Projects 6-15 through 6-20, you use the skills and knowledge you have
acquired in this and previous chapters to build a multipurpose application. The application

Putting it All Together in an Application 303

6

you build simulates one that an organization might use to track telephone numbers and
other information about its employees. This application enables the user to input new
telephone number and employee information, to print a list of telephone numbers, and to
search for a specific telephone number. You build the application entirely from shell scripts.
Also, to make this undertaking manageable (and be consistent with programming practices),
you build the application through creating small pieces that you prototype, test, and later link
together into one menu-based application.

CHAPTER SUMMARY

A high-level language (such as C, C++, or COBOL) is a language that uses English-like
expressions. A high-level language must be converted into a low-level (machine) lan-
guage before the computer can execute it. Programmers use a compiler to convert the
high-level language to machine language.

An interpreter reads commands or a programming language and interprets each line into
an action. A shell, such as the Bash shell, interprets UNIX/Linux shell scripts. Shell scripts
do not need to be converted to machine language because the UNIX/Linux shell
interprets the lines in shell scripts.

UNIX/Linux shell scripts, created with the vi or Emacs editor, contain instructions that
do not need to be written from scratch, but can be selectively chosen from the operating
system’s inventory of executable commands.

Linux shells are derived from the UNIX Bourne, Korn, and C shells. The three typical
Linux shells are Bash, csh/tcsh, and ksh/zsh;Bash is the most commonly used Linux shell.

UNIX/Linux employ three types of variables: configuration, environment, and shell.
Configuration variables contain setup information for the operating system.Environment
variables hold information about your login session. Shell variables are created in a shell
script or at the command line. The export command is used to make a shell variable an
environment variable.

The shell supports many operators, including ones that perform arithmetic operations.

You can use wildcard characters in shell scripts, including the bracket ([]) characters.
Brackets surround a set of values that can match an individual character in a name
or string.

The logic structures supported by the shell are sequential, decision, looping, and case.

You can use the tput command to manage cursor placement.

You can customize the .bashrc file that resides in your home directory to suit particular
needs, such as setting alias and default shell conditions.

You can create aliases and enter them into .bashrc to simplify commonly used commands,
such as ls -l and rm -i.

Use the trap command inside a script file to remove temporary files after the script file has
been run (exited).

304 Chapter 6 Introduction to Shell Script Programming

COMMAND SUMMARY: REVIEW OF CHAPTER 6 COMMANDS

Command Purpose Options Covered in This Chapter
alias Establishes an alias -p prints all aliases.
case. . .in. . .esac Allows one action from a

set of possible actions to
be performed, depending
on the value of a variable

export Makes a shell variable an
environment variable

-n can be used to undo the export.
-p lists the exported variables.

for: do. . .done Causes a variable to take
on each value in a set of
values; an action is per-
formed for each value

if. . .then. . .
else. . .fi

Causes one of two actions
to be performed, depend-
ing on the condition

let Stores arithmetic values in
a variable

printenv Prints a list of environment
variables

set Displays currently set shell
variables; when options are
used, sets the shell
environment

-a exports all shell variables after they
are assigned.
-n takes commands without execut-
ing them, so you can debug errors.
-o sets a particular shell mode—when
used with noclobber as the argu-
ment, it prevents files from being
overwritten by use of the > operator.
-u yields an error message when
there is an attempt to use an unde-
fined variable.
-v displays command lines as they are
executed.

sh Calls the command inter-
preter for shell scripts

-n checks the syntax of a shell script,
but does not execute command lines.
-v displays the lines of code while
executing a shell script.
-x displays the command and argu-
ments as a shell script is run.

tput cup Moves the screen cursor to
a specified row and column

tput clear Clears the screen
tput cols Prints the number of col-

umns on the current
terminal

tput smso Enables boldfaced output
tput rmso Disables boldfaced output

Command Summary: Review of Chapter 6 Commands 305

6

Command Purpose Options Covered in This Chapter
trap Executes a command when

a specified signal is
received from the operat-
ing system

-l displays a listing of signal numbers
and their signal designations.

while:
do. . .done

Repeats an action while a
condition exists

KEY TERMS

.bashrc file — A file in your home directory that you can use to customize your work
environment and specify what occurs each time you log in. Each time you start a shell, that
shell executes the commands in .bashrc.
algorithm — A sequence of instructions, programming code, or commands that results in
a program or that can be used as part of a program.
alias — A name that represents a command. Aliases are helpful in simplifying and
automating frequently used commands.
arithmetic operator — A character that represents a mathematical activity. Arithmetic
operators include + (addition), - (subtraction), * (multiplication), and / (division).
branch instruction — An instruction that tells a program to go to a different section
of code.
case logic — One of the four basic shell logic structures employed in program
development. Using case logic, a program can perform one of many actions, depending on
the value of a variable and matching results to a test. It is often used when there is a list of
several choices.
compiler — A program that reads the lines of code in a source file, converts them to
machine-language instructions or calls the assembler to convert them into object code, and
creates a machine-language file.
configuration variable — A variable that stores information about the operating system
and does not change the value.
control structures — See logic structures.
debugging — The process of going through program code to locate errors and then
fixing them.
decision logic — One of the four basic shell logic structures used in program
development. In decision logic, commands execute only if a certain condition exists. The if
statement is an example of a coded statement that sets the condition(s) for execution.
defining operator — Used to assign a value to a variable.
environment variable — A value in a storage area that is read by UNIX/Linux when you
log in.Environment variables can be used to create and store default settings, such as the shell
that you use or the command prompt format you prefer.
evaluating operator — Enables you to evaluate the contents of a variable, such as by
displaying the contents.

306 Chapter 6 Introduction to Shell Script Programming

glob —A character used to find or match file names; similar to a wildcard. Glob characters
are part of glob patterns.
glob pattern — A combination of glob characters used to find or match multiple file names.
high-level language — A computer language that uses English-like expressions. COBOL,
Visual Basic (VB), C, and C++ are high-level languages.
interpreter — A UNIX/Linux shell feature that reads statements in a program file,
immediately translates them into executable instructions, and then runs the instructions.
Unlike a compiler, an interpreter does not produce a binary (an executable file) because it
translates the instructions and runs them in a single step.
logic structures — The techniques for structuring program code that affect the order in
which the code is executed or how it is executed, such as looping back through the code
from a particular point or jumping from one point in the code to another. Also called
control structures or control logic.
login script — A script that runs just after you log in to your account.
looping logic — One of the four basic shell logic structures used in program development.
In looping logic, a control structure (or loop) repeats until some specific condition exists or
some action occurs.
nest —When creating program code, a practice of layering statements at two or more levels
under an original statement structure.
operand — The variable name that appears to the left of an operator or the variable value
that appears to the right of an operator. For example, in NAME=Becky, NAME is the
variable name,= is the operator, and Becky is the variable value.Note that no spaces separate
the operator and operands.
PATH variable — A path identifier that provides a list of directory locations where
UNIX/Linux look for executable programs.
program development cycle —The process of developing a program,which includes (1)
creating program specifications, (2) the design process, (3) writing code, (4) testing, (5)
debugging, and (6) correcting errors.
prototype — A running model, which lets programmers review a program before com-
mitting to its design.
redirection operator — An operator or symbol that changes the input or output data
stream from its default direction, such as using > to redirect output to a file instead of to the
screen.
relational operator — Compares the relationship between two values or arguments, such
as greater than (>), less than (<), equal to (=), and others.
sequential logic — One of four basic logic structures used for program development. In
sequential logic, commands execute in the order they appear in the program, except when
a branch instruction changes the flow of execution.
shell script operator — The symbols used with shell scripts that define and evaluate
information, that perform arithmetic actions, and that perform redirection or piping
operations.
shell variable — A variable you create at the command line or in a shell script. It is valuable
for use in shell scripts for storing information temporarily.

Key Terms 307

6

source file — A file used for storing a program’s high-level language statements (code) and
created by an editor such as vi or Emacs,To execute, a source file must be converted to a
low-level machine language file consisting of object code.
statement — A reference to a line of code that performs an action in a program.
string — A nonnumeric field of information treated simply as a group of characters.
Numbers in a string are considered characters rather than digits.
symbolic name — A name used for a variable that consists of letters, numbers, or
characters, that is used to reference the contents of a variable, and that often reflects the
variable’s purpose or contents.
syntax error — A grammatical mistake in a source file or script. Such mistakes prevent a
compiler or interpreter from converting the file into an executable file or from running the
commands in the file.

REVIEW QUESTIONS

1. Your organization routinely uses scripts, but as some employees have left, there are
scripts that contain only command lines and no one is certain of their purpose.What
steps can be taken to ensure a way for others to know the purpose of a script?
a. Create text documentation of scripts and use the scriptdoc command to organize and

display the documentation.
b. Use the whatis command to create and save new documentation for scripts.
c. Require that script writers place comment lines inside the scripts using the # symbol

to begin each comment line.
d. Require that scripts be named using the descriptive sentence naming function in

UNIX/Linux.

2. Which of the following shells enables the use of scripts? (Choose all that apply.)
a. Bash
b. csh
c. sea
d. zsh

3. You frequently use the command ls -a and want to save time by just entering l to do
the same thing.Which of the following commands enables you to set your system to
view hidden files by only entering l ?
a. put l= ls -a
b. set l to ls -a
c. set " ls -a" to "l"
d. alias l=" ls -a"

308 Chapter 6 Introduction to Shell Script Programming

4. You have written a script, but when you run it there is an error.Which of the fol-
lowing commands can you use to debug your script? (Choose all that apply.)
a. debug -all
b. sh -v
c. ./ -d
d. sh -x

5. You have written a shell program that creates four temporary files.Which of the fol-
lowing commands can you use to remove these files when the script has completed
its work?
a. trap
b. grep
c. del
d. clear

6. Which of the following commands works well for menus used in a script? (Choose
all that apply.)
a. do
b. case
c. choose
d. comm

7. You are currently in the source directory, which is the new directory you have just
created for storing and running your scripts.You want to make certain that the
source directory is in your default path.Which of the following commands enables
you to view the current default path settings?
a. cat PATH
b. show path
c. sed PATH!
d. echo $PATH

8. You have created a script for use by your entire department in a commonly accessed
directory. Only you are able to run the script, which works perfectly.Which of the
following is likely to be the problem?
a. You did not link the script.
b. You did not give all users in your department execute permission for that script.
c. You did not designate to share ownership of the script.
d. There are two kinds of scripts, universal and private.You have created a private script

and need to convert it to universal.

Review Questions 309

6

9. Your current working directory contains a series of files that start with the word
“account” combined with a, b, c, d, and e, such as accounta, accountb, and so on.
Which of the following commands enables you to view the contents of all of these
files? (Choose all that apply.)
a. ls account "a -e"
b. less account "a,e"
c. more account[a,b,c,d,e]
d. cat account{a to e}

10. For which of the following logic structures used within a script is fi the final line for
that logic structure? (Choose all that apply.)
a. loop
b. case
c. for
d. if

11. Which of the following are examples of arithmetic or relational operators? (Choose
all that apply.)
a. !
b. <
c. %
d. *

12. You have created a series of scripts that use the same environment variables. How-
ever, when you run these scripts, some of them do not seem to recognize the envi-
ronment variables you have set.What is the problem?
a. You need to use the export command so these variables have global use.
b. You are creating too many environment variables, because the maximum number

is five.
c. You must use the home command to make these variables native to your home

directory.
d. Only the system administrator can create environment variables and you should

contact her to create the ones you need to use.

310 Chapter 6 Introduction to Shell Script Programming

13. You have spent the last two hours creating a report in a file and afterwards you use
cat to create a new file. Unfortunately the new file name you used was the same as
the name you used for the report, and now your report is gone.What should you do
next time to prevent this from happening?
a. Enter the cat -s command before you start.
b. Enter the command, set -o noclobber before you start.
c. Always use the cat -m command when you use cat to create a file, because this

command checks to see if the file already exists.
d. After you created the report file you should have used the chmod a-o command to

prevent the file from being deleted or overwritten.

14. You have remotely logged into a computer running UNIX or Linux, but you are
not certain about which operating system you are using. However, when you display
the contents of the variable it shows which operating system
you are using.
a. OP
b. OPTIND
c. OID
d. OSTYPE

15. What command can you use to view the environment and configuration variables
already configured on your system?
a. var
b. envar
c. printenv
d. let -all

16. Which of the following are valid expressions? (Choose all that apply.)
a. let x=5*9
b. let x=y+10
c. let m=12/4
d. let r=128-80

17. When you type for wood maple spruce oak pine at the command line and then press
Enter, what should you type next at the > prompt?
a. do
b. go
c. fi
d. term

Review Questions 311

6

18. You want to store a long listing of your files in a variable called myfiles.Which of the
following commands enables you to do this?
a. let ls -l=myfiles
b. echo ls -l > myfiles
c. myfiles=‘ls -l‘
d. let ls -l > myfiles

19. What error is in the following script code?

case “selection” in
“ i ”) ./listscript ;;
“ ii ”) ./numberscript ;;
“ iii ”) ./findscript ;;
esac

a. All references to ;; should be replaced with a back quote.
b. There should be a dollar sign in front of selection, as in “$selection”
c. There should be no double quote marks in the code.
d. The code must end with the statement,“out”.

20. You are working with a colleague on a script called value that updates several files.
You want to test the script, but not update the files.Which of the following com-
mands can you use?
a. test -noupdate value
b. trap -u value
c. set -u value
d. sh -n value

21. You only have to enter the name of a script to have it run, such as entering myscript.
What setting enables you to do this?
a. You have set the SCRIPT environment variable to 1 instead of the default 0.
b. Right after you logged in you entered setup scripts.
c. The first line in your scripts is always run,which enables scripts to be run in this way.
d. You have placed the directory from which you run the scripts in your PATH

variable.

22. What would you expect to find in the HOME environment variable?

23. What is the difference between a compiler and an interpreter?

24. What command would you use to place the cursor in row 10 and column 15 on the
screen or in a terminal window?

25. What is the purpose of a login script?

312 Chapter 6 Introduction to Shell Script Programming

HANDS-ON PROJECTS

Complete these projects using the command line, such as from a terminal
window, and log in using your own account and home directory.

Project 6-1
Before setting one or more environment variables, it is a good idea to view their current
configurations. In this project, you use the printenv command to view a list of your
environment variables.

To see a list of your environment variables:

1. Your list of environment variables might be longer than the default screen or termi-
nal window size, so it can be helpful to pipe the output into the more command.
Type printenv | more and press Enter.

2. Record some examples of environment variables. Press the spacebar to advance
through the listing one screen at a time.

3. Type clear and press Enter to clear the screen.

4. Next, use the printenv command to view the contents of two variables: SHELL and
PATH. Type printenv SHELL PATH and press Enter. (See Figure 6-5.)

5. Type clear and press Enter to clear the screen for the next project.

Project 6-2
This project enables you to use the defining and evaluating operators to learn how they
work. You begin by assigning a value to a variable and then view the contents of the variable
you assigned. You then learn how to assign a variable that contains spaces, and you compare
using single and double quotation marks to evaluate the contents of a variable. Finally, you
use the back quote marks to execute a command and store the result in a variable.

To create a variable, and assign it a value:

1. Type DOG=Shepherd and press Enter.

You’ve created the variable DOG and set its value to Shepherd.

To see the contents of a variable:

1. Type echo DOG and press Enter.

You see the word “DOG.”

2. To see the contents of the DOG variable, you must precede the name of the variable
with a $ operator. Type echo $DOG and press Enter.You see the word “Shepherd.”
(See Figure 6-6.)

Hands-on Projects 313

6

Figure 6-5 Using printenv to view only two environment variables

Figure 6-6 Viewing the contents of a variable

314 Chapter 6 Introduction to Shell Script Programming

To use double quotation marks to set a variable to a string of characters
containing spaces:

1. Type MEMO="Meeting will be at noon today" and press Enter.

2. Type echo $MEMO and press Enter.

You see the contents of the MEMO variable: Meeting will be at noon today.

To demonstrate how double quotation marks do not suppress the viewing of a
variable’s contents, but single quotation marks do suppress the viewing:

1. Type echo '$HOME' and press Enter.

You see $HOME on the screen.

2. Type echo "$HOME" and press Enter.

You see the path of your home directory on the screen.

To demonstrate the back quote operator for executing a command:

1. Type TODAY=‘date‘ and press Enter. This command creates the variable
TODAY, executes the date command, and stores the output of the date command in
the variable TODAY. (No output appears on the screen.)

2. Type echo $TODAY and press Enter. You see the output of the date command
that was executed in Step 1.

3. Type clear and press Enter to clear the screen for the next project.

Project 6-3
In this project, you employ the let command to practice using arithmetic operators to set the
contents of a shell variable. First, you use an expression with constants (no variables), and
then you use an expression containing a variable.

To practice using the arithmetic operators:

1. Type let X=10+2*7 and press Enter.

2. Type echo $X and press Enter. You see 24 on the screen.

3. Type letY=X+2*4 and press Enter.

4. Type echo $Y and press Enter. You see 32 on the screen, as shown in Figure 6-7.

5. Type clear and press Enter to clear the screen for the next project.

Project 6-4
In this project, you export a shell variable to make it globally recognized.

To demonstrate the use of the export command:

1. Type cat > testscript and press Enter.

Hands-on Projects 315

6

2. Type echo $MY_VAR and press Enter.

3. Type Ctrl+d. You have created a simple shell script named testscript. Its only func-
tion is to display the value of the MY_VAR variable.

4. To make the script executable, type chmod ugo+x testscript, and press Enter.

5. Type MY_VAR=2, and press Enter.

6. Type echo $MY_VAR and press Enter to confirm the preceding operation. You
see 2 on the screen.

7. Next look at the list of environment variables. Type printenv | more and
press Enter.

Look carefully as you scroll through the output of the printenv command. You do not
see the MY_VAR variable.

8. Type clear and press Enter to clear the screen.

9. Execute the shell script by typing ./testscript and pressing Enter. The script dis-
plays a blank line. This is because it does not have access to the shell variable
MY_VAR.

10. Make the variable available to the script by typing export MY_VAR and
pressing Enter.

11. Execute the script again by typing ./testscript and pressing Enter. This time, the
value 2 appears. (See Figure 6-8 on the next page.)

Figure 6-7 Assigning shell script variables using let

316 Chapter 6 Introduction to Shell Script Programming

12. Now look at your list of environment variables by typing printenv | more and
pressing Enter. Again, look carefully as you scroll through the list. This time, you see
MY_VAR listed.

13. Type clear and press Enter to clear the screen for the next project.

Project 6-5
In Hands-on Project 6-4, you had to use ./ before testscript because your current working
directory is not in your PATH environment variable. In this project, you view the contents
of the PATH variable. Next, you add the current working directory to the PATH variable
and run testscript without using the ./ characters.

To see the contents of the PATH variable:

1. Type echo $PATH and press Enter.

You see a list of directories. Notice that the path names are separated by colons (:).

To add the current working directory to the PATH variable:

1. Type PATH=$PATH:. and press Enter.

2. Type echo $PATH and press Enter. The dot (.) is now appended to the list.

Figure 6-8 Using the export command

Hands-on Projects 317

6

3. You can now run scripts in your current working directory without typing the ./
characters before their names. Test this by typing testscript and pressing Enter. You
see testscript execute, as in Figure 6-9.

Project 6-6
In this project, you gain further experience in writing a very simple shell script using
sequential logic. In these steps, you create the shell script, seqtotal.

To demonstrate sequential logic:

1. Type vi seqtotal and press Enter.

2. Type i to switch to vi’s insert mode.

3. Type the following lines:

let a=1
let b=2
let c=3
let total=a+b+c
echo $total

4. Press Esc to switch to vi’s command mode.

5. Type :x and press Enter to save the file and exit vi.

Figure 6-9 Adding your current working directory to the PATH variable to run shell scripts

318 Chapter 6 Introduction to Shell Script Programming

6. Next test the new shell script, seqtotal. (To save a few keystrokes, use the sh com-
mand instead of the chmod command.) Type sh seqtotal and press Enter.

You see the output of the script, which is 6.

Project 6-7
This project provides your first introduction to using an if statement in a shell script and
demonstrates decision logic. In the first set of steps, you create a script using a basic if
statement. Then, in the second set of steps, you modify your script to include an if statement
nested within an if statement.

To demonstrate the if statement as well as to implement decision logic:

1. Type vi veg_choice and press Enter.

2. Type i to switch to vi’s insert mode.

3. Type the following lines:

echo -n "What is your favorite vegetable? "
read veg_name
if ["$veg_name" = "broccoli"]
then

echo "Broccoli is a healthy choice."
else

echo "Don’t forget to eat your broccoli also."
fi

4. Be certain your editing session looks like the one in Figure 6-10. Press Esc to switch
to vi’s command mode.

5. Type :x and press Enter to save the file and exit vi.

6. Make the script executable by typing chmod ugo+x veg_choice and pressing
Enter. Next, run the script by typing ./veg_choice and pressing Enter (if you are
continuing the same terminal session from Hands-on Project 6-5, you don’t need to
type “./”, because the PATH environment variable stil contains the current working
directory.)

7. When asked to enter the name of your favorite vegetable, answer broccoli.

8. Run the script again and respond with corn or some other vegetable name.

Remember that you must use the chmod command first to make the script
executable. Then, after the command prompt, type the path to the script plus
the script’s name to execute it. Another way to run the script is to use the sh
command, as you did with the seqtotal script. Yet a third alternative after you
use the chmod command is to add your current working directory to your path,
as you learned in Hands-on Project 6-5. Then, you just enter the name of your
script to run it.

Hands-on Projects 319

6

To practice writing a nested if statement:

1. Open the veg_choice file in vi or Emacs.

2. Edit the file so it contains the following lines. (Code has been added to the else part
of the original if statement. See the lines in bold.)

echo -n "What is your favorite vegetable? "
read veg_name
if ["$veg_name" = "broccoli"]
then

echo "Broccoli is a healthy choice."
else

if ["$veg_name" = "carrots"]
then

echo "Carrots are great for you."
else

echo "Don’t forget to eat your broccoli also."
fi

fi

3. Execute the script and respond with carrots when asked for your favorite vegetable.
You should see the response “Carrots are great for you.”

4. Type clear and press Enter to clear the screen for the next project.

Figure 6-10 Creating the veg_choice script

320 Chapter 6 Introduction to Shell Script Programming

Project 6-8
In this project, you learn to use a for loop in a shell script and on the command line, both
demonstrating how looping logic works.

To demonstrate looping logic in a shell script:

1. Create the file our_users with vi or Emacs.

2. Type the following lines into the file:

for USERS in john ellen tom becky eli jill
do
echo $USERS

done

3. Save the file and exit the editor.

4. Give the file execute permission, and run it. Your results should look similar to those
shown in Figure 6-11.

To demonstrate entering the same for loop at the command line:

1. At the command line, enter for USERS in john ellen tom becky eli jill and
press Enter.

2. At the > prompt, type do and press Enter.

Figure 6-11 Running the our_users script to execute a sample for loop

Hands-on Projects 321

6

3. Type echo $USERS and press Enter.

4. Type done and press Enter. What do you see on the screen?

5. Type clear and press Enter to clear the screen for the next project.

Project 6-9
In this project, you create a for loop and use the brackets wildcard format to loop through
each element in a for statement, which consists of simulated book chapters. You first create
the files chap1 through chap4.Next, you create a script that displays the contents of each file
using the more command.

To create the sample chapter file and use wildcards in a for loop:

1. Type cat > chap1 and press Enter.

2. Type This is chapter 1 and press Enter.

3. Type Ctrl+d. The file chap1 is created.

4. Type cat > chap2 and press Enter.

5. Type This is chapter 2 and press Enter.

6. Type Ctrl+d. The file chap2 is created.

7. Type cat > chap3 and press Enter.

8. Type This is chapter 3 and press Enter.

9. Type Ctrl+d. The file chap3 is created.

10. Type cat > chap4 and press Enter.

11. Type This is chapter 4 and press Enter.

12. Type Ctrl+d. The file chap4 is created.

13. Use the vi or Emacs editor to create the shell script, chapters. The script should have
these lines:

for file in chap[1234]; do
more $file

done

14. Save the file and exit the editor.

15. Give the file execute permission, and test it. You see output similar to Figure 6-12.

Project 6-10
The while statement is another example of looping logic in addition to the for statement. In
this project, you first create a shell program that contains a basic while statement. Next, you
create a shell program as might be used for an onscreen data input form to store name and
address information in a flat data file.

322 Chapter 6 Introduction to Shell Script Programming

To use a basic while statement in a shell script:

1. Use the vi or Emacs editor to create a shell script called colors.

2. Enter the following lines of code:

echo -n "Try to guess my favorite color: "
read guess
while ["$guess" != "red"]; do
echo "No, not that one. Try again. "; read guess

done

3. Save the file and exit the editor.

4. Give the file execute permission, and test it.Type clear and press Enter to clear the
screen.

Another example of the while statement is a data-entry form.

To create a while loop that serves as a data-entry form:

1. Use vi or Emacs to create a script file, nameaddr.

2. Type these lines into the file:

looptest=y
while ["$looptest" = y]
do
echo –n "Enter Name: "; read name

Figure 6-12 Executing the chapters shell script

Hands-on Projects 323

6

echo –n "Enter Street: "; read street
echo –n "Enter City: "; read city
echo –n "Enter State: "; read state
echo –n "Enter Zip Code: "; read zip
echo –n "Continue? (y)es or (n)o: "; read looptest
done

3. Save the file and exit the editor.

4. Give the file execute permission, and test it. As you test the script, enter several
names and addresses. When you finish, answer n (for no) when the script asks you,
“Continue? (y)es or (n)o.” (See Figure 6-13.) Type clear and press Enter to clear the
screen for the next project.

Project 6-11
Case logic is often used when many choices are given through a program or when many
responses can be made on the basis of one choice. In this project, you create a shell script that
employs case logic to respond to your favorite color (many possible responses selected on the
basis of one choice).

To demonstrate case logic:

1. Use the vi or Emacs editor to create the manycolors shell script.

Type these lines into the file:

Figure 6-13 Using the nameaddr script

324 Chapter 6 Introduction to Shell Script Programming

echo –n "Enter your favorite color: "; read color
case "$color" in
"blue") echo "As in My Blue Heaven.";;
"yellow") echo "As in the Yellow Sunset.";;
"red") echo "As in Red Rover, Red Rover.";;
"orange") echo "As in Autumn has shades of Orange.";;
*) echo "Sorry, I do not know that color.";;

esac

2. Save the file and exit the editor

3. Give the file execute permission, and test it. (See Figure 6-14.)

Project 6-12
The tput command enables you to initialize the screen and position the cursor and text in an
appealing way. This project introduces you to tput. First, you enter the command directly
from the command line.Next,you create a sample shell script and menu to understand more
about this command’s capabilities.

To use tput directly from the command line:

1. Type the following command sequence, and press Enter:

tput clear ; tput cup 10 15 ; echo "Hello" ; tput cup 20 0

Figure 6-14 Using the manycolors shell script

Hands-on Projects 325

6

In the results of this command sequence, the screen clears; the cursor is positioned at
row 10,column 15,on the screen; the word“Hello” is printed;and the prompt’s position
is row 20, column 0.

To create a sample input menu in a shell script:

1. Use the vi or Emacs editor to create a screen-management script, scrmanage, con-
taining the following lines:

tput cup $1 $2 # place cursor on row and col
tput clear # clear the screen
bold=‘tput smso‘ # set stand-out mode - bold
offbold=‘tput rmso‘ # reset screen – turn bold off
echo $bold # turn bold on
tput cup 10 20; echo "Type Last Name:" # bold caption
tput cup 12 20; echo "Type First Name:" # bold caption
echo $offbold # turn bold off
tput cup 10 41; read lastname # enter last name
tput cup 12 41; read firstname # enter first name

2. Save the file and exit the editor.

3. Give the file execute permission, and then test it. (See Figure 6-15.) Clear the screen
for the next project.

The single back quotes around `tput smso` and `tput rmso` must be in the
direction as shown or the bold/unbold command does not work. This single
back quote mark is found in the upper-left corner of most keyboards, usually on
the same key as the tilde (~).

Project 6-13
In this project, you first compare the use of the sh -v and sh -x options in terms of the output
to the screen. Next, you practice debugging a shell script using sh -v.

To compare the results of the sh -v and sh -x options to debug a script:

1. Type sh -v colors (remember that colors is the script you created earlier in this
chapter in which the favorite color is red), and press Enter.

2. Type green and press Enter.

3. Type red and press Enter. Notice that the command lines are printed.

4. Type sh -x colors and press Enter.

5. Type green and press Enter.

6. Type red and press Enter. Now, the command lines and arguments are displayed
with a plus in front of them. Figure 6-16 illustrates the output of the sh -v and sh -x
options.

326 Chapter 6 Introduction to Shell Script Programming

Figure 6-15 Using tput in a script to produce a simple menu

Figure 6-16 Comparing sh -v and sh -x for debugging

Hands-on Projects 327

6

To practice debugging a shell script:

1. Use the vi or Emacs editor to open the colors script for editing.

2. Go to the third line and delete the closing (right) bracket (]) after “red” and then
exit, saving your change.

3. Type sh -v colors and press Enter.

4. Type green and press Enter. In the final line of output, you’ll see a note that shows
the closing bracket is missing on line 3 of the colors script:

colors: line 3: [: missing ']'

5. Use vi or Emacs to open the colors script and put the missing closing bracket
back in.

6. Delete the echo command (only the word echo and not the entire command line)
on the fourth line of the colors script. Close the editor and save your work.

7. Type sh -x colors and press Enter.

8. Type green and press Enter. Notice in the message that a command is missing on
line 4:

colors: line 4: No, not that one try again. : command
not found

9. Type red and press Enter to exit the script, or press Ctrl+z to exit.

10. Open the colors script using the vi or Emacs editor, retype the echo command on
line 4, and close and save your work.

Project 6-14
In this project, students learn how to create an alias.

To create an alias:

1. To create an alias called ll for the ls command, type alias ll="ls -l", and press Enter.
Now, when you use the new ll alias, the ls -l command executes automatically.

2. Test the alias by typing ll and pressing Enter. You see a long directory listing.

Project 6-15
This project is the first in a series of projects to develop a sample application that tracks
telephone number and other information for employees in an organization. In this project,
you first ensure that you have a source subdirectory in which to store the source files you
develop. Next, you create the initial menu that users see when they execute the application.
Be certain you retain the phmenu script file that you create here so you can use it in later
projects.

328 Chapter 6 Introduction to Shell Script Programming

To set up your source subdirectory:

1. In Chapter 4, you created a source subdirectory under your home directory. With
your home directory as your current working directory (type cd and press Enter),
type ls and press Enter to ensure that your source subdirectory exists. If it does not
exist, type mkdir source, and press Enter.

2. Type cd source and press Enter to make the source directory your current working
directory. Be certain you are in your source directory for all of the projects that fol-
low in this chapter. In this way, you ensure that your application files are in
one place.

To begin work on the menu for your application:

1. Use the vi or Emacs editor to enter the phmenu script shown next.

#==
Script Name: phmenu
By: Your initials here
Date: Today’s date
Purpose: A menu for the Corporate Phone List
Command Line: phmenu
#==
loop=y
while ["$loop" = y]
do
clear
tput cup 3 12; echo "Corporate Phone Reporting Menu"
tput cup 4 12; echo "=============================="
tput cup 6 9; echo "P - Print Phone List"
tput cup 7 9; echo "A - Add New Phones"
tput cup 8 9; echo "S - Search for Phones"
tput cup 10 9; echo "Q - Quit: "
tput cup 10 19;
read choice || continue

done

2. Save the file and exit the editor.

3. Give the file execute permission by typing chmod a+x phmenu and pressing
Enter. Next, test the script by typing ./phmenu and pressing Enter. (See Figure
6-17.) (You have to press Ctrl+c to exit the script because the Quit option has not
yet been programmed.)

4. Clear the screen for the next project.

Project 6-16
The data file that you use for your telephone number application is called corp_phones. In
this project, you ensure that the corp_phones file is created and contains some preliminary

Hands-on Projects 329

6

data that is useful for testing your application as you continue to develop it. You also practice
extracting information from the file by using the grep command.

To create the corp_phones file:

1. In Chapter 4, you created the corp_phones, corp_phones1, and corp_phones2 files in
your home directory and performed projects to manipulate and alter data in those
files. If those files are still in your home directory, use the rm command to delete
them. This ensures two things: that the corp_phones file you create next has the
proper information for using your new telephone number application, and that you
know what is in the corp_phones file for the projects you complete in this chapter.
Toward that end, some of the data you now enter is slightly different than what you
used in the files you created in Chapter 4.

2. If you are in your home directory, type cd source, and press Enter. Use the pwd
command to ensure you are in the source directory.

3. Use the vi or Emacs editor to create the corp_phones file.

4. Enter the following records in the file:

219-555-4567:Harrison:Joel:M:4540:Accountant:09-12-1985
219-555-4587:Mitchell:Barbara:C:4541:Admin Asst:12-14-1995
219-555-4589:Olson:Timothy:H:4544:Supervisor:06-30-1983
219-555-4591:Moore:Sarah:H:4500:Dept Manager:08-01-1978
219-555-4544:Polk:John:S:4520:Accountant:09-22-2001
219-555-4501:Robinson:Albert:J:4501:Secretary:08-12-1997

Figure 6-17 Running the phmenu script

330 Chapter 6 Introduction to Shell Script Programming

5. Save the file and exit the editor.

6. Type grep 219-555-4591 corp_phones and press Enter to search for a specific
telephone number.

The output should look like this:

219-555-4591:Moore:Sarah:H:4500:Dept Manager:08-01-1978

7. Type grep Accountant corp_phones and press Enter to search the file for all
accountants. (See Figure 6-18.)

Project 6-17
The phmenu menu script that you created and tested in Hands-on Project 6-15 still needs
some work,because it doesn’t contain a way to call applications after they are selected. In this
project, you solve this problem by adding case logic to the menu.

To make additions to the phone menu script:

1. If you have interrupted your development process and have just logged back in or
switched to another directory, change to the source directory and use the pwd com-
mand to verify you are in that directory.

2. Use the vi or Emacs editor to open the phmenu file in your source directory. In the
following lines, add the lines that are boldfaced to the script:

#==

Figure 6-18 Working with the corp_phones data file

Hands-on Projects 331

6

Script Name: phmenu
By: Your initials here
Date: November 2009
Purpose: A menu for the Corporate Phone List
Command Line: phmenu
#==
phonefile=~/source/corp_phones
loop=y
while ["$loop" = y]
do
clear
tput cup 3 12; echo "Corporate Phone Reporting Menu"
tput cup 4 12; echo "=============================="
tput cup 6 9; echo "P - Print Phone List"
tput cup 7 9; echo "A - Add New Phones"
tput cup 8 9; echo "S - Search for Phones"
tput cup 10 9; echo "Q - Quit: "
tput cup 10 19;
read choice || continue
case $choice in
[Aa]) ./phoneadd ;;
[Pp]) ./phlist1 ;;
[Ss]) ./phonefind ;;
[Qq]) exit ;;
*) tput cup 14 4; echo "Invalid Code"; read choice ;;

esac
done

3. Save the file and exit the editor.

4. Test the script. (Acceptable entries are A, a, P, p, S, s,V, v, Q, and q. Any other entries
cause the message “Invalid Code” to appear.) Type Ctrl+c to exit when you are fin-
ished testing.

Project 6-18
It can be useful to have a way to display unformatted file data, in such a display the records
appear exactly as they are stored in the data file. This enables the application developer to
ensure that records are accurate and that the application is working as expected. Also, some
users might be interested in viewing the raw data in a file, so they can ensure it is accurately
entered. In this project, you add an option in phmenu to use the less command to view the
contents of the corp_phones file.

To use the less command to view unformatted records:

1. Be certain you are in the source directory. Next, open phmenu in the editor of your
choice, and add the two boldfaced lines shown below:

#==
Script Name: phmenu

332 Chapter 6 Introduction to Shell Script Programming

By: Your initials here
Date: Today’s date
Purpose: A menu for the Corporate Phone List
Command Line: phmenu
#==
phonefile=~/source/corp_phones
loop=y
while ["$loop" = y]
do
clear
tput cup 3 12; echo "Corporate Phone Reporting Menu"
tput cup 4 12; echo "=============================="
tput cup 6 9; echo "P - Print Phone List"
tput cup 7 9; echo "A - Add New Phones"
tput cup 8 9; echo "S - Search for Phones"
tput cup 9 9; echo "V - View Phone List"
tput cup 10 9; echo "Q - Quit: "
tput cup 10 19;
read choice || continue

case $choice in
[Aa]) ./phoneadd ;;
[Pp]) ./phlist1 ;;
[Ss]) ./phonefind ;;
[Vv]) less $phonefile ;;
[Qq]) exit ;;
*) tput cup 14 4; echo "Invalid Code"; read choice ;;

esac
done

2. Save the file and exit the editor.

3. Test the script.

Project 6-19
In your menu design,when users enter P or p, the application should print a phone list. The
awk program offers a good example of how the UNIX/Linux shell programmer can
accelerate development because a single awk command can select fields from many records
and display them in a specified format on the screen. In this project, you develop the phlist1
script and use awk to display a phone list.

To create the phlist1 script:

1. From the source directory, use the editor of your choice to create the phlist1 script
as follows:

===
Script Name: phlist1
By: Your initials here
Date: Today’s date
Purpose: Use awk to format colon-separated fields

Hands-on Projects 333

6

in a flat file and display to the screen
Command Line: phlist1
===
clear
tput cup 2 20; echo "Corporate Phone List"
tput cup 3 20; echo "===================="
tput cup 5 0;
awk -F: '{printf "%-12s %-12s %s\t%s %s %10.10s %s\n", $2, $3,
$4, $1, $5, $6, $7}' corp_phones

2. Save the file and exit the editor.

3. Give the file execute permission by typing chmod a+x phlist1 and pressing Enter.
Run the script by typing ./phlist1 and pressing Enter. (See Figure 6-19.)

Project 6-20
Now, you need to develop a way to enter new telephone number information into the
corp_phones file so that users can eventually build a complete data file of all employees.
Notice that the phmenu script offers the option to add a phone record. To accomplish this,
you develop the phoneadd script.

Figure 6-19 Testing the phlist1 script

334 Chapter 6 Introduction to Shell Script Programming

To create the phoneadd script for data entry:

1. Ensure you are in the source directory and then use the vi or Emacs editor to create
the script phoneadd. Enter the following code:

===
Script Name: phoneadd
By: Your initials here
Date: Today’s date
Purpose: A shell script that sets up a loop to add
new employees to the corp_phones file.
Command Line: phoneadd
#
===
trap "rm ~/tmp/* 2> /dev/null; exit" 0 1 2 3
phonefile=~/source/corp_phones
looptest=y
while [$looptest = y]
do
clear
tput cup 1 4; echo "Corporate Phone List Additions"
tput cup 2 4; echo "=============================="
tput cup 4 4; echo "Phone Number: "
tput cup 5 4; echo "Last Name : "
tput cup 6 4; echo "First Name : "
tput cup 7 4; echo "Middle Init : "
tput cup 8 4; echo "Dept # : "
tput cup 9 4; echo "Job Title : "
tput cup 10 4; echo "Date Hired : "
tput cup 12 4; echo "Add Another? (y)es or (q)uit: "
tput cup 4 18; read phonenum
if ["$phonenum" = "q"]

then
clear; exit

fi
tput cup 5 18; read lname
tput cup 6 18; read fname
tput cup 7 18; read midinit
tput cup 8 18; read deptno
tput cup 9 18; read jobtitle
tput cup 10 18; read datehired
Check to see if last name is not a blank before you
write to disk
if ["$lname" > " "]
then
echo "$phonenum:$lname:$fname:$midinit:$deptno:$

jobtitle:$datehired" >> $phonefile
fi
tput cup 12 33; read looptest
if ["$looptest" = "q"]

Hands-on Projects 335

6

then
clear; exit

fi
done

Make sure you place the following statement on only one line:
echo “$phonenum:$Iname:$fname:$midinit:$deptno:$jobtitle:$datehired”
>> $phonefile. It is wrapped on two lines here because of space limitations on
the page.

2. Save the file and exit the editor. Notice the section that checks to ensure the last
name is not blank. (See the comment.) This is included so that incomplete data is
not written to the file. In this code, the if statement checks to make certain that the
lname variable is greater than an empty string (has contents). If lname does have a
value (a string), the contents of all of the variables—lname, fname, midinit, deptno,
jobtitle, datehired—are written to the phonefile variable (corp_phones) using the
echo command.

3. Give the file execute permission by typing chmod a+x phoneadd and
pressing Enter.

4. Run the script by typing ./phoneadd and pressing Enter.

5. Next, test the script by adding the following employees. (Press Enter after each sepa-
rate field entry, for example, type 219-555-7175 and press Enter to go to the Last
Name field.) See Figure 6-20.

219-555-7175 Mullins Allen L 7527 Sales Rep 02-19-2007
219-555-7176 Albertson Jeannette K 5547 DC Clerk 02-19-2007

6. Press Ctrl+c after you enter the data.

You’ve now created the foundation for the corporate employee telephone number
application. However, you still need to address several deficiencies. For example, how can
you return to a previous field as you enter the data?What happens when you enter the same
employee twice? What happens if you assign a new employee a phone number that has
already been assigned to someone else? In Chapter 7, you continue the development process
and address these issues.

336 Chapter 6 Introduction to Shell Script Programming

DISCOVERY EXERCISES

1. Use two different commands to display the contents of the HOME variable.

2. Assign the variable t the value of 20. Next, assign the variable s the value of t+30.
Finally, display the contents of t and s to verify you have correctly defined these
variables.

3. Make the s variable you assigned in Exercise 2 an environment variable and use the
command to verify it is recognized as an environment variable.

4. Switch to your source directory. Display the contents of the PATH variable. Next,
use the command to add your current working directory to the PATH variable.

5. After completing Exercise 4, run the phmenu program in the easiest way.

6. Create a variable called iam and assign the results of the whoami command to it. Dis-
play the contents of the variable to verify your results.

7. Change back to your home directory, if you are not in it. Use the set command to
set up your working environment to prevent you from overwriting a file.

8. Create an alias called var that displays your environment variables.

9. At the command line, use a for loop that uses the variable sandwiches and then dis-
plays a line at a time each of the following sandwiches: chicken, ham, hummus,
tomato.

Figure 6-20 Testing the phoneadd script

Discovery Exercises 337

6

10. Create a script that uses case logic to have someone guess your favorite sandwich,
such as tuna.

11. Display the contents of the .bashrc file. Next use the vi editor to edit that file and
put in an alias so that every time you type list, you see a long file listing of a
directory.

12. Use a command to simulate how you would troubleshoot a problem with the sand-
wich script you created in Exercise 10.

13. What is wrong with the following lines of code?

While ["$value" = "100" ; do
Echo "That’s a large number." Read value

fi

14. Use the let command to store the value 1024 in the variable ram. Display the con-
tents of ram.

15. Temporarily change your home directory environment variable to /home and then
use one command to go to your home directory. Change the home directory envi-
ronment variable back to your regular home directory and switch to it.

16. Use the tput command to clear the screen and then to place the cursor in row 7,
column 22.

17. Write a script that creates the following menu:

Soup Menu

==========

(t)omato

(b)ean

(s)quash

Select a soup . . . (q) to quit

18. List all of the signal numbers and designations for the trap command. What is the
designation for signal 31?

19. Modify your script from Exercise 17 so that there is a beep or bell sound when the
menu is ready to take the user’s input.(Hint: review the man documentation for the
echo command.)

20. Is there a command that you can use to prevent shell variables from being assigned
new values? If so, what is it?

338 Chapter 6 Introduction to Shell Script Programming

ADVANCED SHELL PROGRAMMING
After reading this chapter and completing the

exercises, you will be able to:
♦ Perform program design and analysis using flowcharts and

pseudocode
♦ Use techniques to ensure a script is employing the correct shell

♦ Set the default shell

♦ Configure Bash login and logout scripts

♦ Set defaults for the vi editor

♦ Use the test command for programming functions

♦ Format record output

♦ Delete records using a script

♦ Set up a quick screen-clearing technique

♦ Create a program algorithm to solve a cursor-repositioning problem

♦ Develop and test a program to eliminate duplicate records

♦ Create shell functions and use them in a program

In the preceding chapter, you learned about the program development cycle
and began developing a program to automate the maintenance of employee

telephone records in the corp_phones file.You developed a menu that presents
several options and a data-entry screen that allows records to be added to the
file. In this chapter, you develop more advanced scripts for the employee
telephone number application.

You start by learning how to plan algorithms and use flowcharts for program
development. Next, you learn to create complex decision expressions with the
test command. Also, you learn more about how to format output. For the
employee telephone number application you create and enhance scripts to add
code that deletes a specified record, searches for a record, adds logic to prevent
duplicate data entry, and uses functions to sort and display records.

CHAPTER

7

339

UNDERSTANDING PROGRAM DESIGN AND ANALYSIS

In Chapter 6, “Introduction to Shell Script Programming,” you learned that the program
development cycle begins with creating specifications for a program. Specifications enable
you to determine the type of data needed for input, the processes that must be performed,
and the output requirements. The next step in the program development cycle is the design
process.

In the design process, a computer program is developed by analyzing the best way to achieve
the desired results. Two popular and proven analysis tools are used to help you design your
programs to meet the program specifications: the flowchart and pseudocode.

Flowcharting
Many organizations map each step of a process as a way to design that process. Consider the
example of a corporation that decides to create a new design for the hiring process. The
corporation currently has a hiring process that requires many manual operations, and the
corporation wants to design a new process to automate functions and make better use of
computer resources. In the design phase a committee discusses the new procedures and
computer resources they want to use. Next, the committee creates a flowchart to demon-
strate what will happen in each step of the process. A flowchart is a logic diagram that uses
a set of standard symbols to visually explain the sequence of events from the start of a process
to its end point.

Organizations use flowcharts to design and document all kinds of processes and procedures.
Programmers also use flowcharts to map and understand a program’s sequence and each
action the program takes. For the programmer the flowchart provides a map through the
design process to show what programs and logic must be created. It provides a way of linking
what is wanted in the specifications to the program code that is to be written.

Consider, for instance, the favorite vegetable program example in Chapter 6, which is as
follows:

echo -n "What is your favorite vegetable? "
read veg_name
if ["$veg_name" = "broccoli"]
then

echo "Broccoli is a healthy choice."
else

echo "Don’t forget to eat your broccoli also."
fi

Figure 7-1 shows an example flowchart that you might have created prior to developing the
program.

340 Chapter 7 Advanced Shell Programming

Each step in the program is represented by a symbol in the flowchart. The shape of the
symbol indicates the type of operation being performed, such as input/output or a decision.
Figure 7-2 shows standard flowchart symbols and their meanings.

The arrows that connect the symbols represent the direction in which the program flows. In
the flowchart in Figure 7-1, the arrow after the Start terminator shows the program flowing
to an operation that displays the message (in a manual input flowchart symbol), “What is
your favorite vegetable?” Next, the program flows to an input operation (represented by the
data symbol for input/output operations) that reads a value into veg_name. A decision
structure (represented by a diamond-shaped symbol) is encountered next, and compares the
veg_name variable’s contents to the string, “broccoli”. If the contents of veg_name equals
“broccoli,” the logic takes the “Yes” branch and displays “Broccoli is a healthy choice.” and

veg_name =
broccoli?

No

read
veg_name

Yes

Start

What is your
favorite vegetable?

Broccoli is a
healthy choice.

Don’t forget to
eat your

broccoli also.

End

Figure 7-1 Sample flowchart

Understanding Program Design and Analysis 341

7

Process flow (direction)

Terminator

Decision

Document

Manual input

Magnetic disk to depict
where data is stored

1

On-page connector to
continue process flow

Start or End

Accounts
spreadsheet

What is your
name?

corp_phones
file

Is
A > B

?

No

Yes

Data

Process

Manual operation

Display

That is a great
name!

5

Off-page connector to show where
flow continues on a different page

Stored data

Calculate the sum
of four numbers

Read or
write a
record

Insert a
 CD

Accounts
database

Figure 7-2 Standard flowchart symbols

342 Chapter 7 Advanced Shell Programming

then the program ends. If veg_name does not equal “broccoli,” the program takes the “No”
branch and displays “Don’t forget to eat your broccoli also.” and the program terminates.

You can manually create a flowchart using a drawing template. Flowchart templates provide
the symbols that denote logical structures, input-output operations, processing operations,
and the storage media that contain the files, as shown in Figure 7-2. Another way to create
a flowchart is to use a flowcharting software package, such as ABC Flowcharter, Corel Flow,
MicrosoftVisio, or SmartDraw. Popular word-processing packages, such as OpenOffice.org
Writer (with Dia Diagrams), Microsoft Word, and WordPerfect, are also equipped with
flowcharting tools.

You can learn more about flowcharting at these Web sites: en.wikipedia.org/
wiki/Flowchart, www.smartdraw.com/tutorials/flowcharts/tutorial_02.htm,
and office.microsoft.com/training/training.aspx?AssetID=RC010198841033.

Writing Pseudocode
After creating a flowchart, the next step in designing a program is to write pseudocode.
Pseudocode instructions are similar to actual programming statements. Use them to create
a model that you can later use as a basis for a real program.For example,here are pseudocode
statements for the veg_choice program:

Display "What is your favorite vegetable? " on the screen
Enter data into veg_name
If veg_name is equal to "broccoli"
Then

Display "Broccoli is a healthy choice." on the screen
Else

Display "Don’t forget to eat your broccoli also." on the
screen
End If

Pseudocode is a design tool only, and is never processed by the computer. Therefore, you
have no strict rules to follow. The pseudocode should verbally match the symbolic logic
illustrated on the flowchart. For example, Figure 7-3 shows the flowchart and pseudocode
that represent a change to the phone number application you developed in Chapter 6, so
that data can be reentered in a field to enable a user to go back to a field to correct an error.

In the next sections, you learn how to program the code to achieve the logic in the
pseudocode example. Before you work on the program code you learn how to ensure that
a script uses the correct shell and you advance your programming skills by learning the
versatility of the test command.

Many resources are available on the Internet to help you learn more about
pseudocode, such as www.infoweblinks.com/content/pseudocode.htm and
en.wikipedia.org/wiki/Pseudocode. Also, you can search for the word
“pseudocode” and find many Internet links.

Understanding Program Design and Analysis 343

7

www.smartdraw.com/tutorials/flowcharts/tutorial_02.htm
www.infoweblinks.com/content/pseudocode.htm

ENSURING THE CORRECT SHELL RUNS THE SCRIPT

Each UNIX/Linux user has the freedom to choose which shell he prefers. When devel-
oping a shell script, ensure that the correct shell is used to interpret your script, because all
shells do not support the same commands and programming statements.

When you create a script, include the command that sets the particular shell to use on the
first line of the script. In this book we use the Bash shell. The line in the script for setting
the Bash shell is:

#!/bin/bash

While entry = minus
do

Reposition cursor in previous field
Enter the data
Reposition cursor in field following the field that was

just entered (reentered data)
Continue testing while loop

Done

1
Enter field

Last
field?

Field=
minus

1

Write
record corp_phones

Clear screen;
reset cursor in first field 1

Clear prior field;
reposition cursor
on prior field

1

No

Yes

No

Yes

Pseudocode:

Flowchart:

Figure 7-3 Pseudocode and flowchart for reentry of previous fields

344 Chapter 7 Advanced Shell Programming

In the line to specify the shell, start with the # character, followed by the ! character and
provide the path of the shell, such as /bin/bash for the Bash shell.

When the system reads this code line it loads the Bash shell and uses it to interpret the
statements in the script file. Because many shells are provided in UNIX/Linux, you should
always begin your scripts with this statement. Even if the user who runs your script is
operating in a different shell, this line ensures that the script will run properly.

SETTING THE DEFAULT SHELL

For your own account, the shell that is set up by default is established by the system
administrator in the /etc/passwd file. To have a specific shell set when you log in, contact
your system administrator. If you are the system administrator, you can set the default shell
by editing the line in the /etc/passwd file that pertains to your account. For example, if your
account is trbrown, the /etc/passwd entry for your account will be similar to the following:

trbrown:x:500:500:Thomas Brown:/home/trbrown:/bin/bash

Notice that this is simply a record with variable-length fields separated by colons. The final
field in the record specifies the path for the default shell set for the user’s account, such as
/bin/bash. By logging in as root, you can edit the /etc/passwd file employing the vi or
Emacs editor. If you edit the file, consider making a backup copy before you edit it. Also,
should you edit the file, be very careful with the changes that you make, or you might prevent
yourself or someone else from logging in to the system.

Another safer way to set the default shell for an account is to use software that accompanies
your system for configuring users and groups. In Fedora and Red Hat Enterprise Linux, for
example,you can use the User Manager tool in the GNOME desktop. To change the default
shell for your account, use these general steps:

1. Log in as root.

2. Click the System menu, point to Administration, and click Users and Groups.

3. Double-click your account in the listing of accounts.

4. In the User Properties dialog box, change the Login Shell: entry to contain the
path to the shell you want as the default, such as /bin/bash (see Figure 7-4).
Click OK.

5. Close the User Manager tool.

In openSUSE Linux with the GNOME desktop, you can use the YaST tool to configure
users.YaST is a multifunction tool that enables you to manage openSUSE from one location.
Here are the steps for usingYaST:

1. Log in as root.

2. Click the Computer menu.

Setting the Default Shell 345

7

3. Click More Applications.

4. Click System in the left pane.

5. ClickYaST (you may need to scroll down to findYaST in the list).

6. Click Security and Users in the left pane.

7. Click User Management.

8. Double-click your account name.

9. Click the Details tab.

10. Change the Login Shell entry to contain the path to the shell you want as the
default shell and click Accept.

11. Click Finish.

12. Close theYaST Control Center @ computername window.

USING BASH LOGIN AND LOGOUT SCRIPTS

With Bash set as your shell, two scripts run automatically when you log in: .bash_profile and
.bashrc. If you change to a different shell after you log in, both scripts also run as soon as you
change back to the Bash shell. As you learned in Chapter 6, the .bashrc file is a hidden file
contained in your home directory. The same is also true for the .bash_profile file. You can view
both files by entering cd to ensure you are in your home directory and then entering ls -a.

Figure 7-4 User Properties dialog box in the User Manager tool in Fedora

346 Chapter 7 Advanced Shell Programming

The .bash_profile file is run each time you log in or give the command to set Bash as your
current shell. It typically contains settings, such as environment variable settings, aliases, and
other settings that you always want in effect when you are in the Bash shell. You can always
use the vi or Emacs editor to add or modify settings in this file. Figure 7-5 shows the default
.bash_profile file in Fedora.

The .bash_profile script file is used in many UNIX/Linux systems, such as Fedora
and Red Hat Enterprise Linux. However, some Linux systems, such as SUSE
Linux call this the .profile file, instead.

The .bashrc file also runs when you log in using the Bash shell as the default—and when you
go back into the Bash shell after temporarily using a different shell. As with the .bash_profile
(or .profile) file, you can configure this file to have environment variables and other settings
you want to always be in effect when you are in the Bash shell. The .bashrc file serves an
additional purpose that is not shared by the .bash_profile (or .profile) file—the .bashrc file is
run each time you start a Bash shell within a Bash shell, which is called running a subshell.
You started a subshell, for example, in Chapter 3, “Mastering Editors,” when you typed
Ctrl+z from within the vi editor. In Chapter 3, this Bash shell command took you to the
command line (in a subshell), so you could execute a command without closing your vi
editing session. When pressing Ctrl+z started the subshell in that example, the system also
ran the .bashrc script.

Figure 7-5 .bash_profile script file

Using Bash Login and Logout Scripts 347

7

UNIX/Linux systems might also have an /etc/.bashrc, /etc/bashrc, or /etc/bash.bashrc file
that sets default functions, variables, aliases, and other settings for all Bash shell users. In
Fedora and Red Hat Enterprise Linux, two files set Bash shell defaults for all users:
/etc/bashrc and /etc/profile. In SUSE these files are /etc/bash.bashrc and /etc/profile. The
/etc/bashrc (or /etc/bash.bashrc) file sets default functions and aliases and the /etc/profile
file sets default environment variables and startup programs. A system administrator can
configure these files so there is a basic level of consistency among Bash shell users.

In addition,a .bash_logout file in each Bash user’s home directory executes commands when
the user logs out. (SUSE does not have a default .bash_logout file.) For example, this file
often contains a line with the clear command to clear the terminal or terminal window
screen when the user logs out. Another option is to insert an echo command to echo specific
text to the screen, such as “It has been a pleasure working with you” or “All programs you
have used are the property of this company.”

Try Hands-On Project 7-1 to view the contents of the .bash_profile, .bashrc, .bash_logout,
/etc/bashrc, and /etc/profile files (for Fedora and Red Hat Enterprise Linux, or similar files
for SUSE and Knoppix).

SETTING DEFAULTS FOR USING THE VI EDITOR

If you prefer using the vi editor, you have the option of configuring a file called .exrc in your
home directory. As you learned in Chapter 3, .exrc can be used to automatically set up your
vi environment. For example, if you do much script or other programming, you might want
to have vi automatically display line numbers to make it easier to quickly identify a specific
line of code that you want to examine or modify. Another possibility is to set the number
of tab spaces when you tab to indent or nest lines of code. The following is an example of
lines that you might insert when you create or modify the .exrc file:

set number
set tabstop=3
set shell=/bin/bash

In this example, when you use vi, lines are identified by line number, and when you use the
Tab key, it tabs over three spaces. Also,when you start a subshell from within vi (by using the
:! vi command or Ctrl+z), the shell used is Bash.

USING THE TEST COMMAND

Often when you create a script or other application program, you need to rely on the
existence of one or more data files, directories, or both. In another situation, you might need
to determine if one file is older than another. In yet other situations, you might need to
evaluate two strings or integers. The test command can be used for these and several other
purposes.

348 Chapter 7 Advanced Shell Programming

Syntax test [-options] [argument/expression/integer]

Dissection

■ Used to analyze an expression to determine if it is true—often used in shell scripts to
verify an environmental condition, such as the existence of a file

■ Useful options include:
-d tests for the existence of a specific directory
-e tests for the existence of a file
-r determines if the file has read permission
-s determines if the file has some type of contents (is not empty)
-w determines if the file has write permission
-x determines if the file is executable
-nt compares the first file in the argument with the second file to determine if the first file
is newer
-ot compares the first file in the argument with the second file to determine if the first file
is older
-eq compares two integers to determine if they are equal
! determines if an expression is false
stringa = stringb determines if two strings are equal

Many other options to evaluate strings, expressions, and integers are available;
see Tables 7-1, 7-2, 7-3, and 7-4 for more information.

The test command uses operators expressed as options to perform the evaluations.Using test,
you can:

■ Perform relational tests with integers (such as equal, greater than, and less than).

■ Test strings.

■ Determine if a file exists and determine the type of file.

■ Perform Boolean tests.

In addition, you can place the test command inside your shell script or execute it directly
from the command line. For example, if you have the following statement in a script:

while ["$furniture" != "desk"]; do

Using the test Command 349

7

you can use the test command to accomplish the same thing by using the following
statement instead:

while test $furniture != "desk" ; do

In both statements, as long as the furniture variable does not equal “desk,” the while loop
continues to process.

In the following sections and in the Hands-On Projects, you learn to use test at both the
command line and in scripts, as well as perform many different kinds of evaluations of files,
directories, strings, integers, and other elements.

Performing Relational Integer Tests with the test Command
The test command can determine if one integer is equal to, greater than, less than, greater
than or equal to, less than or equal to, or not equal to another integer. Table 7-1 describes
the integer options of the test command.

Table 7-1 Integer options of the test command
Option Meaning Example
-eq Equal to test a -eq b
-gt Greater than test a -gt b
-lt Less than (small L and small T) test a -lt b
-ge Greater than or equal to test a -ge b
-le Less than or equal to (small L and small E) test a -le b
-ne Not equal to test a -ne b

The test command returns a value known as an exit status. An exit status is a numeric value
that the command returns to the operating system when it finishes. The value of the test
command’s exit status indicates the results of the test performed. If the exit status is 0 (zero),
the test result is true. An exit status of 1 indicates the test result is false.

The exit status is normally detected in a script by the if statement or in a looping structure.
You can view the most recent command’s exit status by typing the command:

echo $?

Figure 7-6 illustrates a test evaluation in which the exit status is 0 or true.

On some systems, you must have the test command echo the exit code on the
same line as the test command, as in the following example:
test $name = "Bjorn" ; echo $?.

Try Hands-On Project 7-2 to use the test command to evaluate integer expressions.

350 Chapter 7 Advanced Shell Programming

Performing String Tests with the test Command
You can use the test command to determine if a string has a length of zero characters or a
nonzero number of characters. Also, you can test two strings to determine if they are equal
or not equal. These tests are useful in scripts to test the contents of variables, for example,
to ensure that a variable contains a specific value. Consider a script that is intended to work
on a record of an employee whose last name (the contents of the lname variable used in the
script) is Rossetti. The script can use the test command to ensure that lname contains
Rossetti. If it is not Rossetti, the script might print an error message, signaling that you need
to correct an error in the script or in your employee data.

Table 7-2 describes the string testing options of the test command.

Table 7-2 String options with the test command
Option or Expression Meaning Example
-z Tests for a zero-length string test -z string
-n Tests for a nonzero string length test -n string
string1 = string2 Tests two strings for equality test string1 = string2
string1 != string2 Tests two strings for inequality test string1 != string2
string Tests for a nonzero string length test string

Hands-On Project 7-3 performs string tests from the command line.

Figure 7-6 Using test to obtain an exit status of 0

Using the test Command 351

7

Testing Files with the test Command
The test command can determine if a file exists and if it has a specified permission or
attribute (such as executable, readable, writable, and directory). For example, if your script is
designed to create a file and store that file in a specific directory, you might want the script
to alert the user if the directory does not exist. Consider another example in which a script
needs to modify the contents of a file. You can have the script use the test command to
determine if the user has permission to write to the file before taking any action to modify
the file’s contents. Table 7-3 describes several of the test command’s file evaluation options.

Table 7-3 File evaluation options of the test command
Option Meaning Example
-b True if a file exists and is a block special file (which

is a block-oriented device, such as a disk or tape
drive)

test -b filename

-c True if a file exists and is a character special file
(which is a character-oriented device, such as a ter-
minal or printer)

test -c filename

-d True if a file exists and is a directory test -d filename
-e True if a file exists test -e filename
-f True if a file exists and is a regular file test -f filename
-nt Compares the first file in the argument with the

second file to determine if the first file is newer
test filea -nt fileb

-ot Compares the first file in the argument with the
second file to determine if the first file is older

test filea -ot fileb

-r True if a file exists and can be read test -r file
-s True if a file exists and its size is greater than zero test -s file
-w True if a file exists and can be written to test -w file
-x True if a file exists and can be executed test -x file

Try Hands-On Project 7-4 to use test to evaluate the existence of a directory and a file and
then test for permissions.

Performing Boolean Tests with the test Command
The test command’s Boolean operators let you combine multiple expressions with AND
and OR relationships. You can also use a Boolean negation operator. Boolean operators are
named after the mathematician George Boole and refer to using a logic system to determine
if something is true or false. A Boolean operator is a logical operator that symbolizes
AND, OR, or NOT to evaluate a relationship, such as a comparison of two expressions—
and the result of the evaluation is either true or false.

Consider, for example, a script that accesses a file to enable the user to view the contents of
the file and then to modify the file’s contents. As a first step you want the script to verify that

352 Chapter 7 Advanced Shell Programming

the user has both read and write permissions for that file. In this case you can use a Boolean
operator to test for read AND write permissions. Table 7-4 describes Boolean operators.

Table 7-4 Boolean operators used with the test command
Option Meaning Example
-a Logical AND test expression1 -a expression2
-o Logical OR test expression1 -o expression2
! Logical negation test !expression

The -a operator combines two expressions and tests a logical AND relationship between
them. The form of the test command with the -a option is:

test expression1 -a expression2

If both expression1 and expression2 are true, the test command returns true (with an exit
status of 0). However, if either expression1 or expression2 is false the test command returns
false (with an exit status of 1).

The -o operator also combines two expressions. It tests a logical OR relationship. The form
of the test command with the -o option is:

test expression1 -o expression2

If either expression1 or expression2 is true, the test command returns true (with an exit status
of 0). However, if neither of the expressions is true, the test command returns false (with an
exit status of 1).

The ! operator negates the value of an expression. This means that if the expression normally
causes test to return true, it returns false instead. Likewise, if the expression normally causes
test to return false, it returns true instead. The form of the test command with the ! operator
is the following:

test !expression

In Hands-On Project 7-5 you use Boolean operators to test the permissions on a file. Also,
try Hands-On Projects 7-6 through 7-8 to use the test command to test for your source
directory and to add the command to scripts you created in Chapter 6.

FORMATTING RECORD OUTPUT

To format record output use the translate utility, tr. The translate utility, as you recall from
Chapter 5,“Advanced File Processing,” changes the standard input (characters you type at
the keyboard) character by character. The standard input can also be redirected with the <
operator to come from a file rather than from the keyboard. For example, the following
command sends the contents of the counters file as input to the tr command and then
converts lowercase characters to uppercase.

tr [a-z] [A-Z] < counters

Formatting Record Output 353

7

The syntax of the tr command can vary from version to version of UNIX/Linux.
For that reason, Fedora, Red Hat Enterprise Linux, and SUSE generally accept
most variations. For example, you can run any of the following formats in these
Linux distributions.
tr "[a-z]" "[A-Z]" < counters

tr '[a-z]' '[A-Z]' < counters (use single quotes, not back quotes)
tr a-z A-Z < counters

By using the | operator, the translate utility also works as a filter in situations in which the
input comes from the output of another UNIX/Linux command. For example, the
following command sends the output of the cat command to tr :

cat names | tr ":" " "

This sample command pipes (|) the contents of the names file to tr. The tr utility replaces
each occurrence of the : character with a space. In this respect, the tr utility works like the
sed command, except that sed changes the standard input string by string, not character by
character.

In Hands-On Project 7-9, you format output from the corp_phones file that you have
already created for your employee telephone number application. Next, in Hands-On
Project 7-10, you create the phonefind script to search for and display telephone number
information. The phonefind script is another piece added to your employee telephone
number application and can be called from the phmenu menu script you wrote in
Chapter 6.

DELETING PHONE RECORDS

In this section you review the sed command for use in applying to the employee telephone
number application you are perfecting. Recall from Chapter 5 that sed takes the contents of
an input file and applies actions, provided as options and arguments, to the file’s contents.
The results are sent to the standard output device. A simple way to delete a phone record
using sed is with the -d (delete) option. Here is a pseudocode representation of the
necessary steps:

Enter phone number
Use sed -d to delete the matching phone number and output to
a temporary file, f
Confirm acceptance
If the output is accepted, copy the temporary file f back to
corp_phones (overlaying it)

In Hands-On Project 7-11, you revise the phmenu script you started in Chapter 6 to
implement the logic in the pseudocode presented here.

354 Chapter 7 Advanced Shell Programming

CLEARING THE SCREEN

Often when a script is designed it is important to clear the screen one or more times, such
as when you first execute the script or go from one menu or screen to another. The clear
command, which you learned in Chapter 1,“The Essence of UNIX and Linux,” is a useful
housekeeping utility for clearing the screen, but you can use a faster method. You can store
the output of the clear command in a shell variable.Recall from Chapter 6 that you can store
the output of a command in a variable by enclosing the command in single back quotes (use
the ` character usually found in the upper-left portion of the keyboard, along with the tilde
~). For example, this command stores the output of the date command in the variable
TODAY:

TODAY=‘date‘

The output of the clear command is a sequence of values that erases the contents of the
screen.Storing these values in a variable and then echoing the contents of the variable on the
screen accomplishes the same thing, but about 10 times faster. This is because the system
does not have to first locate (in a directory) and execute the clear command—it is instead
stored in a variable for immediate action.

To set up a shell variable for clearing screens you can use the following commands:

CLEAR=‘clear‘
export CLEAR

After you execute these commands, each time you enter the following (see Figure 7-7), the
screen is quickly cleared:

echo $CLEAR

This technique is provided to show you one way in which to enable some
commands in scripts to run faster. This can be important for faster response
needed by those accessing a UNIX/Linux host computer over a network, a
dial-up connection, or the Internet.

In Hands-On Project 7-12, you set up a shell variable and export it so you can use that
variable in all of your scripts.

Clearing the Screen 355

7

CREATING AN ALGORITHM TO PLACE THE CURSOR

As you continue developing your employee telephone number application, another feature
to add is the ability to return the cursor to a previous field on the screen when adding
records to the corp_phones file. For example, you can designate a particular character, such
as the minus (hyphen) character (-), to signal the script to return the cursor to the previous
field on the data-entry screen. When the user enters a minus sign and presses Enter, the
cursor is repositioned at the start of the previous field. You can make this change by editing
the phoneadd program that you’ve already created (which provides the user with data-entry
screens). Recall from Chapter 6 that you can do this by creating an algorithm. To review, an
algorithm is a sequence of instructions, programming code, or commands that results in a
program or that can be used as part of a larger program. Integral to the process of developing
an algorithm is to first model it through creating pseudocode, which is discussed earlier in
this chapter.

Figure 7-7 Setting up and using a script variable to clear the screen

356 Chapter 7 Advanced Shell Programming

Here is the pseudocode for repositioning the cursor at the previous field when the user
enters the minus sign (-):

Read information into field2
While field2 equals "-"

Move cursor to position of previous field, field1
Clear current information displayed in field1
Read new information into field1
If field1 = "q"
Then

Exit program
End If
Move cursor to position of field2
Read information into field2

End While

The following is an example algorithm for the phoneadd program you can use to implement
the pseudocode:

tput cup 5 18; read lname
while test "$lname" = "-"
do tput cup 4 18; echo " "

tput cup 4 18; read phonenum
tput cup 5 18; read lname

done

This code reads the last name into the variable lname. If lname contains a minus sign (-), the
cursor moves to the previous field, which contains the phone number. The value displayed
for the phone number is cleared from the screen and a new value is entered into phonenum.
The cursor is then moved back to the last name field and the last name is entered. The while
statement repeats this process as long as the user types a minus sign for the last name.

Using the if statement instead of the while statement allows only one return to
the prior field. Instead you need a loop so the process repeats as long as the user
enters a minus sign for the field.

Creating an Algorithm to Place the Cursor 357

7

Notice this while statement:

while test "$lname" = "-"

The argument $lname is enclosed in quotation marks to prevent the command from
producing an error in the event the user presses just Enter or more than one word for the
last name. For example, if the user enters Smith Williams for the last name, the preceding
statement is interpreted as:

while test "Smith Williams" = "-"

However, if the statement is written without the quotation marks around $lname, the
statement is interpreted as:

while test Smith Williams = "-"

This statement causes an error message because it passes too many arguments to the test
command.

You implement this new code in Hands-On Project 7-13.

PROTECTING AGAINST ENTERING DUPLICATE DATA

Because users do not always enter valid data, a program should always check its input to
ensure the user has entered acceptable information. This is known as input validation. For
example, the corp_phones data file used by your employee telephone number application
should have only one record for a given telephone number. If there are two or more records
for a person and her associated telephone number, this adds confusion and can possibly result
in errors.

The best approach is to create an input validation algorithm that prevents the user from
adding a phone number that has already been assigned. The pseudocode and flowchart to
accomplish this are shown in Figure 7-8. After you review this figure, try Hands-On Project
7-14 to add an algorithm to the phoneadd script you created earlier to perform input
validation.

358 Chapter 7 Advanced Shell Programming

USING SHELL FUNCTIONS

A shell function is a group of commands that is stored in memory and assigned a name.
Shell scripts can use the function name to execute the commands. You can use shell
functions to isolate reusable code sections, so that you do not have to duplicate algorithms
throughout your program. This means that after you develop and test lines of code to
perform an action, you don’t have to retype those lines in several scripts. Instead, you can

If phone number is already on file
Then
Display message on the screen “This number has already been assigned to:”
Display the person’s record who has the duplicate number
Clear the screen and prepare for another entry

End if

On file?

1

Clear screen;
reset cursor in first field 1

No

Yes

corp_phones

Continue with
data entry

1

Display
duplicate

Enter phone
number

Write
record

Pseudocode:

Flowchart:

Figure 7-8 Modifications for the phoneadd script to perform input validation

Using Shell Functions 359

7

create one function containing those lines of code and simply call the function from
different scripts. Functions are useful because they save you typing time. They also enable
you to reuse lines of code that are already tested, reducing the time you spend debugging and
making your code reliable.

A function name differs from a variable name because a function name is followed by a set
of parentheses, while the commands that make up the function are enclosed in curly
brackets. For example, look at the code for a function:

datenow()
{
date
}

The name of this sample function is “datenow.” It has only one command inside its curly
brackets: the date command. When the datenow() function is executed, it calls the date
command.

Defining a Function from the Command Line
You can define functions from the command line by first entering the name of the function
and then completing the parameters to define it. Here is a replication of what you would
enter to create the datenow() function:

[martin@localhost ~]$ datenow() <Enter>
> { <Enter>
> date <Enter>
> } <Enter>
[martin@localhost ~]$

In these steps, you begin by entering the name of the function immediately followed by
open and closed parentheses—in this example, you type datenow(). When you press Enter,
the shell displays the greater than prompt (>) that signifies you need to enter the parameters
for the function. The first parameter you provide is an open curly bracket, to signify the start
of the code or commands that the function will execute.Next, the date command is entered.
Finally in this example, the closed curly bracket is provided to show the end of the code or
commands to execute. When you press Enter after typing the closed curly bracket, the shell
is ready to execute your new function when you enter it from the command line.

Functions are usually stored in script files and loaded into memory when you log in.
However, you can also enter them at the command line.

Arguments are passed to functions in the same manner as any other shell procedure. The
function accesses the arguments using the positional variables (also called parameters) $1 to
$9. For example, $1 is the first argument given with a function, $2 is the second argument,
and so on. Simply type the arguments following the command name, placing a space
between each argument. For example, you can design the datenow() function discussed
earlier to use the argument “Today’s date and time are:” and display this line before showing
the date as follows:

360 Chapter 7 Advanced Shell Programming

[martin@localhost ~]$ datenow "Today’s date and time are:"
Today’s date and time are:
Mon Feb 9 21:49:45 MST 2009

In this example, the string,“Today’s date and time are:” is an argument in the first position
($1) after the datenow() function.

A shell script or function typically can accept up to nine positional parameters, $1 through
$9. This means that what you enter after the script or function name is placed in a variable
($1 to $9). If you have a function called .num and you enter .num 20 55, 20 is the first
argument and is placed in the $1 variable; 55 is the second argument and is placed in the $2
variable. The code within the .num function can then operate on the contents of $1 (in this
case 20) and $2 (in this case 55).

Besides $1 through $9, other positional parameters can also be used in scripts and functions.
For example, $0 contains the name of the script or function (or might have the name of the
shell),whereas $* is a text string containing all of the positional variables (the contents of $1
through $9). Finally, $?, which you have used with the test command, is the exit status of the
final command in a script or function, which is 0 if the script or function runs successfully.

Hands-On Project 7-15 enables you to create the datenow() function from the command
line. Then, in Hands-On Project 7-16, you redefine the datenow() function to accept an
argument.

Creating Functions Inside Shell Scripts
One of the best ways to improve your programming productivity is to learn how to create
functions within scripts. The advantage of this approach is that you can reuse code instead
of writing the same routines over and over again. This saves time and reduces errors. It also
acknowledges that there are often common activities that you perform from one script to
another, particularly within an application that uses several scripts, as does the employee
telephone number application that you have been developing. For example, you can create
functions to sort a data file, such as the corp_phones file, and use these in scripts, such as the
phone listing script (phlist1) in the employee telephone number application. The phlist1
script can then call these functions to display the list of phone numbers sorted in a variety
of ways.

For example, you might create the following lines in a shell script, called .myfuncs:

sort_name()
{
sort -k 2 -t: corp_phones
}
sort_job()
{
sort -k 6 -t: corp_phones
}
sort_dept()
{

Using Shell Functions 361

7

sort -k 5 -t: corp_phones
}

As you can determine from these lines of code, there is one function that sorts the
corp_phones file by last name, one that sorts by the job name, and one that sorts by
department number (see Chapter 4,“UNIX/Linux File Processing,” to review the syntax of
the sort command).

By placing these functions in the .myfuncs file, you create a file that is hidden unless you
enter ls -a to view it. As a next step, you can execute the .myfuncs script each time you log
in by starting it from your .bash_profile or .bashrc login script; or, you can simply run
.myfuncs from the command line. Either method loads all your functions into memory just
as you load environment variables.

In Hands-On Project 7-17, you create the sort functions in the .myfuncs file. Then in
Hands-On Project 7-18, you start .myfuncs from the command line and also place it in your
.bashrc login script. Finally, in Hands-On Project 7-19, you employ your new functions as
a finishing touch on your employee telephone number application.

TROUBLESHOOTING A SHELL SCRIPT

Most shell script writers at some point encounter problems that require troubleshooting.As
you gain more experience writing scripts, you’ll be able to more quickly troubleshoot any
problems.You might look upon troubleshooting as a way to further tune your script writing
skills.You’ll retain lessons learned from troubleshooting and be able to apply them to making
more foolproof scripts.

Here are some tips to help you troubleshoot a script:

1. Ensure that you have assigned execute permissions to the script, such as chmod
a+x or chmod a+rx (or chmod 755).

2. Be certain you’ve included on the first line of the script a command to specify
the shell to use, such as # !/ bin/bash.

3. Use the sh -n, -v, and -x troubleshooting options as you learned in Chapter 6.

4. Look for typographic errors, which are some of the most common causes of
script problems.

5. Look for errors in the use of particular characters, such as the following:

a. Omitting the semicolon between two separate commands on the same line

b. Using single quote marks (') instead of back quote marks (‘) or vice versa

c. Omitting single or double quote marks

d. Omitting the pound sign (#) for comments

e. Using the wrong redirection operator, such as > instead of <

6. Check for syntax errors in the use of commands inside the script.

362 Chapter 7 Advanced Shell Programming

7. Look for the use of command options that are not supported in your distribu-
tion of UNIX/Linux. For example, the use of the +n option to designate a
key sort field is no longer supported by the sort command on many systems.

8. Check looping logic to be sure it does not start with the wrong value, such as
1 instead of 0.

9. Ensure there is an exit point for your looping logic so you don’t create a loop-
ing structure that never ends (goes into a continuous loop).

10. Make sure you haven’t created a script that does not work for another user
because that user has different environment variables or functions in their
login script.

CHAPTER SUMMARY

The two most popular and proven analysis tools are the program flowchart and
pseudocode. The flowchart is a logic diagram drawn using a set of standard symbols that
explains the flow and the action to be taken by the program.

Pseudocode is a model of a program. It is written in statements similar to your natural
language.

When you write a script, have the first line in the script file specify the shell, such as by
entering #!/bin/bash for the Bash shell.

Use the test command to validate the existence of directories and files as well as compare
numeric and string values.

The translate utility (tr) changes the characters typed at the keyboard, character by
character, and also works as a filter when the input comes from the output of another
UNIX/Linux command. Standard input can also be redirected to come from a file rather
than from the keyboard.

The sed command reads a file as its input and outputs the file’s modified contents. Specify
options and pass arguments to sed to control how the file’s contents are modified.

To speed clearing the screen, assign the clear command sequence to the shell variable
CLEAR that can be set inside your login script. This clears your screen faster because it
does not require a lookup sequence in a file every time it executes.

Shell functions can make a shell programmer more efficient by enabling code to be
reused. You can combine several functions in one shell script and then load the functions
in memory for use at any time.

Chapter Summary 363

7

COMMAND SUMMARY: REVIEW OF CHAPTER 7 COMMANDS

test Command
Option

Meaning Example Command

! Logical negation test !expression
-a Logical AND test expression1 -a

expression2
-b Tests if a file exists and is a block spe-

cial file (which is a block-oriented
device, such as a disk or tape drive)

test -b file

-c Tests if a file exists and is a character
special file (which is a character-
oriented device, such as a terminal or
printer)

test -c file

-d True if a file exists and is a directory test -d file
-e True if a file exists test -e file
-eq Equal to test a -eq b
-f Tests if a file exists and is a regular file test -f file
-ge Greater than or equal to test a -ge b
-gt Greater than test a -gt b
-le Less than or equal to test a -le b
-lt Less than test a -lt b
-n Tests for a nonzero string length test -n string
-ne Not equal to test a -ne b
-o Logical OR test expression1 -o

expression2
-r True if a file exists and is readable test -r file
-s True if a file exists and has a size

greater than zero
test -s file

string Tests for a nonzero string length test string
string1 = string2 Tests two strings for equality test string1 = string2
string1 != string2 Tests two strings for inequality test string1 != string2
-w True if a file exists and is writable test -w file
-x True if a file exists and is executable test -x file
-z Tests for a zero-length string test -z string

KEY TERMS

Boolean operator — A logical operator that symbolizes AND, OR, or NOT to evaluate
a relationship, such as a comparison of two expressions—and the result of the evaluation is
either true or false.
exit status — A numeric value that the test command returns to the operating system when
test finishes performing an evaluation of an expression, string, integer, or other information.
If the exit status is 0 (zero), the test result is true. An exit status of 1 indicates the test result
is false.

364 Chapter 7 Advanced Shell Programming

flowchart — A logic diagram that uses a set of standard symbols to explain the logic in a
program’s sequence and each action performed in the sequence.
input validation — A process a program performs to ensure that the user has entered
acceptable information, such as preventing a user from entering a duplicate record in a data
file.
pseudocode —The instructions that are similar to actual programming statements.Used to
create a model that might later become the basis for a program.
shell function — A group of commands stored in memory and assigned a name. Shell
functions simplify the program code.For example, you can include a function’s name within
a shell script so the function’s commands execute as part of the script. You can also use shell
functions to store reusable code sections, so that you do not need to duplicate them.

REVIEW QUESTIONS

1. You have been asked to write a script for use by the faculty at the engineering
school at your college.The script you write uses the Bash shell, but some faculty
members often use a different shell in their work. How can you best ensure that the
Bash shell is invoked when this script is run?
a. Have the script print a warning to the screen that it requires the Bash shell.
b. Have the system administrator adjust all faculty accounts so the Bash shell is the

default.
c. Enter the line # !/ bin/bash as the first line in the script.
d. Create a function for all faculty user accounts that prevents use of shells other

than Bash.

2. Which of the following script statements accomplishes the same thing as the
statement: while ["$part" != "alternator"] ; do ? (Choose all that apply.)
a. while $part <! "alternator" | do test
b. while test $part != "alternator" ; do
c. for test $part > "alternator" ; do
d. test $part -eq "alternator" | do

3. Your shell script, called .filetests, contains several functions used to run tests on files,
such as to determine if a file is empty or has the correct permissions.Which of the
following is/are true about .filetests? (Choose all that apply.)
a. You can load the file’s functions into memory by entering . .filetests.
b. This is a hidden file.
c. You can run the functions in the file by entering !. filetests.
d. This is a character special file.

Review Questions 365

7

4. When you enter echo $CLR your screen clears very quickly.Which of the following
commands must you have entered previously to enable use of echo $CLR to clear the
screen?
a. set =:clear
b. let clear=CLR
c. $clear=CLR
d. CLR=‘clear‘

5. Your company has assigned you to revise 22 scripts. Since you use the vi editor, how
can you set it to automatically display lines as numbered so it is easier for you to
work on these revisions?
a. Create a vi macro that enables you view the lines as numbered when you press n in

the command mode.
b. Create the .exrc file in your home directory so this file contains the line: set number.
c. Type set_lines and press Enter before you start vi.
d. Press # while you are in the ex mode in vi.

6. You use the same five shell functions every day and are looking for a way to ensure
they are available as soon as you log into your account.What can you do?
a. Make them residual system variables.
b. Make them permanent environment variables.
c. Load them via your login script.
d. Make them permanent functions by adding them to the /func directory.

7. When you enter test -d tmp ; echo $?, you see a 0 displayed on the screen.What does
this mean?
a. The tmp file is empty.
b. The tmp file contains over 1 MB.
c. The tmp directory exists.
d. The tmp directory is empty.

8. What does a down arrow represent in a flowchart?
a. process flow
b. manual input
c. stored data
d. display

366 Chapter 7 Advanced Shell Programming

9. Which of the following are examples of Boolean operators used with the test
command? (Choose all that apply.)
a. -a for a logical AND
b. -m for a partial MERGE
c. -n for logical NEGATION
d. -o for a logical OR

10. You have a specialized data file, called customers, in which the fields in the file are
separated by the character ^.You want to view this file with a colon between the
fields before you convert it to remove the ^ characters and insert colons.Which of
the following commands enables you to view the file in this way?
a. insert -t : ^ | customers
b. test - i [^] [:] customers
c. cat customers | tr "^" ":"
d. sub ':' '^' > customers

11. Which of the following statements enables you to determine if the variable, called
value, is less than 750?
a. echo $value -l 750
b. comm value$ to 750
c. test $value - lt 750
d. test "value" >! 750

12. Some Linux systems use the script to perform the same actions
each time a user logs out of her account.
a. .bash_logout
b. .bash_rc
c. /bin/bashout
d. /etc/logoff_bash

13. You have recently met with your company’s budget committee about creating a
script to for producing the same budget reports at the end of each month. Because
this is an important undertaking you’ve started by creating a flowchart.What step
should you take next?
a. Immediately write the functions you’ll need for the script.
b. Create a menu script.
c. Find the three most important fields in the Budget file that you can use as keys
d. Write pseudocode before you create the actual script.

Review Questions 367

7

14. Which of the following are examples of symbols you might use in a flowchart?
(Choose all that apply.)
a. decision
b. document
c. data
d. magnetic disk

15. The script you are creating takes data input to use for updating a file. Before taking
the data input, you want the script to verify that the file to be updated, called clients,
exists and that the script user has permission to write to that file.Which of the fol-
lowing statements enables you to do this?
a. string -w clients
b. test -w clients
c. chmod -all clients
d. tr -ew clients

16. When working on the script in Question 15, which of the following should you
consider?
a. output strength
b. input validation
c. functional reciprocation
d. user vacillation

17. Each month your business manually deletes specific records for employees who have
left the company.You have been asked to write a script to automate this process.
Which of the following commands works well for deleting records in a file?
a. cut -a
b. purge -d
c. trdel -r
d. sed -d

18. In which of the following files would a system administrator set the default shell
used by your account?
a. .shell
b. /home/shell
c. /etc/passwd
d. /home

368 Chapter 7 Advanced Shell Programming

19. Which of the following characters are placed right after a function name when you
create a shell function?
a. ()
b. !#
c. [[
d. //

20. When you create a shell function from the command line, what character do you
enter at the first > prompt just after you declare the function’s name?
a. "
b. {
c. '
d. $

21. What symbol is typically used at the start and end of a flowchart?
a. terminator
b. display
c. connector
d. manual operation

22. What is an exit status and with what command is it used?

23. In your organization everyone uses the Bash shell in Red Hat Enterprise Linux and
all users use the same aliases and shell functions. In what file or files can the system
administrator place these aliases and functions so they are available to all users?

24. Create a statement that enables you to determine if the file /source/results is newer
than the file /data/results.

25. Create a simple function that determines if the string variable, text, contains no char-
acters (is of zero length).

HANDS-ON PROJECTS

Complete these projects using the command line, such as a terminal window,
using the Bash shell, and using your own account. Use your home directory
unless otherwise directed.

Hands-On Projects 369

7

Project 7-1
When you use the Bash shell, it is valuable to view the contents of the files that it uses for
your startup environment: .bash_profile, .bashrc, .bash_logout, /etc/bashrc, and /etc/profile
(for Fedora and Red Hat Enterprise Linux). In this project, you view those files (or the
equivalent files in SUSE and Knoppix Linux).

To view the files affecting the Bash environment:

1. If you are using Fedora or Red Hat Enterprise Linux, type more .bash_profile
.bashrc .bash_logout /etc/bashrc /etc/profile and press Enter. If you are
using SUSE, type more .profile .bashrc/etc/bash.bashrc/etc/profile and
press Enter (SUSE does not have a .bash_logout file). Or in Knoppix, type
more .bashrc /etc/bash.bashrc/etc/profile and press Enter (Knoppix
does not have the files, .profile and .bash_logout). (If you prefer, you can
use the cat, more, or less commands for one file at a time.)

2. Press the Spacebar to advance through the contents of the files.

Project 7-2
The test command enables you to evaluate many types of conditions, including providing
a comparison of integers. In this project, you evaluate integer expressions from the com-
mand line.

To use the test command with integer expressions:

1. Create the variable number with the value 122 by typing the command
number=122 and pressing Enter.

2. Type test $number -eq 122 and press Enter.

3. Type echo $? and press Enter. The result displayed on your screen is 0, as in the
following example:

[beth@localhost ~]$ number=122
[beth@localhost ~]$ test $number -eq 122
[beth@localhost ~]$ echo $?
0

The echo $? command displays the exit status of the most recent command executed. In
this example, the test command returns the exit status 0, indicating the expression
$number -eq 122 is true. This means the variable number ($number) is equal to 122.

4. Type test $number -gt 142 and press Enter.

5. Type echo $? and press Enter. This time, the result should be 1 (false) because 122
is not greater than (-gt) 142.

6. Type value=51 and press Enter.

7. Type test $number -lt $value and press Enter.

370 Chapter 7 Advanced Shell Programming

8. Type echo $? and press Enter. The result of the test that appears on your screen is
now 1:

[beth@localhost ~]$ value=51
[beth@localhost ~]$ test $number -lt $value
[beth@localhost ~]$ echo $?
1

In this example, the test command returns the exit status 1, indicating the expression $number
-lt $value is false. This means $number is not less than $value.

Project 7-3
In this project, you use the test command to evaluate the contents of strings.

To use the test command’s string evaluation capabilities:

1. Type lname="Rossetti" and press Enter.

2. Type test $lname = "Rossetti" and press Enter.

3. Type echo $? and press Enter. The result shown on your screen is 0:

[beth@localhost ~]$ lname="Rossetti"
[beth@localhost ~]$ test $lname = "Rossetti"
[beth@localhost ~]$ echo $?
0

In this example, the test command returns the exit status 0, indicating the expression
$lname = “Rossetti” is true. This means $lname and “Rossetti” are equal.

4. Type test $lname != "Hanson" and press Enter.

5. Type echo $? and press Enter. Your screen looks similar to the following:

[beth@localhost ~]$ test $lname != "Hanson"
[beth@localhost ~]$ echo $?
0

In this case, the test command returns the exit status 0, indicating the expression
$lname != “Hanson” is true. This means $lname and “Hanson” are not equal.

6. Type test -z $lname and press Enter.

7. Type echo $? and press Enter. Your screen looks similar to the following:

[beth@localhost ~]$ test -z $lname
[beth@localhost ~]$ echo $?
1

The final test command in the preceding example returns the exit status 1, indicating the
expression -z $lname is false. This means the string $lname is not zero length.

Hands-On Projects 371

7

Project 7-4
In this project, you learn how to use the test command to evaluate files and directories.

To use the test command’s file-testing capabilities:

1. Type mkdir test_directory and press Enter to create a directory.

2. Type test -d test_directory and press Enter.

3. Type echo $? and press Enter. You should see an exit status of 0 to show that it is
true the test_directory exists.

4. Type touch test_file and press Enter to create an empty file named test_file.

5. Type ls -l test_file and press Enter to view the permissions for test_file. The per-
missions should look similar to the following:

[beth@localhost ~]$ ls -l test_file
-rw-r--r-- 1 beth beth 0 Feb 8 12:43 test_file

6. Notice that the file has read and write permissions for you, the owner.

7. Next type test -x test_file and press Enter.

8. Type echo $? and press Enter. Your screen looks similar to the following:

[beth@localhost ~]$ test -x test_file
[beth@localhost ~]$ echo $?
1

The test command returns an exit status of 1 because test_file is not executable.

9. Type test -r test_file and press Enter.

10. Type echo $? and press Enter. Your screen should be similar to the following:

[beth@localhost ~]$ test -r test_file
[beth@localhost ~]$ echo $?
0

The test command now returns an exit status of 0, indicating test_file is readable.

Project 7-5
At times, it is useful to determine if two expressions are both true or if one or the other of
two expressions are true by employing the test command with Boolean operators. In this
project, you use Boolean operators to test the relationship of expressions for AND, OR, or
NOT outcomes.

To use the test command’s Boolean operators:

1. Recall that the test_file file you created in Hands-On Project 7-4 has read and write
permissions. You can use Boolean operators to test for both permissions at once.
Type test -r test_file -a -w test_file and press Enter.

372 Chapter 7 Advanced Shell Programming

This command tests two expressions using an AND relationship: -r test_file and
-w test_file. If both expressions are true, the test command returns true.

2. Type echo $? and press Enter. The results on your screen look similar to the
following:

[beth@localhost ~]$ test -r test_file -a -w test_file
[beth@localhost ~]$ echo $?
0

The test command returns an exit status of 0, indicating that test_file is readable and
writable.

3. Type test -x test_file -o -r test_file and press Enter.

This command tests two expressions using an OR relationship: -x test_file and -r test_file.
If either of these expressions is true, the test command returns true.

4. Type echo $? and press Enter. The results on your screen look similar to the
following:

[beth@localhost ~]$ test -x test_file -o -r test_file
[beth@localhost ~]$ echo $?
0

The test command returns an exit status of 0, indicating that test_file is either executable
OR readable.

5. Type test ! -r test_file and press Enter.

This command negates the result of the expression -r test_file. If the expression is true,
the test command returns false. Likewise, if the expression is false, the test command
returns true.

6. Type echo $? and press Enter. Your screen looks similar to the following:

[beth@localhost ~]$ test ! -r test_file
[beth@localhost ~]$ echo $?
1

The test command returns an exit status of 1, indicating the expression ! -r test_file
is false.

Hands-On Projects 373

7

Project 7-6
So far, your use of the test command has been for more theoretical applications. In this
project, you use the test command to verify your working environment. You next use the test
command to verify the source directory you created in Chapter 4 and used in Chapter 6 for
developing the telephone number and employee information application. Be certain you
have the source directory and the applications you developed in Chapter 6 for the remaining
projects in this chapter. If not, go back to Chapter 6 to create them.

To verify that your source directory exists:

1. Type test -d source ; echo $? and press Enter. This command determines if the
source directory exists and if it is a directory. Because the echo $? command is
included on the same line, the exit status appears immediately after you press Enter.

The exit status should be 0 to show you have a source directory. If not, use the mkdir
command to create the source directory.

2. In Chapter 6, you created the file corp_phones and the shell scripts phmenu and
phoneadd. Verify that you have the corp_phones file. Next type cd ~/source and
press Enter to make source your working directory.Type test -e corp_phones ;
echo $? and press Enter. If you see the exit status 0, the file exists. If not, go back to
Chapter 6 to create it (or see your instructor for help).

3. Repeat the test -e command for the phmenu, phoneadd, and phlist1 files in the
source directory. If you don’t have them, go back to Chapter 6 to create them (or see
your instructor for help).

4. To permanently add the /home/username/source directory to your PATH variable
(where username is your login name), so that it takes effect each time you log in, you
can edit your .bash_profile file. First type cd and press Enter to return to your home
directory. Use the vi editor to open the .bash_profile (or the .profile in SUSE or
.bashrc in Knoppix) file.

5. Move the cursor to the line that reads:

PATH=$PATH:$HOME/bin

6. Type i to switch to insert mode. Type :$HOME/source (include the colon) at the
end of the line. (See Figure 7-9.)

7. Press Esc, type :x or :wq, and then press Enter to save the file and exit the editor.

8. To make the new PATH value take effect, log out and then log back in.

9. After you log back in, type echo $PATH, and press Enter. At the end of the paths
listed on the screen, you should see the path you just added. Note that now you can
run scripts from the source directory by typing only the script name.

374 Chapter 7 Advanced Shell Programming

Project 7-7
Now that you have some practice using the test command from the command line, it is time
to apply your knowledge to a script file. Once again, recall the favorite vegetable script,
veg_choice, you wrote and modified in Chapter 6, Hands-On Project 6-7:

echo -n "What is your favorite vegetable? "
read veg_name
if ["$veg_name" = "broccoli"]
then

echo "Broccoli is a healthy choice."
else

if ["$veg_name" = "carrots"]
then

echo "Carrots are great for you."
else

echo "Don’t forget to eat your broccoli also."
fi

fi

In this project, you modify an if statement in the script so it uses the test command. When
done, the program runs identically as it did before.

To modify the veg_choice script to use test:

1. Type cd to ensure you are in your home directory. Load the veg_choice file into vi
or Emacs.

Figure 7-9 Adding your source directory to the path in the .bash_profile script file

Hands-On Projects 375

7

2. Change the line that reads:

if ["$veg_name" = "broccoli"]

to this:
if test $veg_name = "broccoli"

Your screen should look similar to Figure 7-10.

3. Save the file and exit the editor.

4. Test the script by executing it. Type broccoli and press Enter when asked “What is
your favorite vegetable?” The output of the script should be similar to the following:

[beth@localhost ~]$./veg_choice
What is your favorite vegetable? broccoli
Broccoli is a healthy choice.

5. Type clear and press Enter to clear the screen for the next project.

Project 7-8
In this project, you modify a while loop so it uses the test command.

To modify a while loop to use the test command:

1. Recall the script in your home directory named colors, which you wrote in
Chapter 6. It repeatedly asks the user to guess its favorite color, until the user guesses

Figure 7-10 Using the test command in the veg_choice script

376 Chapter 7 Advanced Shell Programming

the color red. The code for the colors script is as follows (it uses a while loop until
the guess variable contains the word red):

echo -n "Try to guess my favorite color: "
read guess
while ["$guess" != "red"]; do
echo "No, not that one. Try again. "; read guess

done

2. Load the colors script file into vi or Emacs.

3. Change the line that reads:

while ["$guess" != "red"]; do

to this:
while test $guess != "red" ; do

4. Save the file and exit the editor.

5. Test the script. Figure 7-11 shows sample output of the program.

6. Type clear and press Enter to clear the screen.

Figure 7-11 Using the test command in the colors script

Hands-On Projects 377

7

Project 7-9
You can use the tr utility to change lowercase characters to uppercase, as well as to replace
colon characters with spaces. In this project, you use both the grep and tr commands to learn
how to remove the colon when you display records in the corp_phones file on which you
worked in Chapter 6.

To format the contents of a file using the grep and tr commands:

1. Type cd ~/source and press Enter to change to the source directory.

2. Use the grep command to retrieve a record from the corp_phones file that matches
the phone number 219-555-4501, and then pipe (using the | symbol) the output to
tr to replace the colon characters in the record with space characters. Type grep
219-555-4501 corp_phones | tr ':' ' ' and then press Enter. The output on your
screen looks similar to the following:

[mpalmer@localhost source]$ grep 219-555-4501 corp_phones
| tr ':' ' '

219-555-4501 Robinson Albert J 4501 Secretary 08-12-1997

3. Change lowercase characters to uppercase in the corp_phones file by typing cat
corp_phones | tr '[a-z]' '[A-Z]' and then pressing Enter. Your screen looks
similar to Figure 7-12. (Your results might look slightly different because of differ-
ences in test data entered in previous Hands-On Projects.)

Figure 7-12 Formatting the contents of the corp_phones file

378 Chapter 7 Advanced Shell Programming

Project 7-10
The combined use of the tr and grep commands that you used in Hands-On Project 7-9 can
be used to create a new script for your employee telephone number application.Recall from
Chapter 6 that the phmenu script you created in that chapter has an S option on the menu
to “Search for Phones,” but you did not create a script to perform such a search. In this
project, you create a script for that option that searches for a specific telephone number and
displays the employee information associated with it.

To add record-searching capability to your program:

1. The phmenu program is already equipped to call the script phonefind when the user
selects S from the menu. This command instructs the program to search for a phone
number. Make certain your current working directory is the source directory. Next
use the vi or Emacs editor to create the phonefind script by typing the following:

#!/bin/bash
#===
Script Name: phonefind
By: Your initials here
Date Today’s date
Purpose: Searches for a specified record in the
corp_phones file
#===
phonefile=~/source/corp_phones
clear
tput cup 5 1
echo "Enter phone number to search for: "
tput cup 5 35
read number
echo
grep $number $phonefile | tr ':' ' '
echo
echo "Press ENTER to continue..."
read continue

2. Save the file and exit the editor.

3. Type chmod a+x phonefind and press Enter to make the file executable, and then
test the script by searching for the number 219-555-7175. Your screen should look
similar to Figure 7-13.

4. Press Enter to exit the phonefind script after you display the telephone number
information.

Hands-On Projects 379

7

Project 7-11
With what you have learned so far, now is a good time to revise the phmenu script you
created in Chapter 6 to include the option to delete a record. In this revision, you use sed to
create a temporary file called f. After you are finished using f, it is deleted near the end of the
script by using the rm f command. To make your script more foolproof, you also use the trap
command, as you learned in Chapter 6, to be certain the f file is deleted before starting any
code. Just before the phonefile=~/source/corp_phones line, you insert this statement: trap“rm ./f
2> /dev/null; exit” 0 1 3. The advantage of this technique is that it ensures that the f file is
deleted. After all, your previous run of phmenu could have aborted before deleting the f file
near the end of the script.

To delete phone records by editing the phmenu program:

1. Be certain you are in the source directory. Using the vi or Emacs editor, retrieve the
revised phmenu program and add the code shown in boldface:

The code line tput cup 18 4; echo "Accept? (y)es or (n)o: " should be entered
as one continuous line. It is wrapped into two lines in this example because of
the page margin limitation.

#!/bin/bash
#==
Script Name: phmenu
By: Your initials here

Figure 7-13 Running the phonefind script

380 Chapter 7 Advanced Shell Programming

Date: Today’s date
Purpose: A menu for the Corporate Phone List
Command Line: phmenu
#==
trap "rm ./f 2> /dev/null; exit" 0 1 3
phonefile=~/source/corp_phones
loop=y
while test $loop = "y"
do
clear
tput cup 3 12; echo "Corporate Phone Reporting Menu"
tput cup 4 12; echo "=============================="
tput cup 6 9; echo "P - Print Phone List"
tput cup 7 9; echo "A - Add New Phones"
tput cup 8 9; echo "S - Search for Phones"
tput cup 9 9; echo "V - View Phone List"
tput cup 10 9; echo "D - Delete Phone"
tput cup 12 9; echo "Q - Quit: "
tput cup 12 19;
read choice || continue
case $choice in
[Aa]) ./phoneadd ;;
[Pp]) ./phlist1 ;;
[Ss]) ./phonefind ;;
[Vv]) clear ; less $phonefile ;;
[Dd]) tput cup 16 4; echo "Delete Phone Record"

tput cup 17 4; echo "Phone: "
tput cup 17 11; read number
tput cup 18 4; echo "Accept? (y)es
or (n)o: "
tput cup 18 27; read Accept
if test $Accept = "y"

then
sed /$number/d $phonefile > f
cp f $phonefile

rm f
fi
;;

[Qq]) clear ; exit ;;
*)tput cup 14 4; echo "Invalid Code"; read choice ;;

esac
done

2. Save the file and exit the editor. Later in Step 4, when you test the program, the
menu appears and is similar to Figure 7-14.

Hands-On Projects 381

7

3. Type clear and press Enter to clear the screen. Use the more command to display the
contents of the corp_phones file in the source directory before you delete a record
(type more corp_phones and press Enter). Your screen should be similar to Figure
7-15. (Remember that some of the records you added when you tested the applica-
tion in Chapter 6 might be different from those in this example screen.)

4. Run the phmenu program, type D or d, press Enter, and test the delete option by
entering the telephone number 219-555-4567, and pressing Enter. Figure 7-16
shows the Delete Phone Record screen.

5. Type y to confirm the deletion, and then press Enter.

6. On the main menu, type V or v to view the phone file, and then press Enter. Your
screen looks similar to Figure 7-17.

Notice the record for phone number 219-555-4567 is no longer in the file.

7. Press Q or q to return to the menu, press Q or q, and then press Enter to exit the
phmenu script.

Figure 7-14 Running the phmenu script

382 Chapter 7 Advanced Shell Programming

Figure 7-15 Reviewing the contents of the corp_phones file

Figure 7-16 Running the Delete Phone option

Hands-On Projects 383

7

Project 7-12
In this project, you create a shell variable to use for quickly clearing the screen from any shell
script. You start by setting up the variable from the command line to see how it works and
then you add this capability to your .bashrc file for future use each time you log in using the
Bash shell. (You’ll most likely notice in this project that setting up this shell variable seems
more cumbersome than simply entering clear as a stand-alone command.However,using the
shell variable can be very effective when you include it in a script or program.)

To clear screens by setting a shell variable:

1. Type cd and press Enter to ensure you are in your home directory.

2. Set a shell variable, CLEAR, to the output of the clear command, by typing the fol-
lowing (use the back quote character with `clear` and not single quotation marks):

CLEAR=`clear`
export CLEAR

3. Use your new variable in your shell programs for a fast clear operation by typing
echo "$CLEAR" and pressing Enter.

4. To make this fast clear always available, use the vi or Emacs editor to open the
.bashrc file and place the following lines at the end of the file:

CLEAR=`clear`
export CLEAR

Figure 7-17 Using the View Phone List option to verify your deletion

384 Chapter 7 Advanced Shell Programming

5. Save the file, exit, and then log out and log in again to activate the login script. Test
your change to the login script by typing echo "$CLEAR" and then pressing
Enter. Verify that the screen clears.

Project 7-13
In this project, you continue to enhance your employee telephone number application by
adding the capability to enter the minus (-) character to reposition the cursor and reenter
data in the data-entry screen. This requires making some modifications to the phoneadd
data-entry script.

To allow reentry of data:

1. Type cd ~/source and press Enter to ensure you are in the source directory. Next
open the phoneadd program using the vi or Emacs editor.

2. Add the following boldface code to the program. Notice that the revised code also
includes your new, faster, screen clear feature. It also changes the existing if state-
ments, so they use the test command.

For each echo statement that you add to the code in Step 2, be certain to place
12 blank spaces between the opening double quotation mark and the closing
double quotation mark.

#!/bin/bash
#==
Script Name: phoneadd
By: Your initials here
Date: Today’s date
Purpose: A shell script that sets up a loop to add
new employees to the corp_phones file.
Command Line: phoneadd
#
#==
trap "rm ~/tmp/* 2> /dev/null; exit" 0 1 2 3
phonefile=~/source/corp_phones
looptest=y
while test "$looptest" = "y"
do

clear
tput cup 1 4; echo "Corporate Phone List Additions"
tput cup 2 4; echo "=============================="
tput cup 4 4; echo "Phone Number: "
tput cup 5 4; echo "Last Name :"
tput cup 6 4; echo "First Name :"
tput cup 7 4; echo "Middle Init :"
tput cup 8 4; echo "Dept# :"
tput cup 9 4; echo "Job Title :"

Hands-On Projects 385

7

tput cup 10 4; echo "Date Hired :"
tput cup 12 4; echo "Add Another? (y)es or (q)uit: "
tput cup 4 18; read phonenum
if test $phonenum = "q"
then

clear ; exit
fi
tput cup 5 18 ; read lname
while test "$lname" = "-"
do

tput cup 4 18 ; echo " "
tput cup 4 18 ; read phonenum
if test "$phonenum" = "q"
then

clear ; exit
fi
tput cup 5 18 ; read lname

done
tput cup 6 18 ; read fname
while test "$fname" = "-"
do

tput cup 5 18 ; echo " "
tput cup 5 18 ; read lname
if test "$lname" = "q"
then

clear ; exit
fi
tput cup 6 18 ; read fname

done
tput cup 7 18 ; read midinit
while test "$midinit" = "-"
do

tput cup 6 18 ; echo " "
tput cup 6 18 ; read fname
if test "$fname" = "q"
then

clear ; exit
fi
tput cup 7 18 ; read midinit

done
tput cup 8 18 ; read deptno
while test "$deptno" = "-"
do

tput cup 7 18 ; echo " "
tput cup 7 18 ; read midinit
if test "$midinit" = "q"
then

clear ; exit
fi
tput cup 8 18 ; read deptno

386 Chapter 7 Advanced Shell Programming

done
tput cup 9 18 ; read jobtitle
while test "$jobtitle" = "-"
do

tput cup 8 18 ; echo " "
tput cup 8 18 ; read deptno
if test "$deptno" = "q"
then

clear ; exit
fi
tput cup 9 18 ; read jobtitle

done
tput cup 10 18; read datehired
while test "$datehired" = "-"
do

tput cup 9 18 ; echo " "
tput cup 9 18 ; read jobtitle
if test "$jobtitle" = "q"
then

clear ; exit
fi
tput cup 10 18 ; read datehired

done
#Check to see if last name is not blank before you
#write to disk
if test "$lname" != ""
then

echo"$phonenum:$lname:$fname:$midinit:$deptno:
$jobtitle:$datehired" >> $phonefile

fi
tput cup 12 33 ; read looptest
if test "$looptest" = "q"
then

clear ; exit
fi

done

3. Save the file and exit the editor.

4. Before you run this script, be certain that you have a tmp directory just under your
home directory (/home/username/tmp) for storing temporary files. If you do not
have a tmp directory, use the mkdir command to create one.

5. Execute the phoneadd script. For the phone number enter 219-555-4523 and press
Enter. Your screen appears and is similar to Figure 7-18.

6. In the Last Name field, type the minus sign (-), and press Enter. Your cursor
moves back to the Phone Number field. Your screen looks like Figure 7-19.

7. Reenter the phone number as 219-555-4511 and press Enter.

Hands-On Projects 387

7

Figure 7-18 Adding a new telephone number to phoneadd

Figure 7-19 Using the minus sign in phoneadd for data reentry

388 Chapter 7 Advanced Shell Programming

8. Complete the remaining fields with the following information. As the cursor moves
to each field, test the program by typing the minus sign(-) and pressing Enter. The
cursor should move to the previous field each time.

Last Name: Brooks Dept#: 4540

First Name: Sally Job Title: Programmer

Middle Init: H Date Hired: 02-20-2007

9. After you enter the date in the Date Hired field, press Enter to save the information
to the file, and then press q to quit. Use the cat command to display the contents of
the corp_phones file. The new record should appear.

Project 7-14
In this project, you further modify the phoneadd script to protect against duplicate phone
numbers using a process called input validation. Review the pseudocode and flowchart in
Figure 7-7 before you perform this modification.

To prevent phone number duplications via the phoneadd script:

1. Be certain you are in the source directory. Load the phoneadd script into vi
or Emacs.

2. Add the boldface section of the following code to complete the revised script.

Be sure to enter one continuous line for the code: tput cup 19 1; echo "This
number has already been assigned to:". Also, use one continuous line for the
code: tput cup 21 1; echo "Press ENTER to continue...". Both of these code lines
are wrapped into two lines in the code example due to the margin limitations of
the book.

#!/bin/bash
===
Script Name: phoneadd
By: Your initials here
Date: Today’s date
Purpose: A shell script that sets up a loop to add
new employees to the corp_phones file.
The code also prevents duplicate phone
numbers from being assigned.
Command Line: phoneadd
#
===
trap "rm ~/tmp/* 2> /dev/null; exit" 0 1 2 3
phonefile=~/source/corp_phones
looptest=y
while test "$looptest" = "y"
do
clear

Hands-On Projects 389

7

tput cup 1 4; echo "Corporate Phone List Additions"
tput cup 2 4; echo "=============================="
tput cup 4 4; echo "Phone Number:"
tput cup 5 4; echo "Last Name :"
tput cup 6 4; echo "First Name :"
tput cup 7 4; echo "Middle Init :"
tput cup 8 4; echo "Dept# :"
tput cup 9 4; echo "Job Title :"
tput cup 10 4; echo "Date Hired :"
tput cup 12 4; echo "Add Another? (y)es or (q)uit "
tput cup 4 18; read phonenum
if test $phonenum = "q"
then

clear ; exit
fi
Check to see if the phone number already exists
while grep "$phonenum" $phonefile > ~/tmp/temp
do

tput cup 19 1 ; echo "This number has already
been assigned to: "

tput cup 20 1 ; tr ':' ' ' < ~/tmp/temp
tput cup 21 1 ; echo "Press ENTER to
continue... "

read prompt
tput cup 4 18 ; echo " "
tput cup 4 18 ; read phonenum
if test $phonenum = "q"
then

clear ; exit
fi

done
tput cup 5 18 ; read lname

... The remainder of the program is unchanged

3. Save the file and exit the editor.

4. If you have not already created a tmp directory under your home directory, create
one now.

5. Run the program. Test it by entering a phone number that already exists in the
file, such as 219-555-4587, and then press Enter. Your screen should look like
Figure 7-20.

6. Press Enter and press Ctrl+z to exit.Type clear and press Enter to clear the screen.

390 Chapter 7 Advanced Shell Programming

Project 7-15
Functions can save time by enabling you to reuse lines of code in many scripts or programs.
In this project, you create a simple function, called datenow(), to display the current date.

To declare the simple datenow() function:

1. Type cd and press Enter to change to your home directory.

2. At the command line, type datenow(), and press Enter. Notice the prompt changes
to the > symbol. This indicates the shell is waiting for you to type more information
to complete the command you started.

3. At the > prompt, type {, and press Enter.

4. At the next > prompt, type date, and press Enter.

5. At the third > prompt, type }, and press Enter. The normal prompt now returns.

6. You have created the datenow() function and stored it in the shell’s memory. Call it
by typing datenow and pressing Enter. (See Figure 7-21.)

7. Type clear and press Enter to clear the screen.

Figure 7-20 Testing the input validation capability in the phoneadd script

Hands-On Projects 391

7

Project 7-16
One of the most important capabilities of functions is accepting arguments. In this project,
you redefine the datenow() function to accept an argument.

To redefine the datenow() function to accept an argument:

1. At the command line, type datenow(), and press Enter. The commands you are
about to type replace those previously stored in the datenow() function in Hands-On
Project 7-15.

2. At the > prompt, type {, and press Enter.

3. At the > prompt, type echo "$1", and press Enter. When the function runs, this
command displays the information passed to the function in the first argument used
when you execute datenow.

4. At the > prompt, type date, and press Enter.

5. At the > prompt, type }, and press Enter. The normal prompt returns.

6. Test the function by typing datenow "Today’s date and time are:" and pressing
Enter. Your screen looks similar to the following:

[beth@localhost ~]$ datenow "Today’s date and time are:"
Today’s date and time are:
Mon Nov 9 21:49:45 MST 2009

Figure 7-21 Creating the datenow() function

392 Chapter 7 Advanced Shell Programming

Project 7-17
Learning to create functions in shell scripts can make you a more efficient and accurate
script programmer. In this project, you create a hidden shell script called .myfuncs that
includes sorting functions for use on the corp_phones file used by your employee telephone
number application.

To place several functions inside a shell script:

1. Ensure you are in the source directory.

2. Use the vi or Emacs editor to create the .myfuncs file inside your source directory.

3. Enter the following functions:

sort_name()
{
sort -k 2 -t: corp_phones
}

sort_job()
{
sort -k 6 -t: corp_phones
}

sort_dept()
{
sort -k 5 -t: corp_phones
}

4. Save the file and exit the editor.

5. Type clear and press Enter.

Project 7-18
In this project, you load the .myfuncs file into memory so its functions can be executed. To
do this, you type a period (.), followed by a space, followed by the name of the file containing
the functions (.myfuncs). In the second part of the project, you start the .myfuncs script from
the .bashrc login script, so you can run the .myfuncs functions anytime after you log in.

To load the .myfuncs file:

1. At the command line, type . .myfuncs (type a period, press the spacebar, type a
period, and type myfuncs), and press Enter. Nothing appears, but the functions are
loaded into memory. Test some functions. Type sort_dept and press Enter. (See
Figure 7-22; your results might look slightly different because of differences in new
records entered during earlier testing.)

2. Type sort_name and press Enter to see the telephone records sorted by last name.
Type sort_job and press Enter to sort the records by the job name.

Hands-On Projects 393

7

To modify your .bashrc file to load the .myfuncs script:

1. Type cd to ensure you are in your home directory. Load your .bashrc file into the vi
or Emacs editor.

2. At the end of the file, add the following command; be certain to put a space between
the period (.) and the tilde (~):

. ~/source/.myfuncs

3. Save the file and exit the editor.

4. Log out and log back in to load the functions.

5. Make your source directory your current working directory.

6. Test the sort_name, sort_dept, and sort_job functions.

Project 7-19
Now, you are ready to enhance the employee telephone number application to display the
telephone listing in order sorted by employees’ last names. You can do this by using the
sort_name function, as stored in the .myfuncs file.

To sort the phone list, you make a minor revision to the phlist1 script to load the functions,
and then call sort_name to redirect the sorted output to a temporary file. The sorted

Figure 7-22 Using the sort_dept script function

394 Chapter 7 Advanced Shell Programming

temporary file serves as input to the awk command that displays the records. The revised
code also uses the CLEAR variable you set up in Hands-On Project 7-12.

To sort the phone listing:

1. Switch to the source directory, if you are not already in it. Use the vi or Emacs edi-
tor to open the phlist1 script. Add the additions and revisions that are shown in
boldface.

#!/bin/bash
===
Script Name: phlist1
By: Your initials here
Date: Today’s date
Purpose: Use awk to format colon-separated fields
in a flat file and display to the screen
Command Line: phlist1
===
echo "$CLEAR"
tput cup 2 20; echo "Corporate Phone List"
tput cup 3 20; echo "===================="
tput cup 5 0;
. .myfuncs
sort_name > sorted_phones
awk -F: ' { printf "%-12s %-12s %s\t%s %s %10.10s %s\n",
$2, $3, $4, $1, $5, $6, $7 } ' sorted_phones

tput cup 23 1; echo "Review"
tput cup 22 8; read prompt

2. This code includes the .myfuncs shell script, which contains sort functions. Thus, the
code works regardless of whether the .myfuncs shell script is already loaded in
memory via the .bashrc file. Save the file and exit the editor.

3. Test the file by typing phlist1 and pressing Enter. (See Figure 7-23.) Press Enter
when you finish observing the screen.

Hands-On Projects 395

7

DISCOVERY EXERCISES

1. What are the exit statuses of the test commands discussed in this chapter and what do
they mean?

2. Create a variable called mem_size and set its contents to 1024. Next use the test
command to determine if the contents of mem_size are less than or equal to 512.

3. Set your shell from the command line to be the Bash shell. Then use the echo com-
mand to verify the contents of the shell variable. What is now contained in the shell
variable?

4. After performing Exercise 3, use the test command to evaluate whether the shell
variable contains a reference to the Bash shell and use the echo command to deter-
mine the result. (Note that this provides one way to verify from within a script that
the script user is set up to use the Bash shell.)

5. Make certain that your home directory is your current working directory. Use the
command to verify that your source directory exists. How might knowledge of this
command be useful when you create scripts for yourself or others?

6. Switch to your source directory and make a copy of the corp_phones file (which
will give you a valuable backup of the corp_phones file) with the name corp_
phones_bak. Using the tr command as a filter for output from another command,
display to the screen the contents of corp_phones_bak so that all uppercase letters
from A to M are lowercase.

Figure 7-23 Testing the phlist1 script

396 Chapter 7 Advanced Shell Programming

7. Make your home directory your current working directory. Use the vi or Emacs
editor to open the veg_choice script you created in Chapter 6. Enter a line in that
script to ensure the script uses the Bash shell. Run veg_choice to ensure your change
works properly.

8. Edit the veg_choice script again, but this time change the line if [“$veg_name” =
“carrots”] to use the test command.

9. Create pseudocode and a flowchart for a proposed script that does the following:

Reads and sets the variable M

Reads and sets the variable R

Reads and sets the variable T

Sums M, R, and T in the variable A

Evaluates A to determine if it is greater than 2000

If A is greater than 2000, prints on the screen “A is over 2000.”

If A is less than or equal to 2000, prints on the screen “A is 2000 or less.”

10. Create the script for Exercise 9 and name it evaluate_yourinitials, such as evaluate_jp.
Test your script.

11. Create a shell variable, called CALNOW, that outputs the calendar for the current
month.

12. How could you set up CALNOW so that it works every time you log in using the
Bash shell?

13. List the records in the corp_phones_bak file that you created earlier, so that they are
displayed without colons separating the fields, but have one space between the fields
instead.

14. Use the vi or Emacs editor to open the nameaddr script you created in Chapter 6.
The script should look similar to the following:

looptest=y
while ["$looptest" = y]
do
echo –n "Enter Name : "; read name
echo –n "Enter Street : "; read street
echo –n "Enter City : "; read city
echo –n "Enter State : "; read state
echo –n "Enter Zip Code: "; read zip
echo –n "Continue? (y)es or (n)o: "; read looptest
done

How can you change this script to employ the test command?

Discovery Exercises 397

7

15. In your source directory, write a script called “them” in which you create a function
called whoisthere that displays a listing of who is logged in and displays the column
headings for the information that appears.

16. Make the contents of your script resident in memory and test your whoisthere
function.

17. Modify your whoisthere function so that you can enter “These are the folks logged
in:” as an argument to appear before your list of who is logged in to the system.

18. What actions do you take next to use the whoisthere function with your
modifications?

19. How can you set up your new whoisthere function so that it can be run each time
you log in using the Bash script?

20. Use a one-line command to strip out the telephone prefix (219-) and the colons in
the corp_phones_bak file and save the result in a file called noprefix.

21. Troubleshoot the problems with the following script:

#===
Script Name: record_entry
By: TRJackson
#===
looptrack = y
while [“$ looptrack ” = 1]
do
echo -n “Type in the account number:” read account
echo -n “Type the first and last name:” ; read full_name
echo -n “Type the age:” red age
echo -n “Enter another record?” ; read looptrack

finish

398 Chapter 7 Advanced Shell Programming

EXPLORING THE UNIX/LINUX

UTILITIES
After reading this chapter and completing the

exercises, you will be able to:
♦ Understand many of the UNIX/Linux utilities that are available and

how they are classified
♦ Use the dd utility to copy and convert files

♦ Monitor hard disk usage

♦ Use system status utilities

♦ Monitor and manage processes

♦ Check the spelling of text in a document

♦ Use the cmp command to compare the contents of two files

♦ Format text to create and use a man page

♦ Use the dump command to back up a system

♦ Send and receive e-mail

♦ Use basic network commands and utilities

So far in this book,you have used many practical UNIX/Linux utilities, from
utilities to list files to editors for creating and modifying files to the

selection, manipulation, and transformation utilities. UNIX and Linux offer a
full array of utilities beyond the ones you have already learned.

In this chapter, you learn more about the utilities in UNIX/Linux. First, you
survey the categories of UNIX/Linux utilities, including file-processing utili-
ties, system status utilities, network utilities, communications utilities, security
utilities, programming utilities, source code management utilities, and miscel-
laneous utilities. There isn’t enough room in this chapter to explore all of the
utilities in depth,and you have already learned to use many of the utilities listed,
so the utilities are presented in summary tables. This chapter then explores a
sampling of useful utilities, including the dd utility for copying and converting
files, utilities for monitoring hard disk usage, utilities to monitor the system

CHAPTER

8

399

status and system processes, a spell-checking utility, a utility to compare files, and a utility to
format text. Other utilities you learn about in this chapter include utilities to back up files,
an e-mail utility, basic networking utilities, the Network File System for sharing resources,
and Samba for accessing Windows-based files.

UNDERSTANDING UNIX/LINUX UTILITIES

UNIX/Linux utilities let you create and manage files, run programs, produce reports, and
generally interact with the system.Beyond these basics, the utility programs offer a full range
of services that let you monitor and maintain the system and recover from a wide range of
errors. UNIX/Linux utilities are classified into eight major functional areas dictated by user
needs: file processing, system status, networking, communications, security, programming,
source code management, and miscellaneous.

UNIX/Linux utilities are programs, but they are often referred to as commands
in the documentation. In this chapter, you see both “utility” and “command,”
depending on the command you are using.

For the sake of completeness, this chapter contains some references and
commentary about utilities in general, but it concentrates on those utilities that
relate to file processing, system status, e-mail, networking, backups, and mis-
cellaneous tasks.

Utility programs are vital for working in an operating system. You have already worked with
dozens of utilities, many of which are reviewed for your convenience in the tables included
with this chapter. For example, you have already worked with many of the file-processing
utilities, some of the system status utilities, and some of the miscellaneous utilities.

In this and later chapters, you work with additional system status, programming, and
miscellaneous utilities. There are many, many UNIX/Linux utilities, and there is not room
in this book to cover them all. However, you can come back to the tables in this chapter for
a quick reference to utilities you have used or to find a utility for a specific task. You can
learn more about these utilities using the man and info documentation options (such as man
mesg or info mesg).

New utility programs are continually being added as developers find better and
faster ways to make UNIX/Linux run more efficiently.

400 Chapter 8 Exploring the UNIX/Linux Utilities

CLASSIFYING UNIX/LINUX UTILITIES

Utilities can be classified in several categories, as some work exclusively with UNIX/Linux
files, others handle network tasks, and still others are designed to help programmers.
File-processing utilities, listed in Table 8-1, make up the largest category. These utilities
display and manipulate files.

Table 8-1 File-processing utilities
Command Brief Description of Function
awk Processes files
cat Displays files (and is used with other tools to concatenate files)
cmp Compares two files
comm Compares sorted files, and shows differences
cp Copies files
cpio Copies and backs up files to an archive
cut Selects characters or fields from input lines
dd Copies and converts input records
diff Compares two text files, and shows differences
dump Backs up files
fdformat Formats a floppy disk at a low level
file Displays the file type
find Finds files within file tree
fmt Formats text very simply
grep Matches patterns in a file
groff Processes embedded text formatting codes
gzip Compresses or decompresses files
head Displays the first part of a file (first 10 lines by default)
ispell Checks one or more files for spelling errors
less Displays files allowing for scrolling forward and backward (pauses

when screen is full)
ln Creates a link to a file
lpr Sends a file to a printer or printer device
ls Lists file and directory names and attributes
man Displays documentation for commands
mkbootdisk Creates a CD (or floppy disk on older distributions) from which to

boot a system
mkdir Creates a new directory
mkfs Builds a UNIX/Linux file system
mount Mounts file systems and devices
mv Renames and moves files and directories
newfs Creates a new file system (used in UNIX systems in particular)
od Formats and displays data from a file in octal, hexadecimal, and

ASCII formats
paste Concatenates files horizontally

Classifying UNIX/Linux Utilities 401

8

Table 8-1 File-processing utilities (continued)

Command Brief Description of Function
pr Formats text files for printing and displays them
pwd Shows the directory you are in
rdev Queries or sets the root image device
restore Restores files (from a dump)
rm Removes files
rmdir Removes directories
sed Edits streams (noninteractive)
sort Sorts or merges files
tail Displays the last lines of files (last 10 lines by default)
tar Copies and backs up files to a tape archive
touch Changes file modification dates
uniq Displays unique lines of a sorted file
wc Counts lines, words, and bytes
whereis Locates information about a specific file

System status utilities, listed in Table 8-2, is the second largest category. It includes utilities
that display and alter the status of files, disks, and the overall system. These utilities let you
know who is online, the names and status of running processes, the amount of hard disk
space available, and where to find other commands you need to run.

Table 8-2 System status utilities
Command Brief Description of Function
date Sets and displays date and time
df Displays the amount of free space remaining on disk
du Summarizes file space usage
file Determines file type (for example: shell script, executable, ASCII

text, and others)
finger Displays detailed information about users who are logged in
free Displays amount of free and used memory in the system
edquota Displays user disk quotas and enables them to be changed
kill Terminates a running process
ps Displays process status by process identification number and

name
sleep Suspends process execution for a specified time
top Dynamically displays the status of processes in real time, focusing

on those processes that are using the most CPU resources
uname Shows information about the operating system
vmstat Shows information about virtual memory use
w Displays detailed information about the users who are logged in
who Displays brief information about the users who are logged in

402 Chapter 8 Exploring the UNIX/Linux Utilities

Network utilities, listed in Table 8-3, consist of the essential commands for communicating
and sharing information on a network, as well as for viewing information about network
connection status.

Table 8-3 Network utilities
Command Brief Description of Function
ftp Transfers files over a network
ifconfig Sets up a network interface
netstat Shows network connection information
nfsstat Shows statistics for Network File System (NFS; file upload and

download) activity
ping Polls another network station (using TCP/IP); great for a fast

determination about whether your network connection is working
rcp Remotely copies a file from a network computer
rlogin Logs in to a remote computer
route Displays routing table information, and can be used to configure

routing
rsh Executes commands on a remote computer
showmount Lists clients that have mounted volumes on a server
telnet Connects to a remote computer on a network
traceroute Shows the route along a network between the source device and

the destination, such as from a computer to a server
wvdial Controls a modem dialer for dial-up connections over a phone

line

The communication utilities, listed in Table 8-4, handle mail and messaging tasks. These
programs include some advanced features such as Multipurpose Internet Mail
Extensions (MIME),which is a standard that supports sending and receiving binary files in
mail messages.

Table 8-4 Communications utilities
Command Brief Description of Function
mail Sends electronic mail messages
mesg Denies (mesg n) or accepts (mesg y) messages
talk Lets users simultaneously type messages to each other
wall Sends a message to all logged in users (who have permissions set

to receive messages)
write Sends a message to another user

Security utilities, which are shown in Table 8-5, enable you to make your system safer from
intrusions and help to prevent damage from viruses or malicious programs. They range from
securing your files to configuring a password to establishing a firewall. A firewall is software
or hardware placed between two or more networks or that can reside on a particular
computer and that selectively allows or denies access via a network.

Classifying UNIX/Linux Utilities 403

8

Table 8-5 Security utilities
Command Brief Description of Function
chgrp Changes the group associated with a file or the file’s group

ownership
chmod Changes the access permissions of a file or directory
chown Changes the owner of a file
ipchains Manages a firewall and packet filtering (do not use if you are

using iptables instead)
iptables Manages a firewall and packet filtering (do not use if you are

using ipchains instead)
passwd Changes a password

Programming utilities, listed in Table 8-6, are designed to help users develop software
projects written in C and C++ programs. You learn to use many of these utilities in Chapter
10,“Developing UNIX/Linux Applications in C and C++.”

Table 8-6 Programming utilities
Command Brief Description of Function
configure Configures program source code automatically
g++ Compiles a C++ program
gcc Compiles a C program
make Maintains program source code
patch Updates source code

Source code management utilities, which are listed in Table 8-7, are vital in a programming
and development environment. When several applications developers are working on a
project, you need to have ways to track programming changes. If these changes are not
tracked, the changes made by one programmer might inadvertently be undone or changed
by another,with unanticipated outcomes. For financial auditing requirements, you must also
have ways to track programming changes to meet the demands of audit reviews. This
protects programmers who work on applications that affect how money is handled, and it
protects organizations. These UNIX/Linux utilities have a proven track record in managing
teamwork programming, and are vital tools for scheduling and managing large-scale
applications.

Table 8-7 Source code management utilities
Command Brief Description of Function
ci Creates changes in Revision Control Systems (RCS)
co Retrieves an unencoded revision of an RCS file
cvs Manages concurrent access to files in a hierarchy
rcs Creates or changes the attributes of an RCS file
rlog Prints a summary of the history of an RCS file

404 Chapter 8 Exploring the UNIX/Linux Utilities

Finally, miscellaneous utilities include unique programs that perform very specific and
special functions. As you can see from the descriptions inTable 8-8, these commands include
providing a system calendar, scheduling events, and identifying terminals attached to the
system.

Table 8-8 Miscellaneous utilities
Command Brief Description of Function
at Executes a command or script at a specified time
atq Shows the jobs (commands or scripts) already scheduled to run
atrm Enables you to remove a job (command or script) that is sched-

uled to run
batch Runs a command or script, and is really a subset of the at com-

mand that takes you to the at> prompt, if you type only batch (in
Fedora, Red Hat Enterprise Linux, or SUSE, a command or script
is run when the system load is at an acceptable level)

cal Displays a calendar for a month or year
cd Changes to a directory
crontab Schedules a command to run at a preset time
expr Evaluates expressions (used for arithmetic and string manipula-

tions)
fsck Checks and fixes problems on a file system (repairs damage)
printenv Prints environment variables
tee Clones output stream to one or more files
tr Replaces specified characters (a translation filter)
tty Displays terminal path name
xargs Converts standard output of one command into arguments for

another

Now that you have surveyed the diverse utilities that are available, you are ready to use a
sampling of commands that UNIX/Linux users employ frequently.

USING THE DD COMMAND

Files not only store information, but they also store it in a particular format. For example,
most computers store text using ASCII codes. (Some legacy IBM mainframes, however, use
EBCDIC codes to store text.) In addition to the internal codes that computers use to store
information, some files store text in all uppercase letters. Likewise, other files store text in all
lowercase letters.Some files include only records,where each record consists of several fields.
A special character, such as a colon, separates the fields, and each record ends with a character
denoting a line break. Different files have different internal formats, depending upon how
the file is used.

The standard UNIX/Linux copy utility, cp, duplicates a file, but it cannot alter the format of
the destination copy. When you need to copy a file and change the format of the destination

Using the dd Command 405

8

copy,use the dd command instead of cp.Possessing a rich set of options that allow it to handle
copies when other methods are inappropriate, the dd command can, for instance, handle
conversions to and from legacy EBCDIC to ASCII (used on PCs). The dd command is
frequently used for devices such as tapes, which have discrete record sizes, or for fast
multisector reads from disks.

Syntax dd [options]

Dissection

■ Copies an input file and can convert the file’s contents to another format or to have
different characteristics

■ Useful options (these do not start with a hyphen) include:
if= designates the input file
of= designates the output file
bs= specifies the block size in bytes for the input and output files
ibs= specifies the input block size in bytes (on many systems, the default is 512 bytes)
obs= specifies the output block size in bytes (on many systems, the default is 512 bytes)
conv= converts the input file according to a specified designation, such as using conv=block
to convert variable-length records to fixed-length, conv=unblock to convert fixed-length
records to variable length, conv=ascii to convert EBCDIC to ASCII, conv=lcase to convert
uppercase to lowercase, or conv=ucase to convert lowercase to uppercase

Specifying block size, an optional requirement, speeds copying, especially when
copying backups to tape. On some systems, another advantage of the dd
command is that users can access a removable medium such as a CD without
first mounting it.

Hands-On Project 8-1 enables you to use the dd command to back up a file.

406 Chapter 8 Exploring the UNIX/Linux Utilities

CHECKING HARD DISK USAGE

UNIX/Linux system users, as well as the system itself, create and enlarge files. Eventually,
unless files are removed, even the largest disk runs out of free space. To maintain adequate
free space, you should use these basic strategies:

■ Be vigilant against running dangerously low on free space by using the df
command.

■ Watch for conspicuous consumption by using the du command.

■ Follow a routine schedule for “garbage” collection and removal by using a
combination of the find and the rm commands.

Using the df Utility
The df utility reports the number of 1024-byte blocks that are allocated, used, and available;
the percentage used; and the mount point—for mounted file systems. The reports displayed
are based on the command options entered. For example, Figure 8-1 shows the df informa-
tion in megabytes for one file system (/dev/hda2).You can be in either your account or the
root account to use df and the other utilities described in this section, but it is recommended
that you use your account for the projects in this book.

Syntax df [-options] [filesystem]

Dissection

■ Displays information about how space is allocated in a file system, such as used and free
space

■ Useful options include:
-h displays in “human-readable” format, such as using 29G (G is for GB) instead of
29659208
-l displays only local file systems
-m displays sizes in megabytes
-t displays only the type of file system

Hands-On Project 8-2 enables you to use the df command.

If you just enter df without specifying a file system, this shows information for
all mounted file systems. Also, note that the combined used and available disk
space might not total to the allocated space because the system uses some
space for its own purposes.

Checking Hard Disk Usage 407

8

Using the du Utility
The du utility summarizes disk usage. If you enter the command without options, you
receive a report based on all file usage, starting at your current directory and progressing
down through all subdirectories. File usage is expressed in the number of 512-byte blocks
(default) or by the number of bytes (the -b option). Figure 8-2 shows the du command used
to display information about the /etc directory in bytes.

Figure 8-1 Viewing information for one file system in megabytes

408 Chapter 8 Exploring the UNIX/Linux Utilities

Syntax du [-options] [filesystem]

Dissection

■ Summarizes disk usage, with the default of presenting information by directory

■ Useful options include:
-a displays information for files as well as for directories
-b displays information in bytes
-c creates a total at the end
-h displays information in “human-readable” format, such as using 3.7M for 3.7 million
instead of 3700
-S omits the size of subdirectories in the totals for directories

Try Hands-On Project 8-3 to use the du command.

Figure 8-2 Viewing du information for the /etc directory

Checking Hard Disk Usage 409

8

Removing Garbage Files
An easy way to free space in your file systems is to remove garbage files. Garbage files are
temporary files, such as a core file, that lose their usefulness after several days. A core file is
created when an executing program attempts to do something illegal, such as accessing
another user’s memory. The UNIX/Linux operating system detects the attempt and sends
a signal to the program. The signal halts the offending program, and creates a copy of the
program and its environment in a file named core in the current directory. The programmer
who wrote the program that “dumps core” (slang for this event) might be interested in
dissecting the core file with a debugging tool. However, all too often the core file simply
languishes unused in some branch of the directory hierarchy. All files created this way have
the same name: core.

Another file with a generic name is a.out, the default for the output of program compilation
procedures. Like core files, the true identity of these generically named files often gets lost
over time. You can use the find command to retrieve these wasteful files, and then execute
the rm command to remove them, such as by executing the following:

find . "(" -name a.out -o -name core ")" -exec rm {} \;

You used the find command in earlier chapters to locate files. The preceding find command
example locates every occurrence of the a.out and core files, and then deletes them with the
rm command. The first argument, dot (.), tells find to start looking in the current directory.
The argument “(“ -name a.out -o -name core ”)” uses the -o (OR) operator. It tells find to
search for files named a.out OR core. The -exec rm option instructs find to execute the rm
command each time it locates a file with the name being searched for. The {} characters are
replaced with the matching file name.For example,when the command locates an a.out file,
the {} characters are replaced with a.out, so the command rm a.out is executed. The \ ;
terminates the command. You search for and remove a.out and core files in Hands-On
Project 8-4.

You can locate several other garbage files with the find command. For example, users often
name files test, temp, or tmp to indicate temporary files that might be forgotten over time
and should be removed.

USING SYSTEM STATUS UTILITIES

As you see from the list of command descriptions inTable 8-2, the system status commands
reflect the system’s performance. Although system engineers who assess the CPU’s perfor-
mance primarily use this data, you should at least know how to obtain this information. You
can redirect the output of these commands to a file that you can then print or forward to the
system administrator and system tune-up specialists.

410 Chapter 8 Exploring the UNIX/Linux Utilities

Using the top Command
One of the most effective utilities for auditing system performance is the top command. The
top command displays a listing of the most CPU-intensive tasks, such as the processor state,
in real time (the display is updated every five seconds by default). This means that you can
actually see what is happening inside the computer as it progresses.

Syntax top [options]

Dissection

■ Monitors CPU-intensive tasks; options on many systems can be specified with or without
a hyphen (-) preceding the option

■ Useful options include:
d specifies the delay between screen updates
p monitors the process with the specified process id (PID)
q causes the top utility to refresh without delay
s allows the top utility to run in secure mode, which disables the interactive commands,
such as k to kill a process (a good option for those not in charge of tuning the system)
S runs top in cumulative mode; this mode displays the cumulative CPU time used by a
process instead of the current CPU time used
n specifies how many times to update the display
b enables you to run in batch mode so that you can send the output to a file for later study
(you must use the n option with the b option)
i causes the top utility to ignore any idle processes
c displays the command line instead of the command name only

While running, the top command supports interactive commands such as k, which kills a
running process. The top utility continues to produce output until you press q to terminate
the execution of the program.

The simplest way for most users to run the top utility is to issue the command
without options.

Try Hands-On Project 8-5 to use the top command.

Using the uptime Command
Sometimes, you might need to know how long a system has been running since you last
booted it. For example, if there have been recent system problems, you might want to track

Using System Status Utilities 411

8

how long your system has been up since the last problem requiring a reboot. The uptime
command displays the current time, how long the system has been up, the number of users
on the system,and the load average. The load average is for three intervals: the past 1 minute,
5 minutes, and 15 minutes.

Syntax uptime

Dissection

■ Displays how long the system has been up since the last boot

Using the free Command
A useful, though static, display of memory usage is generated by the free command. The free
command displays the amount of free and used memory in the system. (See Figure 8-3.)
The free command also enables you to monitor the usage of your swap space (disk space that
acts like an extension of memory; see Chapter 2,“Exploring the UNIX/Linux File Systems
and File Security”). By monitoring your system using free, you can determine if you have
enough RAM for the tasks on your computer, and you can determine if your swap space is
set properly. Unlike top, the free utility runs and then automatically exits.

Syntax free [-options]

Dissection

■ Provides statistics about free and used memory

■ Useful options include:
-b shows information in bytes (the default display is in kilobytes)
-m shows information in megabytes
-g shows information in gigabytes
-s n continuously monitors memory statistics so that you can view changes over time; the
n value sets the interval at which free updates the statistics in seconds—type Ctrl+c to end
-t creates totals for RAM and swap memory statistics

Hands-On Project 8-6 enables you to use the free command.

412 Chapter 8 Exploring the UNIX/Linux Utilities

Forwarding top and free Output
If you are experiencing problems with your computer, such as slow response, you might
want to forward the output of the top and free commands to a computer support person for
analysis. This is easily accomplished by using the > redirection symbol to store the contents
in a file, as in the following command line, which provides top data terminating after three
updates (the n 3 option):

top n 3 > topdata

After you create the file, you might send it to a computer support person via e-mail or print
the file using the lpr command:

lpr topdata

Try Hands-On Project 8-7 to save the results of top and free to files.

MANAGING PROCESSES

When you run a program, it starts one or more processes that are identified to the operating
system through a unique number called a process id or PID. UNIX and Linux offer
utilities to manage how a program is run and to monitor or kill processes used by a program.
In the following sections, you learn how to run a program in the background, which means
that although you do not see the program displayed in a window, it is still running behind
the scenes. Also, you learn how to view what programs/processes are running on your
system and how to kill a process.

Figure 8-3 Using the free command to monitor memory and swap usage

Managing Processes 413

8

Running Processes in the Background
Because UNIX/Linux is a multitasking operating system, it allows you to run programs in the
background while you continue to work with other programs. For example, if you have a
program that prints a lengthy report, you can run it in the background and continue working
with other programs while the report is printing. As another example, you might decide to run
the top program in the background to gather information about your system,or you might run
a program in the background that schedules and starts other programs at a later time.

To run a program in the background, append the & character to the end of the command
used to start the program. For example, to run the top program in the background, you
would enter the following:

top&

Try Hands-On Project 8-8 to run a program in the background.

Monitoring Processes
Monitoring processes that are running can be valuable so you can identify which processes are
active and determine if there are any you want to stop, such as processes running in the
background or processes associated with programs you are no longer using. In another instance,
you might start a program that runs for a long time, such as a statistics program that processes a
huge amount of data. After you start the program,you might change your mind about what you
want it to do, and need to stop the program so you can reset calculation parameters.

The ps command shows you a list of the processes currently running. When you use the
command with no options, it shows a list of the processes associated with the current login
session. When used with the -A or -e options, it shows a very long list of all processes
running on the system, as shown in Figure 8-4.

Syntax ps [-options]

Dissection

■ Provides a listing of the currently running processes

■ Useful options include:
-A or -e shows all processes currently running on the system
-C commandname shows processes selected on the specified command name
-p PID shows processes selected on the specified PID
-l PID shows a long listing of information about processes
l PID (no hyphen) shows a long listing of information about processes and has slightly
different categories of display than the -l option
--user shows processes by user

414 Chapter 8 Exploring the UNIX/Linux Utilities

Hands-On Project 8-9 shows you how to use the ps command.

Killing Processes
If you are the system administrator and have root privileges, you might find it necessary to kill
a user’s process because its associated program is malfunctioning or using too many system
resources. As a single user, you might find it necessary to kill a process that you have running in
the background or one that you have started, but have changed your mind about running. Use
the kill command plus the PID or process name as the argument to kill a process. (You,of course,
can find both the PID and process name by using the ps command first.)

Syntax kill [PID] or kill [%processname]

Dissection

■ Stops a process

■ Use kill -9 (9 is a signal number) to stop a process that does not respond to just the kill
command

Hands-On Project 8-10 enables you to use the kill command.

Figure 8-4 Viewing all of the running processes

Managing Processes 415

8

Be very careful when using the kill command. If you kill a process that the
operating system needs, you can cause disastrous results!

CHECKING THE SPELLING OF A DOCUMENT

If you create many plain-text documents in UNIX/Linux, it can be valuable to know how
to check the spelling in those documents. For example, you might frequently create
plain-text memos, e-mail messages or attachments, documentation files (such as readme
files), or even papers using plain-text editors, such as vi and Emacs. You can check the
spelling in such documents by using the ispell utility.

Syntax ispell [-options] filenames

Dissection

■ Checks the spelling of words in one or more plain-text files and suggests changes

■ Useful options include:
-b creates a backup (.bak) of the original file
-C ignores concatenated words
-S orders the suggested substitutions from most likely to least likely

The ispell utility scans a text document, displays errors on the screen, and suggests other
words with similar spellings as replacements for unrecognized words. A menu that appears
on the bottom line of the screen shows corrective options and exit codes. (See Figure 8-5.)

In Hands-On Project 8-11, you use the ispell utility on a document.

416 Chapter 8 Exploring the UNIX/Linux Utilities

COMPARING FILES

Suppose you have a file that you work with regularly. You make a backup copy of the file
for safekeeping. Later, you want to see if the original file has changed since you made the
backup copy. You can use the cmp utility to compare the contents of two files, and if there
is a difference, the command reports the location at which the files first start to differ.

Syntax cmp [-options] file1 file2

Dissection

■ Compares two files and indicates if they are different

When you compare two files, there is no output if the contents are identical. If the contents
are not identical, you see a message that specifies the first byte (character) that is different
between the files. For example, if you compare filea, which contains the line,

This is one file.

to fileb, which contains the following:

This is a different file.

the result from the command cmp filea fileb is

filea fileb differ: byte 9, line 1

Try Hands-On Project 8-12 to compare two files using the cmp command.

Figure 8-5 Checking the spelling in a document with ispell

Comparing Files 417

8

FORMATTING TEXT IN UNIX/LINUX

Text formatting in UNIX/Linux involves preparing a text file with embedded typesetting
commands and then processing the marked-up text file with a computer program. This
program generates commands for the output device, such as a printer, a monitor, or some
other typesetter. UNIX/Linux’s nroff and troff commands are often used to process the
embedded typesetting commands to format the output.

UNIX/Linux users have long used the nroff and troff commands to produce manuals,
corporate reports, books, and newspapers. These programs evolved from an earlier program,
RUNOFF (a utility created in the late 1970s), which read pure text with embedded codes
to format and print a text-enriched report. An embedded code is a special sequence of
characters that is included with the regular text in the file. The special codes are not printed,
but are interpreted as commands to perform text-formatting operations. For example, there
are codes to produce boldface print, center text, and underline certain lines.

Using embedded codes in text to produce enriched output provides the advantage of not
needing additional word-processing programs to produce documents. You can use any
editor that works with text files, such as vi or Emacs. In addition, you can use added features,
such as hyperlinks, to cross-reference other documents from within your document. You do
need, however, an HTML browser program such as Mozilla Firefox, or UNIX/Linux
utilities such as nroff and troff, to translate and execute the embedded hyperlink codes.

Linux provides groff, which implements the features of both nroff and troff.

Syntax groff [-Tdev]

Dissection

■ Text formatting utility

■ Useful options include:
-T designates a device type (no space betweenT and the device type), which specifies an
output device such as ASCII to tell groff that the device is a typewriter-like device. The
device type dev is for the man pages. Some other device types include ps for postscript
printers, dvi for TeX dvi format, and lj4 for an HP LaserJet4-compatible printer.

Table 8-9 lists a sampling of embedded codes supported by groff.

Table 8-9 Sample groff embedded commands
Embedded Command Meaning
.ce n Center next n lines
.ds C Center
.ds R Right-justify
.p n Start a new paragraph indented n characters

418 Chapter 8 Exploring the UNIX/Linux Utilities

Table 8-9 Sample groff embedded commands (continued)

Embedded Command Meaning
.sa 0 Turn off justification
.sa 1 Turn on justification
.ul n Underline the next n lines

You can use groff to display your own man page. The format codes consist of tags and
font-change commands that control the formatting and which you type into your man page
document. The tags and font-change commands consist of the following:

■ The .TH tag indicates the man page title, as well as the date and a version number
string. In the formatted man page, the version and date strings appear at the bottom
of each page.

■ The .SH tag indicates a section. (Section names usually appear in all uppercase
characters on a man page.) Six common sections of a man page are:

- NAME—The name of the command or program

- SYNOPSIS—A brief description of the command or program

- DESCRIPTION—A detailed description of the command or program

- FILES—A list of files used by the command or program

- SEE ALSO—A list of other commands or programs that are related to this one

- BUGS—A list of known bugs

■ The .SS tag indicates the beginning of a subsection. For example, Options is a
subsection of the DESCRIPTION section.

■ The .TP tag indicates each item in the Options subsection.

■ The \ f B command changes the font to boldface, the \ f I command changes the
font to italic, the \ f R command changes the font to roman (regular text), and the
\ f P command changes the font to its former setting.

Try Hands-On Project 8-13 to create a man page for the phmenu script application that you
completed in Chapter 7,“Advanced Shell Programming.”

When you are satisfied with the man page format, you can make it available to others by
copying it (while logged in as root) to one of the man page directories. All man pages are
stored in subdirectories of the /usr/share/man directory (in Fedora, Red Hat Enterprise
Linux, and SUSE). These subdirectories have names such as man1, man2, man3, and man4.
All man pages in man1 are identified with a common suffix, .1, so phmenu.1 is copied to
/usr/share/man/man1. The suffix number represents the section number of the man page.

When you request a man page using the man program, you specify the section number you
want to see by placing the number after the name. (If you type only the name, man looks
recursively for the page through all the subdirectories, starting with /usr/share/man/man1,

Formatting Text in UNIX/Linux 419

8

and then displays the first match.) For example, if you want man to print the second version
of the break command, follow the man command with break 2.

In Hands-On Project 8-14, you copy the man page you created in Hands-On Project 8-13
to the /usr/share/man/man1 directory.

Depending on your operating system and how security is configured, you
might need root privileges to copy a man page into the directories under
/usr/share/man.

ARCHIVING AND BACKING UP FILES

It is good practice to periodically archive or back up files. If you find you rarely use some
files, consider archiving them to CD, DVD, tape or another removable medium and storing
that medium in a safe place. Archive old text documents and financial files, for example.
Archiving provides a good way to make more room on your hard disks for your active files.

Another sound practice is to back up your important active files. On a system used in a
business, this might include backing up spreadsheets, customer files, and word-processed or
text documents.On a home system,you might back up personal documents, family financial
records, photos, music files, and other important files.

You may not need to restore files from a backup often, but when you do, it can
be crucial. One family purchased a new computer and loaded hundreds of
photos onto the hard drive. Within the first year, the hard drive failed and they
permanently lost all of the photos because there were no backups.

For archiving or backing up files to a CD or DVD, consider obtaining GUI software that
enables you to create a file system image, such as iso9660 or UDF (see Chapter 2,“Exploring
the UNIX/Linux File Systems and File Security”) before you copy (burn) files.Fedora,Red
Hat Enterprise Linux,and SUSE come with the GNOME CD/DVD Creator GUI software
that is part of the Nautilus program. Nautilus is a file manager program that is described in
Chapter 11, “The X Window System.” To use this software in the GNOME desktop in
Fedora and Red Hat Enterprise Linux, insert a blank CD/DVD,double-click the Computer
icon on the desktop, and double-click the CD/DVD drive to open the Nautilus CD/DVD
Creator window.To use the GNOME CD/DVD Creator in SUSE, click Computer, click
More Applications, click Multimedia in the left pane, and click Gnome CD/DVD Creator.

Using the dump Command
When you need to back up lots of files and directories or you want to do a full system
backup, you can use the dump utility from the command line.The dump utility is often used
to back up to one or more tapes and can be used to back up all files on a partition, only

420 Chapter 8 Exploring the UNIX/Linux Utilities

specified files, files that have changed by date, or files that have changed after the previous
backup. Files can be backed up using a dump level that correlates a dump to a specific point
in time—out of nine possible levels. dump level 0 is used to back up all files. Level 1 backs up
only files that have changed since the level 0 dump. Level 2 backs up only files that have
changed since the level 1 dump, and so on up to level 9.For example, on Saturday or Sunday
when the week is done and no one is in the office, you might use dump level 0. Monday’s
dump might be set up as level 1,Tuesday’s dump level 2, and so on.Using this approach, if you
lost your disk drive on Thursday you would have to restore starting with the level 3 tape
from Wednesday, then restore the level 2 tape from Tuesday, next the level 1 tape from
Monday, and finally the level 0 tape from Saturday or Sunday.

If you don’t have many files that change, another approach is to use a dump
level 0 once every week or less often.

Syntax dump [-options] devicename and partition or filenames

Dissection

■ Backs up files and directories

■ Uses 9 levels—level 0 backs up all files, level 1 backs up all files that have changed since
the level 0 backup, level 2 backs up all files that have changed since the level 1 backup and
so on up through level 9

■ Useful options include:
-0 through -9 specifies the dump level
-A filename enables you to specify an archive file on the tape that contains a table of
contents so you can later determine what is on the tape
-d density is used to specify the tape density (the default is 1600 bpi)
-f device backs up to a specific device, such as tape drive /dev/tape
-L label is used to place a label on the tape to describe its contents and that can be
read later
-u creates a journal entry for a successful dump in the file /etc/dumpdates or /var/lib/
dumpdates (the file location may vary by UNIX/Linux distribution; the dumpdates file
is useful for determining which backups have been successfully completed in the past in
case you must do a restore)

For example, you might have all of your important spreadsheet, document, and financial files
on the /dev/hda2 partition of your computer.The following command enables you to copy
all of the files on /dev/hda2 to a tape:

dump -0u -f /dev/st0 /dev/hda2

Archiving and Backing Up Files 421

8

This command tells the system to perform a level 0 (-0) dump, to create an entry in the
dumpdates file (u), write to a SCSI tape device (-f /dev/st0), and back up all files from the
/dev/hda2 (/dev/hda2) partition. (Another way that a tape device might be referenced is as
/dev/tape for a device connected via a typical serial or USB connection.)

Using the restore Command
The restore command enables you to restore an entire partition or only specified files or
directories from a backup medium created via the dump command.When you use restore, it
by default copies back to your current working directory.

Syntax restore [-options] device partition or filenames

Dissection

■ Restores entire file systems, specific files, and directories

■ Useful options include:
-f device or file specifies the device (such as a tape drive) or the file containing the backup
-i runs the restore in an interactive mode for selecting specific files and directories to
restore
-N shows the file names and directories on the backup medium
-r restores a file system
-x specifies certain files or directories to be restored

To restore the tape created in the example under the “Using the dump Command” section,
you would enter the following command:

restore -r -f /dev/st0

If you have lost a disk drive and you need to restore a partition, you’ll first need
to create the partition, mount it, and then perform the restore. To create the
partition in this example, you would use the command mkfs /dev/hda2. Next
you would mount the partition, such as through the command mount /dev/
hda2. See Chapter 2 for more information about file systems and partitions.

When you just want to restore certain files or directories, you have the most flexibility if you
use the following command (when the backup is on the tape device, /dev/tape):

restore -i -f /dev/tape

After you press Enter, the restore utility gives you a prompt at which you can enter
instructions for what you want to do. For example, the cd command enables you to switch
to a specific directory on the backup medium.The ls command gives a listing of files and
subdirectories within the current working directory on the backup medium. The add

422 Chapter 8 Exploring the UNIX/Linux Utilities

command lets you place specific files or directories on the list of items to be restored. For
example, to add the financials file you would type add financials.

USING MAIL TO SEND MAIL

If you use a UNIX or Linux server or have a multiuser workstation, the mail utility can be
very useful for communicating among account holders.This utility was first developed for
BSD UNIX, but has become popular on other UNIX and many Linux systems including
Fedora, Red Hat Enterprise Linux, and SUSE.Also, if the UNIX/Linux server you access
has an e-mail system for handling network and Internet mail, then you may be able to use
mail to communicate with users beyond your immediate server.

Syntax mail [-options] [username]

Dissection

■ Enables you to send and receive mail through your computer or server

■ When you read your mail, you can type ? at the & prompt to review the commands for
managing mail

To send mail to another user account, enter mail plus the account name. (To send mail
beyond the computer you are logged onto, enter the user’s e-mail address.) Enter the subject
of your mail at the Subject: prompt.After you enter the subject you go into a text mode for
entering your message.Type in a text line. Next, press Enter and fill in another line of text.
Continue pressing Enter after each line until you are finished with the message. Press Ctrl+d
to exit the text mode.At the Cc: prompt enter the name of the user you want to copy (see
Figure 8-6) or leave this blank and press Enter to send the message.

To retrieve your messages, enter mail at the command line.You’ll see a list of your messages.
A new message is prefaced with an N (for new). If you have previously viewed that a message
is waiting, but decided not to open it, the next time you use mail, a U (for unread) appears
in front instead of an N (see Figure 8-7).The number that identifies the message follows
next. To read a message, type its message number at the & prompt. To view all of the
commands for managing your mail, type ? at the & prompt and press Enter.When you want
to leave the mail utility type q and press Enter.Try Hands-On Project 8-15 to use the mail
command.

Another useful command for communications is talk, which enables two people
on the same computer (such as a server) or on different computers on a network
to converse by typing messages. To find out more about talk, enter man talk.

Using mail to Send Mail 423

8

USING NETWORKING UTILITIES

UNIX and Linux offer many utilities to accommodate a connection to the network. Four
utilities that can be invaluable to you include:

■ ifconfig

■ ping

Figure 8-6 Using the mail command

Figure 8-7 Accessing your mail

424 Chapter 8 Exploring the UNIX/Linux Utilities

■ traceroute

■ netstat

You learn about each of these utilities in the next sections.

Using the ifconfig Utility
The ifconfig utility can be used to configure your computer’s connection to the network.
Another use of ifconfig, which is our interest for this book, is to obtain information about
your network connection. For example, ifconfig displays your Internet Protocol (IP)
address.The Internet Protocol (IP) is used to help ensure that information on a network
goes to the right place.The IP address might be thought of as similar to a street address,
which enables the postal carrier and your visitors to find your house.

An IP address uses a dotted decimal notation that consists of 8-bit binary numbers (octets)
separated by periods used to identify a computer or network device and the network it is on.
The format is as follows: 10000001.00000101.00001010.00000001, which converts to the
decimal value 129.5.10.1. The first part of the address (which depends on the type of
network) designates a unique identifier for a network, called the network identifier (NET_
ID). For example, a school or corporation has its own NET_ID, which distinguishes its
network from all others.The second part of the address is the host identifier (HOST_ID),
which distinguishes a computer or network device from any other computer or device on
a network.

There are times when it is important to know your IP address,which you can find out by using
ifconfig. Besides your account name, your IP address is another means for people to find you on
a network and to test communications to your computer.This utility also enables you to view
basic information about how your computer is working on the network. For example, it shows
the number of transmissions of data and transmission errors. If you suspect there is a problem
with your network connection at your computer, you can use ifconfig for clues.

Syntax ifconfig [network interface]

Dissection

■ Configures a network connection and is used to view information about the connection,
such as the IP address

■ For a computer with one network connection or interface in an Ethernet network,
specify eth0 as the interface parameter

■ Useful options include:
-a show all network interfaces including those that are not currently working

Hands-On Project 8-16 enables you to use ifconfig to determine your IP address.

Using Networking Utilities 425

8

Using the ping Utility
Sometimes you might wonder if the network is working or if your connection or someone
else’s connection is working.The ping utility offers a simple way to test connections.This
utility polls another computer on the same network or on another network. If you poll
several other computers and you get no response, then your computer might be having
problems communicating or your network might be down. If you can successfully poll a
computer on your network, but you cannot poll a computer or service over the Internet,
then the Internet connection might be down.

You can poll a computer by entering ping plus the IP address of the other computer or
network device that you want to poll. Some versions of ping also let you poll by using the
computer name or computer and domain name of the device you want to poll—such as ping
rbrown@xxx.com or ping redhat.com.Try Hands-On Project 8-17 to use the ping command.

Syntax ping [-options] host

Dissection

■ Polls a computer on the same or a different network to determine if your computer is
working, the network is working, or the remote computer is connected and working

■ Useful options include:
-a sounds a beep or other audible sound when receiving a response to the poll
-c returns the number of polls
-q displays only a summary of the results

Using the traceroute Utility
The traceroute utility can be used to determine the network path between point A and
point B, such as the path between your computer and the computer of an associate who is
in another city or state or across the Internet.The statistics from traceroute show the number
of hops (networks or network devices) through which your communication travels. The
statistics also show the time it takes in milliseconds to go from one point to the next.

You might use traceroute to ensure your computer is connected and working and that your
network is working from point to point. It can also show if your network connection or
your Internet provider is responding at a slow or fast pace.Another use of traceroute is to get
a general idea of how efficiently your network is designed. Hands-On Project 8-18 enables
you to use traceroute.

426 Chapter 8 Exploring the UNIX/Linux Utilities

Syntax traceroute [-options] host

Dissection

■ Tracks the route that a network communication takes from point A on a network to point B

■ Provides information about the number of hops between two points (on the same or
different networks) and the time it takes to go between points

Using the netstat Utility
The netstat utility gathers statistics and information about IP communications on a
computer. Some of the information provided by netstat include the following:

■ Network protocol communications

■ Network connections established by the host computer

■ Network routing information

■ Information about computers remotely logged onto the host computer

■ Data and communications errors

A user or server administrator might use netstat to monitor open ports (network commu-
nications channels on a computer). Both legitimate users and intruders may have traffic
through those ports that bears watching.Through netstat a user or server administrator can
also watch the amount of incoming and outgoing traffic. If the traffic is slow or experiencing
lots of errors, this can mean there is a communication problem, such as a failing network
connection.Try Hands-On Project 8-19 to use netstat.

Syntax netstat [-options] host

Dissection

■ Monitors network traffic into and out of the host computer

■ Useful options include:
-a displays statistics for all communications ports used by the transport protocol
-p shows programs in use that are related to active ports
-n displays communication via IP addresses and port numbers
-s shows a wide range of communications statistics, including errors

Using Networking Utilities 427

8

SHARING RESOURCES USING NETWORK FILE SYSTEM

UNIX/Linux systems enable resource sharing over a network by using Network File
System (NFS). NFS enables one computer running UNIX/Linux to mount a partition
from another UNIX/Linux computer and then access file systems on the mounted partition
as though they are local. Fedora, Red Hat Enterprise Linux, and SUSE support three
versions of NFS: NFS version 2 (NFSv2) which is used on many UNIX/Linux systems,
NFS version 3 (NFSv3) which is newer and offers better file and error handling than
NFSv2, and NFS version 4 (NFSv4) which is the newest version at this writing. NFSv4
offers better security for the host, functions well through network security measures, offers
improved performance over the Internet, and is compatible with UNIX, Linux, and
Windows.

When a client mounts an NFS volume from a host, both the client and host use remote
procedure calls (RPCs). An RPC enables services and software on one computer to use
services and software on a different computer.To use NFS in Fedora, Red Hat Enterprise
Linux, and SUSE, the portmap service must be enabled (your particular Linux distribution
may require additional services).This service handles the RPC request to mount a partition
and makes the computer act like a server for those who access files via NFS.To start a service,
use the service command from the root account, such as:

service portmap

Syntax service servicename

Dissection

■ Runs a script that starts a service in UNIX/Linux, such as a service to enable remote
procedure calls or a service to enable printing

■ Services reside in the directory /etc/init.d

The security that controls which clients can use NFS on a hosting computer is handled
through entries in three files: /etc/hosts.allow, /etc/hosts.deny, and /etc/exports. The
/etc/hosts.allow file contains the IP addresses of the clients that are allowed to use NFS and
the /etc/hosts.deny file contains computers that are not allowed to use NFS. Also, the
/etc/exports file on the NFS host must contain information about which directories can be
accessed by clients through NFS. For example, the /etc/exports file might contain the
following lines:

/home/mpalmer/shared 192.168.0.72(ro) 192.168.0.84(ro)
/home/mpalmer/docs 192.168.0.72(rw) 192.168.0.41(rw)

In this example, on the first line the directory /home/mpalmer/shared is shared via NFS.
The IP address 192.168.0.72 is the address of the host (server) computer and 192.168.0.84
is the IP address of the computer that can access the shared directory.The (ro) designates read

428 Chapter 8 Exploring the UNIX/Linux Utilities

only permission to the shared directory.On the second line, the directory /home/mpalmer/
docs is shared from the host computer at IP address 192.168.0.72 and can be accessed by the
client at IP address 192.168.0.41 with read and write permissions.

The purpose of this section is to give you a brief introduction to NFS so that you
know of its existence. For more detailed information about setting up and using
NFS visit the Web site: nfs.sourceforge.net/nfs-howto/ar01s03.html.

Besides configuring the /etc/hosts.allow, /etc/hosts.deny, and /etc/exports files, the
resources mounted through NFS are also protected by the permissions on the actual
directories and files.

To access a shared directory through NFS, the client must use the mount command (from the
root account), for example:

mount bluefin:/home/mpalmer/shared /mnt/shared

In this example, the directory /home/mpalmer/shared on the computer bluefin is mounted
on the client as /mnt/shared.

ACCESSING MICROSOFT WINDOWS SYSTEMS THROUGH SAMBA

UNIX/Linux computers can access shared Windows system drives through the use of
Samba.Samba is a utility that uses the Server Message Block (SMB) protocol, which is also
used by Windows systems for sharing folders and printers. In Fedora, Red Hat Enterprise
Linux, and SUSE, Samba is configured in the /etc/samba/smb.conf file.At this writing, to
accessWindows shared drives from Fedora or Red Hat Enterprise Linux with the GNOME
desktop, click Places, click Network Servers, double-click Windows Network (continue
clicking the appropriate icons to access a specific computer and shared folder). In SUSE (at
this writing) click Computer, click More Applications, click Network Servers File Browser,
and double-click Windows Network (continue clicking the appropriate icons to access a
specific computer and its shared folders). In Knoppix using the KDE desktop, click the K
Menu in the Panel at the bottom of the desktop,point to KNOPPIX,point to Utilities, click
Samba Network Neighborhood, and browse to theWindows computer you want to access.

You can learn more about Samba and new releases of Samba at the Web site:
us3.samba.org/samba.

Accessing Microsoft Windows Systems Through Samba 429

8

CHAPTER SUMMARY

UNIX/Linux utilities are classified into eight major functional areas dictated by user
needs: file processing, system status, networking, communications, security, programming,
source code management, and miscellaneous tasks.

Because utility programs are executed by entering their names on the command line,
these programs are also referred to as commands.

The dd command has a set of options that allows it to perform copying tasks, such as
converting the contents of a file, that are not available in other copying utilities.

The df utility checks and reports on free disk space.

The du command checks for disk usage (consumption).

You can use the find command to retrieve wasteful files, and then execute the rm
command to remove them from the hard disk.

The top and free utilities provide detailed views of the “internals” of the system to
determine factors such as CPU and memory use.

The uptime command shows how long a system has been up since booting.

You can redirect the output of the top and free commands to a disk file to use as input for
a report to the system administrator and system tune-up specialists.

You can run a program in the background by appending the & operator to the end of the
command line.

The ps command displays all processes currently running.

The kill command terminates a specific process.

The utility that checks spelling, ispell, scans a text document for typing errors and suggests
corrections.

Text formatting in UNIX/Linux involves preparing a text file with embedded typesetting
commands and then processing the marked-up text file with a computer program that
generates commands for the output device.

Text containing embedded typesetting commands is processed (read) by programs like the
nroff and troff utilities or the Linux groff utility for formatting output.

Formatted text can be created to produce man pages for new applications.

Archive and back up file systems,directories, and files using the dump command.To restore
information saved through dump use the restore command.

The mail command is a basic utility for sending and retrieving mail on a UNIX/Linux
computer.

The ifconfig, ping, traceroute, and netstat commands are used on computers connected to a
network for viewing information about the network connection and for troubleshooting
the connection.

430 Chapter 8 Exploring the UNIX/Linux Utilities

Network File System (NFS) enables users to share directories and files over a network.

Samba is a utility that enables UNIX/Linux computers to access folders and files shared
on networked Windows computers.

COMMAND SUMMARY: REVIEW OF CHAPTER 8 COMMANDS

Please refer to the tables within the chapter for a command review.

Table Shows
Table 8-1 File-processing utilities
Table 8-2 System status utilities
Table 8-3 Network utilities
Table 8-4 Communications utilities
Table 8-5 Security utilities
Table 8-6 Programming utilities
Table 8-7 Source code management utilities
Table 8-8 Miscellaneous utilities
Table 8-9 Sample groff embedded commands

KEY TERMS

core file — A type of garbage file created when an executing program attempts to do
something illegal, such as accessing another user’s memory.
garbage file —A temporary file, such as a core file, that loses its usefulness after several days.
Internet Protocol (IP) — A network protocol or communications language that handles
addressing and routing of information over a network so that it reaches the correct destination.
Internet Protocol (IP) address — An address that Internet Protocol uses to locate a
specific computer or device on a network.An IP address uses a dotted decimal notation that
consists of 8-bit binary numbers (octets) separated by periods used to identify a computer or
network device and the network it is on.
Multipurpose Internet Mail Extensions (MIME) — A communications standard that
supports sending and receiving binary files in mail messages.
Network File System (NFS) — Enables file transfer and other shared services that involve
computers running UNIX/Linux.
process id (PID) —An identification number that the operating system assigns to a process
for managing and tracking that process.
remote procedure calls (RPCs) — Enable services and software on one computer to use
services and software on a different computer.
Samba — Used by UNIX/Linux and Mac OS X systems, a utility that employs the Server
Message Block (SMB) protocol, which is also used by Microsoft Windows systems for
sharing folders and printers. Samba enables UNIX/Linux and Mac OS X systems to access
shared Windows resources.

Key Terms 431

8

REVIEW QUESTIONS

1. You have obtained a new utility, called watchit, to monitor security on your com-
puter, and you decide to run the utility in the background. Normally, to start the
utility you would enter watchit at the command line.Which of the following com-
mands enables you to start and run this utility in the background?
a. hide watchit
b. watchit&
c. sh -h watchit
d. shh watchit

2. You’ve obtained over a hundred large graphics files to use in publications, but you
want to be sure there is enough available disk space on your computer to store these
files.Which of the following commands should you use?
a. df
b. diskfree
c. ls --space
d. netstat

3. Your company is launching a marketing campaign, and to start, you’ve created a file
called promotion in normal uppercase and lowercase letters that will be used to place
text for ads on the Internet and in newspapers.When you show the promotional text
to your boss, she is curious about how it would look in all uppercase letters for
emphasis.Which of the following commands enables you to convert the text and
save the result to the file, promotion_uppercase?
a. cat -u promotion | promotion_uppercase
b. case [a-z] [A-Z] promotion >> promotion_uppercase
c. case -u promotion > promotion_uppercase
d. dd if=promotion of=promotion_uppercase conv=ucase

4. Which of the following can you restore from a backup tape made via the dump
command? (Choose all that apply.)
a. a file
b. a partition of directories and files
c. a directory
d. a subdirectory

432 Chapter 8 Exploring the UNIX/Linux Utilities

5. Your network has a combination of Linux and Microsoft Windows computers.There
is a Windows server that offers shared files for clients to access.Which of the follow-
ing enables you to access the shared files from your Linux computer?
a. Windows Share
b. Network Share
c. Samba
d. Leopard

6. You help manage the Linux server for your department. Right now the server has no
protection against power failures and there have been several power failures recently.To
help make your case for a power protection device, you want to keep track of the
amount of time the server has been running since the last power outage that caused it to
go down.What command enables you to track how long the server has been up?
a. top
b. uptime
c. df
d. boot

7. You’ve purchased a new program for your computer, but the computer seems to
slow down when you run the program.Which of the following commands enables
you to monitor the memory usage as you run the program so you can determine if
the program is a memory hog?
a. free
b. memuse
c. mu
d. test

8. You are working on a report about disk usage on your company’s server to help
determine if it is time to purchase additional disks.Which of the following com-
mands enables you to obtain disk usage statistics for your report?
a. free -t
b. dd -of
c. top -d | more
d. du -h | more

9. When you create a section name in a man page, such as the DESCRIPTION sec-
tion, what tag should you use just before the section name?
a. .TH
b. .SS
c. \SC
d. .SH

Review Questions 433

8

10. Which of the following are levels of backups that can be made with the dump
command? (Choose all that apply.)
a. 0
b. 5
c. 15
d. 20

11. How can you specify which device to use for a restore from a backup tape created by
the dump command?
a. Use the --device option.
b. Use the parameter, output=devicename.
c. Use the -f option.
d. Use the -i option so that you can do the restore from the interactive mode and select

the device on the fly.

12. You’ve opened your mail on the company’s server by using the mail command. Sev-
eral messages are listed. How can you tell which ones are new or unopened
messages?
a. New messages begin with number 1 and unopened ones begin with the number 2.
b. New or unopened messages begin with an N or a U.
c. Both new and unopened messages begin with the tag,“unopened”.
d. New and unopened messages begin with a closed folder symbol.

13. You suspect that your computer’s connection to the network is not working because
you don’t seem to be able to connect to the Internet through the network.Which of
the following commands can help you determine if your connection is working?
(Choose all that apply.)
a. ping
b. netconnect
c. df
d. tr

14. You are setting up NFS to share files on the network from your Fedora Linux
computer.Which of the following is a service that must be running to enable you to
use NFS for sharing files?
a. NFSstart
b. share
c. portmap
d. netlink

434 Chapter 8 Exploring the UNIX/Linux Utilities

15. What is the command that you can use (from root) to start the service mentioned in
Question 14?
a. service
b. start
c. init
d. go

16. In the following command, what is the purpose of -o?

find . "(" -name a.out -o -name core ")"

a. It tests for the existence of files.
b. It is the “OR” operator.
c. It directs output to the core file.
d. It directs output to the a.out file.

17. You have a small network in your business with just a few network devices con-
nected along with 22 Linux computers and you want to see how efficiently your
network is designed.Which of the following commands can you use from different
computers to determine the route information takes from one computer to another?
a. vmstat
b. pong
c. nettraffic
d. traceroute

18. Your computer is slowing down because you’ve started a process that is taking most
of the memory and CPU resources.Which of the following commands enables you
to find the process id so you can stop that process?
a. ps
b. df
c. du
d. free

19. Which of the following commands enables you to stop the process mentioned in
Question 18?
a. bye
b. kill
c. ci
d. tar

Review Questions 435

8

20. Your colleague is creating a new man page to document a manufacturing process
used by your company. She wants to be able to quickly view the man page as she
works on it so that she can have other people view it before copying the man page
into production.Which of the following commands enables her and others to peri-
odically review her work in a format similar to the man page format?
a. .//
b. show
c. groff
d. dd

21. A user on your network has received an error message that there is another com-
puter on the same network using the same IP address, so the user cannot access the
network.You send out a message to the 18 Linux users on your network to ask that
they check the IP addresses on their computers and e-mail this information to you,
so that you can determine who has the duplicate IP address.What utility do you tell
users to run to determine their IP addresses?
a. ifconfig
b. ipquery
c. df
d. cmp

22. Name two types of information that you can obtain using netstat.

23. What is the purpose of the top command and how can you use it to stop a process?

24. You are gathering information about the amount of disk space occupied by users’
home directories.What command enables you to view a breakdown by individual
directories under the /home directory? (Provide the actual command you would run
and any special considerations for running it.)

25. Name two files that should be modified for security when using NFS.

HANDS-ON PROJECTS

Complete these projects using the command line, such as from a terminal
window, using the Bash shell. Also, use your own account and home directory
(one project requires the root or superuser password to complete the steps).

Project 8-1
The dd command enables you to copy a file and also has the advantage that you can convert
the file’s contents in the process. In this project,you create a file using all uppercase characters
and then convert its contents to lowercase.

436 Chapter 8 Exploring the UNIX/Linux Utilities

To make a copy of a file and convert its contents:

1. Use the cat command or the editor of your choice to create a file, datafile. The file
should contain the following text:

THIS IS MY DATA FILE.

2. Make a copy of the file by typing dd if=datafile of=datafile.bak conv=lcase and
then press Enter.

3. Type cat datafile.bak to verify your work. (See Figure 8-8.)

Project 8-2
In this project, you use the df command to determine usage of the file systems on your
hard drive.

To use the df command to check file system usage:

1. Type df and then press Enter. (See Figure 8-9.)

2. Of course, your file systems and their statistics are different from those shown in Fig-
ure 8-9. In Figure 8-9, notice, for example, that the df command reports that the
/dev/mapper/VolGroup00-LogVol100 file system (the default volume 1) file system
has 37709304 blocks of 1 kilobytes each. There are 3415244 blocks in use, and
32347644 blocks available.Ten percent of the blocks are in use, and the file system is
mounted on /. Also, notice in Figure 8-9 that there is a tmpfs file system mounted
on /dev/shm.This disk space can be used like virtual memory in some UNIX and
Linux systems. In Fedora and Red Hat Enterprise Linux tmpfs is configured by
default via the mount command (it is not configured by default in SUSE or
Knoppix).The actual amount of virtual memory used can expand or contract

Figure 8-8 Using the dd command

Hands-On Projects 437

8

depending on the need. tmpfs is designed to speed access to active files and is used
before conventional swap space (and can swap files with less activity to swap space).
Some systems use the name shmfs instead of tmpfs.

3. You can specify a file system as an argument. The statistics for that file system alone
appear on the screen. Type df /dev/hda1 (or another partitioned disk appropriate
to your system) and press Enter. You see the disk statistics for that volume only.

4. The -h option causes the numbers to print in human-readable form. Instead of dis-
playing raw numbers for size, amount of disk space used, and amount of space avail-
able, the statistics are printed in kilobyte, megabyte, or gigabyte format. Type df -h
and then press Enter.

5. Type clear and press Enter to clear the screen for the next project.

Project 8-3
When you want to see directory, subdirectory, and file size information, use the du
command. In this project, you use the du command to learn about your disk use.

To report on disk use:

1. To receive a report on disk usage starting at your home directory, type du | more, and
then press Enter. (The results of the du command can be lengthy, so pipe its output to
the more command.) Figure 8-10 shows an example of the command’s output.

2. The output shows the number of 512-byte blocks used in each subdirectory (includ-
ing hidden subdirectories). Type q to exit the more command.

3. To view a similar report on disk usage by the number of bytes instead of by 512-
byte blocks, start at your home directory, type du -b | more, and then press Enter.

Figure 8-9 Using the df command

438 Chapter 8 Exploring the UNIX/Linux Utilities

4. Type q to exit the more command.

5. Like the df command, the du command supports the -h option to display statistics in
human-readable format. Type du -h | more and then press Enter.You can press
the Spacebar to advance through screens or type q to exit the display of statistics.

Besides the -h option, the du command supports the -x option, which enables
you to omit directories in file systems other than the one in which you are
working when more than one file system is mounted.

6. Type clear and press Enter.

Project 8-4
In this project, you use the find command to search for and delete all occurrences of a.out
and core.The steps that follow assume you have a source directory in your home directory.
The test files, a.out and core, are quickly created using the touch command, which, when
followed by the file names, creates empty files. The tilde (~) ensures that these files go into
your home and source directories. You should already have a source directory for this
project. If not, create a source directory under your home directory before you start.

To remove garbage files:

1. Create some garbage files, core and a.out, and place them in your home directory
and in the source subdirectory under your home directory. First type touch ~/core
; touch ~/a.out and press Enter to create the files in your home directory. Next
type touch ~/source/core ; touch ~/source/a.out and press Enter.

Figure 8-10 Results of the du command from a home directory

Hands-On Projects 439

8

2. Verify that you are in your home directory, type find . "(" -name a.out -o
-name core ")" and then press Enter. You should see a listing of the four files you
created in Step 1, the core and a.out files in the home directory and in the source
directory under the home directory.

3. Remove the garbage files by typing find . "(" -name a.out -o -name core ")"
-exec rm {} \; and then pressing Enter.

4. Check that the files have been removed by repeating the find command you entered
in Step 2. If the files have been removed, there is no output. (See Figure 8-11.)

Project 8-5
Sometimes, your system might respond slowly or seem to have delays. In these conditions,
it is useful to employ the top command to monitor CPU use by processes and other system
information, as you learn in this project.

To use the top utility:

1. Display the CPU activity by typing top and then pressing Enter. Your screen should
look similar to Figure 8-12. (Don’t forget that this display changes while on screen.)

2. The processes are shown in the order of the amount of CPU time they use. After
looking at the display for a short time, press q to exit from the top utility.

3. Run the top utility again. Notice the far-left column of information labeled PID.
This column lists the process id of each process shown. Notice the PID of the top
command. (In Figure 8-12, the top command’s PID is 26214. Yours is probably
different.)

Figure 8-11 Using the find command to delete garbage files

440 Chapter 8 Exploring the UNIX/Linux Utilities

4. Press k to initiate the kill command. The top utility asks you to enter the PID to kill.
Enter the PID of the top command. Press Enter to kill the process. (You might have
to press Enter a second time to return to a command prompt.) Type clear and press
Enter (you might have to execute clear more than once) to clear the lines from the
screen. The top utility is no longer running.

5. Run the top utility in secure mode by typing top -s and pressing Enter.

6. Press k to initiate the kill command. Because top is running in secure mode, it dis-
plays the message “Unavailable in secure mode,” as shown in Figure 8-13.

7. Press q to exit the top utility.

8. Type clear and press Enter to clear the screen.

Figure 8-12 Sample top display

Hands-On Projects 441

8

Project 8-6
Plan to periodically monitor memory use in your computer, particularly if the computer
seems to run slowly when you use specific programs. In this project, you use the free
command to monitor memory.

To use the free command:

1. Type free and press Enter. The command displays the amount of total, used, and
free memory. It also displays the amount of shared memory, buffer memory, and
cached memory. In addition, the amount of total, used, and free swap memory is
shown. By default, all amounts are shown in kilobytes.

2. Type free -m and press Enter to see the free command’s output in megabytes.

3. Type free -t and press Enter to see memory use totals. (See Figure 8-14.)

Figure 8-13 Running top in secure mode so the k command cannot be used

442 Chapter 8 Exploring the UNIX/Linux Utilities

Project 8-7
There are times when you might want to send the results of the top and free utilities to a
computer support person for help. In this project, you save the results from these utilities to
different files and then print the files.

To save and print the displays generated by the top and free utilities:

1. Redirect the output of the top utility to a file in your current directory by typing
top > topdata and then pressing Enter.

2. Wait about 10 seconds, and then press q to exit the top utility. Type more topdata
and press Enter to confirm you have written the information to the topdata file.To
see additional lines in the display, you may need to repeatedly press Enter. Type q to
exit the more display of the file contents.

3. Redirect the output of the free utility to a file in your current directory by typing
free > freedata and then pressing Enter. Type more freedata and press Enter to
verify the contents of the freedata file.

4. Print the information you have saved for the computer support specialist by typing
lpr topdata, pressing Enter, typing lpr freedata, and then pressing Enter again.

5. Type clear and press Enter to clear the screen.

Figure 8-14 Displaying memory use using different free command options

Hands-On Projects 443

8

Project 8-8
In UNIX/Linux, you can run programs in the background. In this project, you practice
running the top program in the background.

To run a program in the background:

1. Experiment with running a program in the background by running the top program
in the background. Type top& and press Enter.

After you enter the command, the system reports the process id or PID (id that
identifies the process) used by the program that you started in the background, such as
26851 in Figure 8-15.

The top utility is running, but because it runs in the background, you see no other
output.

2. Continue to run the top utility in the background.

Project 8-9
In this project, you learn how to use the ps command to view processes on your system.

To use the ps command:

1. Type ps and press Enter. The output of the ps command includes this information
about each process you are running:

PID

Name of the terminal or station where the process started

Figure 8-15 Starting the top utility to run in the background

444 Chapter 8 Exploring the UNIX/Linux Utilities

Amount of time the process has been running

Name of the process

Notice that the top utility might still be running in the background, or you might see
a message at the end of the ps display that top has stopped running.

2. To see a list of all processes running on the system, type ps -A | more, and press
Enter.

3. Press the spacebar until the command finishes its output.

4. Notice that with the command options you’ve used so far, it is difficult to tell the
status of a process, such as whether or not it has finished. Type ps l (that is, a lower-
case letter l and not a one), and press Enter to see the long display. The WCHAN
column shows the status of a process, such as “finish.”

5. Now consider that you want to know who is running a particular process by user
name. Type ps -A u | more and press Enter. (See Figure 8-16, which shows infor-
mation in the middle of the listing.) Press the spacebar to scroll through the listing.
Notice that many processes are being run by root as well as by your account.

Project 8-10
Sometimes, you need to stop a process, such as one running in the background or one that
you no longer want to use. In this project, you use the kill command to stop a process.

To stop a process using the kill command:

1. In this step, you terminate the top utility that you started in Hands-On Project 8-8
and that might still be running in the background. (If you received a message that it

Figure 8-16 Using ps to view user information for all processes

Hands-On Projects 445

8

stopped, continue anyway for practice or restart the utility by typing top& and press-
ing Enter.) Type ps and press Enter. Look at the list of processes to find the top
utility’s PID.

2. Type one of these commands (both perform the same operation): kill <process id>
and press Enter, or kill %top and press Enter.

3. Type ps l and press Enter to see a list of the processes and to check the status (look
under the WCHAN column) of the top process.

Project 8-11
If you often work with plain-text documents, it is helpful to know about the ispell command
for spell checking. You practice using ispell in this project.

To use ispell:

1. Use the vi or Emacs editor to create a file, and name it document1.

2. Enter the following text, with misspellings:

This is a document that describes our newest
and fastest machineery. Take the time to lern
how to use each piece of equipment.

3. Save the file and exit the editor.

4. Scan the file for spelling errors by typing ispell document1 and then pressing
Enter.

5. To correct the word “machineery,” look at the options at the bottom of the screen,
and find the one that says “machinery,” which is number 1 in Figure 8-17. Type the
number of that option to correct the misspelling, or you can select the r (Replace)
option, retype the word after the With: prompt, and press Enter. Notice that the
word is then corrected in the text.

6. On the next screen, the next misspelled word,“lern,” is highlighted. Find the correct
spelling in the list at the bottom of the screen and enter the number that represents
the correctly spelled word.

7. The program exits and returns you to the command line. Type cat document1 and
press Enter. The misspelled words have been corrected.

446 Chapter 8 Exploring the UNIX/Linux Utilities

Project 8-12
In this project, you create two files and use the cmp command to compare the differences.

To compare two files with the cmp command:

1. Use the vi or Emacs editor to create the file file1, containing this text:

This is file 1.
It is a practice file.
It belongs to me.

2. Save the file and exit the editor.

3. Use the editor to create the file file2, containing the text:

This is file 2.
It is a practice file.
It belongs to you.

4. Save the file and exit the editor.

5. At the command line, type cmp file1 file2, and press Enter. Your screen looks
similar to the following:

[mpalmer@localhost ~]$ cmp file1 file2
file1 file2 differ: byte 14, line 1

6. This result means that the two files differ, with the first point of difference at the
14th character in both files.

7. Type clear and press Enter to clear the screen for the next project.

Figure 8-17 Spell checking document1

Hands-On Projects 447

8

Project 8-13
You can use the groff utility to create your own man pages to document applications that you
create. In this project, you create a man page for the phmenu application you finished in
Chapter 7.

To write and format a man page:

1. Verify that you are in your ~/source directory. Recall that the ~ indicates your home
directory.

2. Use the vi or Emacs editor to create the file phmenu.1. Type the following text into
the file:

.TH PHMENU 1 "November 2008" "phmenu Version 1.01"

.SH NAME
phmenu \- Menu for Dominion Employee Telephone Listings
.SH SYNOPSIS
\fB phmenu\fP
.SH DESCRIPTION
\fP Menu for maintaining employees' phones and job titles\fP.
\fP Record includes phone number, name, dept, and date-hired\fP.
.SS Options
.TP
\fB -v \fIView Phone List\fR
Display unformatted phone records.
.TP
\fB -p \fIPrint Phone List\fR
Corporate Phones report sorted by Employee Name.

.TP
\fB -a \fIAdd Phone to List\fR
Add new phone record.
.TP
\fB -s \fISearch for Employee Phones\fR
Enter Name to search and retrieve phone record.
.TP
\fB -d \fIDelete Phone\fR
Remove phone record.
.SH FILES
.TP
\fC/home/source/corp_phones\fR

3. Save the file and exit the editor.

4. Test the man page by typing groff -Tascii -man phmenu.1 | more and then
pressing Enter. Your screen should appear similar to Figure 8-18.

If you find any formatting discrepancies, check the dot commands and any
embedded font changes against the code you typed in Step 2.

448 Chapter 8 Exploring the UNIX/Linux Utilities

5. Press q to exit the more command, and then test your new man page by typing
man ./phmenu.1 and then pressing Enter. Your screen should look similar to
Figure 8-19. Type q to exit the man page.

Figure 8-18 Using groff to view the phmenu documentation

Figure 8-19 Using man to display the phmenu documentation

Hands-On Projects 449

8

Project 8-14
In this project, you copy the man page created in Hands-On Project 8-13 into a directory
so that general users can access it like any other man page. You need the root password for
this project.

To copy the man page into a man page directory:

1. Verify that you are in your source directory.

2. Type su and then press Enter (to log in as superuser).

3. Enter the root password and then press Enter.

4. Type cp phmenu.1 /usr/share/man/man1 to copy the man page to the man1
directory and then press Enter. (Check with your instructor if your system uses a
different location in which to store the manual pages.)

5. To exit from superuser mode, type exit and then press Enter.

6. Test that this file has been correctly copied by typing man phmenu and then press-
ing Enter. Press the spacebar to advance through the display.

7. Type q.

Project 8-15
The mail command enables you to send and receive mail. In this project you learn how to
create a message, send it to yourself, and then read the message.

To use the mail command:

1. Type mail plus your user account name, such as mail mpalmer, and press Enter.

2. For the Subject: line type, Reminder. Press Enter.

3. For the first line of text in the message type, Your report is due tomorrow by
noon. Press Enter.

4. In the second line of text type, Don’t forget to spell check it before you send
it in. Press Enter.

5. Type Ctrl+d.

6. At the Cc: line press Enter.

7. Back at the regular command prompt, type mail and press Enter.

8. Look for your message, which will start with the character N. Notice the number to
the right of the N which is the message’s identification number.Type the number of
the message at the & prompt and press Enter.

9. After you read the message, type ? at the & prompt and press Enter.

10. Notice the commands that you can use at the & prompt.

450 Chapter 8 Exploring the UNIX/Linux Utilities

11. Type d and the number of your message, such as d 1 and press Enter.This deletes
your message.

12. Type h and press Enter to view your active message headers and notice that the
message you sent to yourself is now gone.

13. Type q and press Enter to leave mail.

14. Type clear and press Enter.

Project 8-16
Sometimes you need to know your IP address when you are connected to a network or to
the Internet. This address enables others to communicate with your computer. In this
project, you use the ifconfig utility to find your IP address and to view other information
about your network connection.

On some systems you will need access to the root account or an account with
superuser privileges to run ifconfig. However, on many systems just entering
ifconfig from a user’s account does not run the command because it is not in the
default path. In Fedora, Red Hat Enterprise Linux, and SUSE you can run
ifconfig from your account by entering/sbin/ifconfig at the command line
instead of just ifconfig. In other systems, such as Knoppix, you can run ifconfig
without specifying the path because the default path to the command is already
set up.

To use the ifconfig command:

1. In Fedora and Red Hat Enterprise Linux, at the command prompt type
/sbin/ifconfig eth0 and press Enter (see Figure 8-20). In Knoppix just enter
ifconfig eth0 and press Enter.

2. In the second line of the results, the IP address is listed to the right of inet addr: and
in Figure 8-20 is the address 192.168.0.5

3. Also, notice the transmission information on the screen. RX packets: and TX packets:
show the number of data packets (units) of information that have been received by
your computer and transmitted from the computer. If you see lots of errors (in the
hundreds) in transmitting or receiving, many dropped packets, or many overruns, this
is a clue that there may be a problem with your network communications, such as
the network card in your computer.Also, if you see lots of collisions (in the hun-
dreds), this can mean that there is a problem with your network or with devices
communicating on your network. (Note that some errors and collisions are normal
for any network.)

Hands-On Projects 451

8

Project 8-17
The ping utility is a good troubleshooting tool for determining if your connection, the
network, or a remote connection is working on a network.

To use the ping command:

1. At the command line, type ping -c 5 (-c 5 limits the number of polls to five) plus
the IP address of your computer as you determined in Hands-On Project 8-16, such
as ping -c 5 198.168.0.210.

2. Press Enter.

3. In the summary statistics, notice how many packets were sent and received.

4. Type clear and press Enter.

Project 8-18
traceroute is another command that enables you to test your network and network
connection. It tells you the route your communications take between your computer and
another computer or server or to a destination on the Internet. Before you start, obtain a
network address from your instructor of another computer or server on your network or of
a server on the Internet.

To use the traceroute command:

1. Type traceroute plus your IP address and press Enter to view the network path to
your computer (see Figure 8-21).

2. How many hops are there?

Figure 8-20 Using the ifconfig command

452 Chapter 8 Exploring the UNIX/Linux Utilities

3. Type traceroute plus the IP address provided by your instructor.

4. How many hops do you see now?

5. Type clear and press Enter.

Project 8-19
Use the netstat command for an array of communications statistics received at and trans-
mitted by your computer.This utility not only provides another way for you to monitor your
network connection, it also gives you information about who is connected and what they
are doing (including intruders that you do not see any other way).

To use the netstat command:

1. Type netstat -a and press Enter to view communications across open ports on your
computer.As you’ll see, there is likely to be a great deal of activity.

2. Type netstat -n and press Enter to view any IP connections for other computers
and other connected ports.

3. Type netstat -s and press Enter for a large compilation of communications statistics
(see Figure 8-22). Scroll back, if your window allows, to view the statistics for IP
communications.As you view the statistics do you see any errors, such as discarded
packets?

Figure 8-21 Using traceroute

Hands-On Projects 453

8

DISCOVERY EXERCISES

1. Use the df command to view file system use in megabytes.

2. Use the touch command to create the file letters. Next use the dd command to make
a backup of the file.

3. Use the command that gives you information about swap space and memory use.

4. Start the top utility. Notice that top is listed as one of the most active processes. Deter-
mine what CPU percentage is used by running top. Stop the top utility.

5. Start the top utility so that it updates every 20 seconds. Now, do you see top in the
list of the most active processes on your screen? Stop the top utility.

6. Use the command to determine which users have processes running on your system.

7. Log in as root and try using ifconfig, netstat, and route. Also, when you use ifconfig,
record the “inet addr” (IP) value for eth0 (your Ethernet address) and for lo (your
localhost loopback address), such as 127.0.0.1 for lo.

8. If you are connected to a network, use the ping command to ping one or both of the
addresses you obtained in Exercise 7. Also, if you have access to an Internet connec-
tion, use the ping command to ping the GNOME Web site, using ping gnome.org (or
use another site provided by your instructor).

9. Log out of root and back in to your own account. Type the command to determine
the PID of your Bash shell session and record the PID.

Figure 8-22 Using netstat

454 Chapter 8 Exploring the UNIX/Linux Utilities

10. Use the vi editor to create and save the famous_words file with the following con-
tents (including misspellings):

We mst all hang togther or
Assuredly we shll all hang separately.

-- Ben Franklin

Make a copy of the document using the dd command and calling the copy famous_
words.bak. Use a tool to check and correct the spelling errors in the famous_words
document.

11. Use the cmp command to compare the famous_words and famous_words.bak files.

12. Start the top utility. Type ? after the utility starts. What information do you see? Press
Enter and stop the top utility.

13. Run the man program in the background with the argument df. Record the PID of
the process you have started.

14. Use the command to kill the process you started in Exercise 14.

15. Edit the phmenu.1 file, and add a new section named SEE ALSO. Under this sec-
tion, list the following files:

phoneadd
phlist1

16. Save and test the revised phmenu.1 file using the groff and man programs.

17. Edit the phmenu.1 file, and add a new section named BUGS. Under this section, list
a line that reads:

None Known

18. Save and test the revised phmenu.1 file using the groff and man programs.

19. Edit the phmenu.1 file and add a new section named AUTHOR. Under this section,
list your name. Save and test the revised file using the groff and man programs.

20. Use the command that enables you to view the documentation for ifconfig. Notice
the many options for configuring your network connection.

21. Find out the IP address of a friend’s computer or of a favorite Web site and use the
command to poll that computer or Web site.

22. Use a command to view the contents of the /etc/init.d directory to see a listing of
services you can start on your computer. Do you see the portmap file?

Discovery Exercises 455

8

This page intentionally left blank

PERL AND CGI PROGRAMMING
After reading this chapter and completing the

exercises, you will be able to:
♦ Understand the basics of the Perl language

♦ Identify and use data types in Perl scripts

♦ Understand differences between the Awk program and Perl
programming

♦ Access disk files in Perl

♦ Use Perl to sort information

♦ Set up a simple HTML Web page

♦ Understand how Perl and CGI are used for creating Web pages

One of the strengths of UNIX and Linux is their support for scripting and
programming languages that can be used to create applications, including

applications for the Web. Perl is one of these languages and is well worth
learning, particularly if you plan to create reports or develop Web applications.
When combined with CGI, a communications protocol, Perl can be used to
create interactiveWeb pages, such as those used when you order a product over
the Internet.

This chapter gives you a basic introduction to Perl so that you understand its
capabilities. You learn how to identify Perl data types, and compare Perl to
Awk. As you learn more about Perl,you use it to display text, to access disk files,
and to sort alphanumeric and numeric fields. At the end of this chapter, you are
briefly introduced to writing Web pages using Perl, HTML, and CGI.

CHAPTER

9

457

INTRODUCTION TO PERL

Practical Extraction and Report Language (Perl) is a free script language that runs on
many operating systems, including UNIX, Linux,Windows, and Mac OS X. You can use
Perl to manipulate text, display output, handle mathematical processes, and work with files.
An important reason for learning Perl is that it is a popular scripting tool used for generating
reports and forWeb programming.Perl was released by LarryWall in 1987 as a simple report
generator, but has evolved into a staple for Web programmers.

Perl contains a blend of features found in other languages. It is very similar to the C language,
but also contains features found in Awk and shell programs. Some users consider Perl to be
easier to use than C. Others consider Perl to be more powerful and versatile than shell script
programming.

Perl is an interpreted language, which, as you learned in Chapter 6,“Introduction to Shell
Script Programming,”means that statements are read and immediately executed. In contrast,
a compiled language is one in which a program called a compiler converts program code
into machine language instructions. In many UNIX/Linux systems, the Perl interpreter is
contained in the /usr/bin directory (/usr/bin/perl).

You begin learning Perl by examining a few simple script programs, such as this one:

#!/usr/bin/perl
Program name: example1.pl
print("This is a simple\n");
print("Perl program.\n");

The first line in the program tells the operating system to use Perl to interpret the file.Recall
from Chapter 7, “Advanced Shell Programming,” that when the first line of a program
begins with #!, the remainder of the line is assumed to give the path of the interpreter.

The second line in the sample program is a comment that documents the name of the file.
Like shell scripts, Perl programs use the # character to mark the beginning of a comment.
Notice that the program name mentioned in the comment includes the extension .pl,which
is an extension typically used to signify that a file (example1.pl) is a Perl script.

The third and fourth lines of the program display text on the screen. In these lines, the print
statement displays the specified strings to stdout (the screen). The strings are enclosed in
double quotation marks. The \n included at the end of the string characters means to
perform a line feed, so that the next information displayed to the screen is on the next line.
The program output is shown in Figure 9-1.

If you decide to reproduce this script or others in the next group of examples, be
certain to give the script files execute permissions prior to running them.

458 Chapter 9 Perl and CGI Programming

In this simple script, the print statements each have a single argument, which is displayed on
the screen. The first print statement displays the string “This is a simple”and the \n characters
advance the cursor to the beginning of the next line. The second print statement is similar
to the first. It displays the string “Perl program.” and then advances the cursor to the
beginning of the next line. Notice that the two print statements end with a semicolon. All
complete statements in Perl end with a semicolon.

The parentheses surrounding the print statement’s argument are optional. For
example, these two statements perform the same operation:

print ("Hello");

print "Hello";

Look at a second Perl script, which uses a variable:

#!/usr/bin/perl
Program name: example2.pl
$name = "Charlie";
print ("Greetings $name\n");

The example2.pl script uses the variable $name. The variable is initialized with the string
“Charlie”. Notice that when $name is inserted in the print statement’s argument, it displays
the contents of the variable, with the output displayed as follows:

[ellen@localhost ~]$./example2.pl
Greetings Charlie

Perl can also read input from the keyboard. The next program is an example.

Figure 9-1 Running the example1.pl script

Introduction to Perl 459

9

#!/usr/bin/perl
Program name: example3.pl
print ("Enter a number: ");
$number = <STDIN>;
print ("You entered $number\n");

The program’s output is shown in Figure 9-2.

In Perl,<STDIN> reads input from the keyboard (remember that stdin is the standard input
device). The program uses this line to assign keyboard input to the variable $number:

$number = <STDIN>

Like other languages, Perl offers the if-else statement as a decision structure. Here is an
example:

#!/usr/bin/perl
Program name: example4.pl
print ("Enter a number: ");
$number = <STDIN>;
if ($number == 10)
{

print ("That is the number I was thinking of.\n");
}
else
{

print ("You entered $number\n");
}

Figure 9-2 Running the example3.pl script

460 Chapter 9 Perl and CGI Programming

The == operator tests two numeric values for equality. The if statement uses the == operator
to determine if $number is equal to 10. If it is, the block (which consists of lines of code
enclosed inside a set of curly brackets) immediately following the if statement is executed.
Otherwise, the block that follows the else statement is executed. The output that you see
when you run the example4.pl script and enter 10 is “That is the number I was thinking of.”
When you enter any other number, you see the output “You entered” plus the number that
you entered, as shown in Figure 9-3.

Perl also has operators that test for less than, greater than, less than or equal to, and greater
than or equal to relationships. Table 9-1 shows the Perl numeric relational operators and
Table 9-2 lists its string relational operators.

Table 9-1 Perl’s numeric relational operators
Operator Meaning
== Equality
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
!= Not equal to

Table 9-2 Perl’s string relational operators
Operator Meaning
eq Equality
lt Less than
gt Greater than

Figure 9-3 Running the example4.pl script

Introduction to Perl 461

9

Table 9-2 Perl’s string relational operators (continued)

Operator Meaning
le Less than or equal to
ge Greater than or equal to
ne Not equal to

Notice that the numeric relational operators are symbolic, such as <= for less than or equal
to, as typically is used in numeric formulas. The string relational operators are character
based, such as le for less than or equal to. The next program demonstrates how two strings
stored in two variables—$my_name and $your_name—are compared for equality using the eq
string relational operator.

#!/usr/bin/perl
Program name: example5.pl
$my_name = "Ellen";
$your_name = "Charlie";
if ($my_name eq $your_name)
{

print ("Your name is the same as mine.\n");
}
else
{

print ("Hello. My name is $my_name\n");
}

The output of example5.pl is as follows:

[ellen@localhost ~]$./example5.pl
Hello. My name is Ellen

Perl also provides standard arithmetic operators:

■ + performs addition.

■ - performs subtraction.

■ * performs multiplication.

■ / performs division.

The next program, example6.pl, demonstrates a simple arithmetic operation.

#!/usr/bin/perl
Program name: example6.pl
$num1 = 10;
$num2 = 50;
$num3 = 12;
$average = ($num1 + $num2 + $num3) / 3;
print ("The average is $average\n");

When you run example6.pl, you see the following on your screen:

462 Chapter 9 Perl and CGI Programming

[ellen@localhost ~]$./example6.pl
The average is 24

As you can see from the preceding program, Perl also lets you group operations within
parentheses. Now that you have a general understanding of Perl, let’s study its data types.

IDENTIFYING DATA TYPES

The computer programmer must understand not only what is contained in files, records, and
fields, but also the format in which it is stored. Are the fields of information numeric
(numbers that can be processed), alphabetic (letters), or alphanumeric (a combination of
letters and numbers)? How do you treat control characters, such as tab and newline?
Although it might seem obvious that a data item such as a person’s name cannot be added
or multiplied, the programmer must write code that properly handles any and all data items
that appear in a program. Otherwise, misidentified data generates processing errors. To
successfully write code, programmers need to identify data types.

Data can be represented in Perl in a variety of ways. In this chapter, you learn about these
types of data:

■ Variables and constants

■ Scalars

■ Numbers

■ Strings

■ Arrays

■ Hashes

Variables and Constants
Variables are symbolic names that represent values stored in memory. For example, the
variable $x might hold the value 100, and $name might hold the sequence of characters
Charlie. The value of a variable can change while the program runs. Constants, however,
do not change value as the program runs. They are written into the program code itself. For
example, this statement assigns the value of the constant 127.89 to the variable $num:

$num = 127.89

Scalars
In the broadest sense, data is perceived as being either numeric or nonnumeric. A nonnu-
meric field of information is treated simply as a string of characters (hence, the term string).
Programmers associate strings with such items as a person’s name, address, or license plate
number. Numbers can also be used for logical analysis as well as for mathematical

Identifying Data Types 463

9

computations. A scalar is a simple variable that holds a number or a string. Scalar variable
names begin with a dollar sign ($).

All of these are examples of statements that assign numeric or string values to scalar variables:

$x = 12;
$name = "Jill";
$pay = 12456.89;

Numbers
Numbers are stored inside the computer as either signed integers (as in 14321) or
double-precision, floating-point values (as in 23456.85). Numeric literals (constant values
versus variable values) can be either integers or floating-point values. An integer is a positive
or negative whole number or zero—examples include 0, 1, -1, 20, -15, -208, and 72. A
floating-point value is a real number that can be expressed as a decimal, exponential number,
or number in scientific notation in which the precision of the number is related to the
number’s scale (such as precise up to four decimal points). These numeric representations are
consistent with all programming languages, but Perl also uses an additional convention with
numeric literals to improve legibility—the underscore character, as in 5_456_678_901. (Perl
uses the comma as a list separator.) The underscore only works within literal numbers
specified in a program,not in strings functioning as numbers or in data read from elsewhere.
Similarly, hexadecimal constants are expressed with the leading 0x prefix (as in 0xfff), and
octal constants are expressed with the leading 0 prefix (as in 0256).

Strings
Strings are often used for logical analysis, sorts, or searches. Strings are sequences of any types
of characters (including numbers that are treated as characters rather than digits). String
literals are usually delimited by either single quotation marks (' ') or double quotation marks
(" "). Single-quoted strings are not subject to interpolation (except for \' and \\, used to put
single quotation marks and backslashes into a single-quoted string). Interpolation refers to
the mathematical process of interpreting a value between two known values on the basis of
making assumptions about predictable behavior, such as guessing that the interpreted value
in 1, 2, ?, 4, 5 is the number 3.

Within double quotation marks, variables are interpolated; a backslash (\) preceding a
variable name is used to ensure it is not interpolated. In addition, the backslash is used to
ensure a control or escape character is not interpolated. Table 9-3 lists the code and meaning
for several control or escape character sequences used within double quotation marks.

Table 9-3 Perl’s double-quoted string, control, and escape characters
Code Meaning
\n New line
\r Carriage return

464 Chapter 9 Perl and CGI Programming

Table 9-3 Perl’s double-quoted string, control, and escape characters (continued)

Code Meaning
\t Horizontal tab
\f Form feed
\b Backspace
\a Bell (alarm)
\033 ESC in octal
\x7f Del in hexadecimal
\cC Ctrl+C
\\ Backslash
\” Double quote
\u Force next character to uppercase
\l Force next character to lowercase
\U Force all following characters to uppercase until \E is encountered
\L Force all following characters to lowercase until \E is encountered
\Q Backslash—quote all following nonalphanumeric characters until \E is

encountered
\E End \U, \L, \Q

For example, compare the use of special codes in the next program, example7.pl, with those
shown in Table 9-3.

#!/usr/bin/perl
Program name: example7.pl
print ("\\words\\separated\\by\\slashes\n");
print ("This is a \"quote\"\n");
print ("\Uupper case\n");
print ("\LLOWER CASE\n");

The program output is shown in Figure 9-4.

Arrays
Arrays are variables that store an ordered list of scalar values that are accessed with numeric
subscripts, starting at zero. The variables in an array are usually of the same data type, such
as types of pets, names of people, or types of cars.When stored, the items in an array typically
occupy a separate line or row (as in a file or in memory) and each row is given a number to
differentiate one array element from another. Consider an array of pets that contains the
elements: dog, cat, parrot, and hamster.When the elements are stored, such as in a file or in
memory, each type of pet is a separate line of data or row.Also, each row is typically given
a number to distinguish it from all other rows. In this example, dog is stored in row number
0, cat in row 1, parrot in row 2 and hamster in row 3.

An “at” sign (@) precedes the name of an array when assigning it values. When processing
the individual elements of an array, however, use the $ character. For example, the following
program, example8.pl, creates the array pets.

Identifying Data Types 465

9

#!/usr/bin/perl
Program name: example8.pl
@pets = ("dog", "cat", "parrot", "hamster");
print ("My pets are:\n");
print ("$pets[0]\n");
print ("$pets[1]\n");
print ("$pets[2]\n");
print ("$pets[3]\n");

Figure 9-5 shows the output of the example8.pl script.

Figure 9-4 Running the example7.pl script

Figure 9-5 Running the example8.pl script

466 Chapter 9 Perl and CGI Programming

Hashes
A hash is a variable that represents a set of key/value pairs. Consider an inventory system of
canned food items as an example. Each food item is assigned a value or stock keeping unit
(SKU) to differentiate it from others.A can of chili might have an SKU of 0184, a can of
tomato soup an SKU of 0292, and so on. The key/value pair for a can of chili is
“0184, chili” and the key/value pair for can of tomato soup is “0292, tomato soup”. By
associating the products in this way, a company can type in the SKU and immediately see it
is for a particular product or vice versa.The SKU is like a data key associated with a product
(you learned about keys in Chapter 4,“UNIX/Linux File Processing”).

Hash variables are preceded by a percent sign (%) when they are assigned values. To refer to
a single element of a hash, use the $ character before the variable name, followed by the key
associated with the value in curly brackets. For example:

%animals = ('Tigers', 10, 'Lions', 20, 'Bears', 30);
$animals{'Bears'}

returns the value 30. Another, more readable way to define this is to use the ==> operator
(also called the arrow operator) to define the key/value pairs:

%animals = (Tigers ==> 10, Lions ==> 20, Bears ==> 30);

The following program, example9.pl, demonstrates the use of a hash variable.

#!/usr/bin/perl
Program name: example9.pl
%animals = ('Tigers', 10, 'Lions', 20, 'Bears', 30);
print ("The animal values are:\n");
print ("$animals{'Tigers'}\n");
print ("$animals{'Lions'}\n");
print ("$animals{'Bears'}\n");

The program’s output is as follows:

[ellen@localhost ~]$./example9.pl
The animal values are:
10
20
30

Now that you understand about data types, you are ready to learn more about programming
using Perl. Perl’s similarities and differences with other programming languages can be
illustrated by comparing how the same program appears in the Awk format and in Perl.

PERL VERSUS THE AWK PROGRAM

The Awk program does not require the programmer to explicitly set up looping structures
as does Perl. Perl’s while loop, on the other hand, is almost identical to the one found in the
C and C++ programming languages. The Awk program, therefore, uses fewer lines of code

Perl Versus the Awk Program 467

9

to resolve pattern-matching extractions than does Perl. For example, look at the following
Awk program,awkcom.a, and its output. The program counts the number of comment lines
that appear in the file specified on the command line. (This assumes we are skipping the path
line,which, for example, is #!/usr/bin/awk -f in the awkcom.a file.) Figure 9-6 illustrates the
output of the awkcom.a program.

#!/usr/bin/awk -f
Program name: awkcom.a
Purpose: Count the comment lines in a file.
Enter the file name on the command line.

END {
print "The file has ", line_count, " comment lines."

}
/^#/ && !/^#!/ { ++line_count } # This occurs for
every line.

Now compare the awkcom.a program with this Perl program:

#!/usr/bin/perl
Program name: perlcom.pl
Purpose: Count the source file's comment lines
==
$filein = $ARGV[0];
while (<>)
{

if (/^#/ && !/^#!/)
{
++$line_count

Figure 9-6 Running awkcom.a

468 Chapter 9 Perl and CGI Programming

}
}
print ("File \"$filein\" has $line_count comment lines. \n");

Although the end results of both programs are very similar, you can see where the two
programs differ. The Awk program uses an implicit while loop that automatically sends the
entire contents of the file named on the command line to the pattern-matching and action
part of the program. However, for the Perl program you need to build the while loop
explicitly. The output of the perlcom.pl script is shown in Figure 9-7.

The first line of each program tells the shell program to run either the Awk program or the
Perl program and to pass the statements in the file to the program for execution. Both
programs also use the pound sign (#) to specify a comment line. Further, the pattern-
matching code is the same in both programs. That is where the similarities end.

The -f option in theAwk program tells the shell that the program is being called with a script
file that contains the awk commands. Note that if the -f option is not included, the Awk
program uses the first command-line argument as its program. Recall that an Awk program
contains more built-in commands to read lines from the file. All an Awk program needs is
the pattern-matching conditions to select the lines. The reading of the file is implied as
shown in the following code:

/^#/&& !/^#!/ { ++line_count }

An Awk program also uses BEGIN and END to control when commands execute. All
statements in a BEGIN block execute before the input file is read. All statements in an END
block execute after all the contents of the input file have been read. This program only needs
the END pattern.

Figure 9-7 Running perlcom.pl

Perl Versus the Awk Program 469

9

In the Perl program, the code:

$filein = $ARGV[0];

takes the name of the file on the command line (ARGV[0]) and places it in a variable so it
can be referenced later. The file name originally stored inARGV[0] from the command line
is destroyed during the while loop.

while (<>)

The <> symbol is called the diamond operator. After the file is opened, you can access
its data using the diamond operator. Each time it is called, it returns the next line from
the file.

Curly brackets open and close a block in which you can place multiple statements:

if (/^#/ && !/^#!/)
{

++$line_count
}

This block tests to see if the line begins with the # character, but not with the #! characters.
If true, the statement ++$line_count adds one to the $line_count variable and then closes the
if block.

Whether the Awk program or Perl is a good choice for you is a personal decision, but either
one or both should be part of your toolkit. There is no substitute for the kinds of work that
either program can quickly perform with minimal code preparation. For example, you
probably would not want to write a C program for a task such as scanning files for a
matching pattern. However, both Perl and Awk are excellent when you are looking for the
“needle in a haystack.”

Both Perl and the Awk program (particularly the GNU Project’s implementation of POSIX
1003.2 compliant Awk) are portable across many UNIX/Linux systems, which is an
advantage because the effort to develop code on one system is not lost if you convert to
another system. Also, Perl is popular as a CGI tool for Web-based applications, as you
discover later in this chapter.

470 Chapter 9 Perl and CGI Programming

Notice that we are using .a as the file extension for an Awk script. It is useful to
understand and follow the common use of file extensions in UNIX/Linux. The
following is a short list of typical file extensions for UNIX/Linux:

■ .a or .awk for an Awk script

■ .asc for an ASCII file

■ .bak for a backup file

■ .c for a C program file

■ .C, .cc, or .cpp for a C ++ program file

■ .cgi for a CGI script

■ .dat for a data file

■ .gz for a gzip compressed file

■ .log for a log file

■ .zip for a zip compressed file

HOW PERL ACCESSES DISK FILES

Like most high-level programming languages, Perl uses filehandles to reference files. A
filehandle is the name for an I/O connection between your Perl program and the operating
system, and it can be used inside your program to open, read, write, and close the file. The
convention is to use all uppercase letters for filehandles. In most instances, you must issue an
open statement to open the file before you can access it. The exception to this occurs when
you use the ARGV[0] variable to pass the file name to the program through the command
line. In effect, you open it on the command line. As with other languages, every Perl
program has three filehandles that are automatically opened: STDIN (the keyboard),
STDOUT (the screen, to which the print() and write() statements are written by default),
and STDERR (the screen, used to display error messages).

Some common methods for opening and processing external files are available.One method
is illustrated in the program perlread1.pl, which passes the file name on the command line,
using the standard array variable that is reserved to do just that, ARGV[0]. This Perl
program displays the contents of a file. (Recall that you can also use cat, less, and more for
doing this.) The lines of code for perlread1.pl are as follows:

#!/usr/bin/perl
Program name: perlread1.pl
Purpose: Display records in a file and count lines
$filein = $ARGV[0];
while (<>)
{

print "$_";
++$line_count;

}
print ("File \"$filein\" has $line_count lines. \n");

How Perl Accesses Disk Files 471

9

The first instruction ($filein = $ARGV[0];) saves the name of the file that is passed to the
program and stores it in ARGV[0]. The while loop triggers the diamond operator (<>) that
sequentially reads records from the file and places the value stored in ARGV[0] in the next
record. This continues until the loop reaches the end of the file. When that happens,
ARGV[0] contains a null (end-of-file character), so you cannot use ARGV[0] to reference
the file name when the while loop terminates. Two commands inside the while loop are
enclosed within curly brackets: print "$_" displays each record that is read and ++$line_count
increments (counts) the records in the file. The final command, print ("File \"$filein\" has
$line_count lines. \n"), prints the name of the file (saved in $filein) and the number of lines in
the file. You create the perlread1.pl example in Hands-On Project 9-1.

The Perl programming language defines a set of special variables. Among these
is the $_ variable, which is the default input, output, and pattern-searching
space. In the perlread1.pl program, you are using it as the default input variable.
However, in the perlread1.pl program, print “$_”; could also be written as print;
because the $_ variable is assumed by default.

Using another method, you can open a file from within your program, as opposed to passing
it on the command line. All files opened inside programs must be closed before the program
terminates. Consider the following example, called perlread2.pl:

#!/usr/bin/perl
Program name: perlread2.pl
Purpose: Open disk file. Read and display the records
in the file. Count the number of records in
the file.
open (FILEIN, "students") || warn "Could not open students
file\n";
while (<FILEIN>)
{

print "$_";
++$line_count;

}
print ("File \"students\" has $line_count lines. \n");
close (FILEIN);

In the perlread2.pl program, the open() function appears on the first line after the comment
section:

open (FILEIN, "students") || warn "Could not open students
file\n";

Nearly all program functions are written to return a value that indicates whether the
function was carried out successfully. The values returned are considered to be true or false.
A true value is usually represented with a 1, and sometimes any value greater than zero. A
false value is represented with a 0 (zero). The open() function returns true if the file is opened
successfully, and returns false if it fails to open. Opening a file can fail because the file is not
found or because the file’s permissions for reading and/or writing are not set. However, in

472 Chapter 9 Perl and CGI Programming

Perl, a filehandle that has not been successfully opened can still be read, but you get an
immediate EOF (end-of-file signal), with no other noticeable effects. An EOF results in
your program not letting you read from or write to the file because the file is not available.

The two vertical bar characters “||” are the logical OR operator. When an expression on
the left of a logical OR operator returns false, the expression on the right of the operator
executes. The warn statement on the right of the OR operator:

warn "Could not open students file\n";

is used to display an error message indicating the file did not open. The warn statement can
either print text that you provide or it can display a system error message. Although
displaying error conditions is not absolutely necessary in your programs, you should display
them when it is obvious that the errors can cause subsequent problems if the program
continues to run. This additional coding is especially essential in open() statements.

After the file is open, access to the data is made through the diamond operator (<FILEIN>).
When the while loop reaches the end of a file, it terminates. Except for the open() and close()
statements and the use of the diamond operator, the perlread2.pl program is identical to
perlread1.pl. Try Hands-On Project 9-2 to create perlread2.pl.

USING PERL TO SORT

One of the most important tasks in managing data is organizing it into a usable format. Perl
provides a powerful and flexible sort operator. It can sort string or numeric data in ascending
or descending order. It even allows advanced sorting operations in which you define your
own sorting routine.

Using Perl to Sort Alphanumeric Fields
Perl can be used to sort information. Consider the perlsort1.pl program, which sorts words
into alphabetical order using the sort statement.

#!/usr/bin/perl
Program name: perlsort1.pl
Purpose: Sort a list of names contained inside an array
Syntax: perlsort1.pl <Enter>
#==
@somelist = ("Oranges", "Apples", "Tangerines", "Pears",
"Bananas", "Pineapples");
@sortedlist = sort @somelist;
print "@sortedlist";
print"\n";

Looking at the program, the statement:

@somelist = ("Oranges", "Apples", "Tangerines", "Pears",
"Bananas", "Pineapples");

Using Perl to Sort 473

9

puts the value of (Oranges,Apples,Tangerines, Pears, Bananas, Pineapples) into @somelist.
The statement:

@sortedlist = sort @somelist;

calls the Perl sort statement and returns the sorted output to the array variable, @sortedlist.
The final two statements in the program print the sorted results and skip a line before the
program terminates and returns to the command line.Hands-On Project 9-3 enables you to
create and use the perlsort1.pl program.

Data is not always coded as part of the program or entered at the keyboard. Often, programs
must read information from files. Consider, for example, the students file that is created in
Hands-On Project 9-1 containing the names Joseph, Alice, Mary, Zona, Aaron, Barbara,
and Larry. The following example demonstrates how Perl accesses the contents of the
students file by passing the file name on the command line:

#!/usr/bin/perl
Program name: perlsort2.pl
Purpose: Sorts a text file alphabetically. File name is
entered on the command line.
Syntax: perlsort2.pl file name <Enter>
#==
$x = 0;
while (<>)
{

$somelist[$x] = $_;
$x++;

}
@sortedlist = sort @somelist;
print @sortedlist;

The perlsort2.pl program uses the statement:

$x = 0;

to initialize a variable, $x, to contain an index to the array. The first element of every array
is zero (0). In the while loop,

while (<>)
{

$somelist[$x] = $_;
$x++;

}

the next line in the file is automatically copied into the $_ variable. The assignment
statement:

$somelist[$x] = $_;

copies the contents of the $_ variable into an element of the array. The element is
determined by the variable $x, which is used as a subscript. After the assignment operation
occurs, the following statement executes:

$x++;

474 Chapter 9 Perl and CGI Programming

The ++ operator adds one to its argument, so the statement increments the variable $x. As
a result, the first name, Aaron, is placed in $somelist[0], Alice is placed in $somelist[1], and
so on.

The statement:

@sortedlist = sort @somelist;

sorts the array, @somelist, placing the alphabetized names into @sortedlist, and the final
instruction prints the alphabetized list of students’ names. Try Hands-On Project 9-4 to
create the perlsort2.pl program.

Using Perl to Sort Numeric Fields
Sorting numeric fields can be done using a subroutine in which you can define comparison
conditions (for example,greater than, less than,or equal to) between the data you are sorting.
A subroutine (also called a routine) is a segment of code often used over and over again
that can be internal or external to a program. A subroutine typically is identified by a
beginning control statement, such as the sub statement in Perl, and a unique name that often
reflects its purpose.

To sort numeric fields in the example provided here, the sort subroutine is called repeatedly,
passing two elements to be compared on each call. The scalar variables $a and $b store the
two values that are compared to select the larger value. Using the comparison operation, a
return code of -1, 0, or +1 is returned, depending on whether $a is less than, equal to, or
greater than $b, as in the following sample of code:

sub numbers
{
if ($a < $b) { -1; }
elsif ($a == $b) { 0; }
else { +1; }
}

When sorting numbers, you need to instruct Perl to use this sort subroutine as the
comparison function, rather than the built-in ASCII ascending sort (the default). To do this,
place the name of the subroutine between the keyword “sort” and the list of items to be
sorted:

$sortednumbers = sort numbers 101, 87, 34, 12, 1, 76;

The statement instructs Perl to sort the values in the list by using the numbers subroutine to
determine their order. The output is in numeric order, not ASCII order.

The numeric comparison of $a and $b is performed so frequently that Larry Wall, Perl’s
creator, developed a special Perl operator for numeric sorts,<=>. This sort operator, known
as the spaceship operator, reduces coding requirements. To illustrate the code savings,
compare the next sort subroutine using the spaceship operator with the previous one:

sub numbers
{

Using Perl to Sort 475

9

$a <=> $b;
}

This numbers subroutine produces the same result as the first example, which uses an if-else
statement.Perl allows an even more compact notation—the inline sort block,which looks
like this:

@sortednumbers = sort { $a <=> $b; } @numberlist;

This statement uses the block { $a <=> $b; } as the sort routine. It eliminates the need for
a separate subroutine. Let’s examine how the following Perl program sorts numeric data:

#!/usr/bin/perl
Program name: perlsort3.pl
Purpose: Sorts numerically using a subroutine. File name
is entered on the command line.
Syntax: perlsort3.pl file name <Enter>
#==
$x = 0;
while (<>)
{
$somelist[$x] = $_;
$x++;

}
@sortedlist = sort numbers @somelist;
print @sortedlist;
sub numbers
{

if ($a < $b)
{ -1; }

elsif ($a == $b)
{ 0; }

else
{ +1; }

}

The perlsort3.pl program uses a sort subroutine that compares $a and $b numerically rather
than textually. The program also initializes the array element index to start with the first
element, 0. The while loop,

while (<>)
{
$somelist[$x] = $_;
$x++;

}

works the same as previously described, in that it reads records from a file and stores the lines
inside an array.

476 Chapter 9 Perl and CGI Programming

The sort subroutine,

sub numbers
{

if ($a < $b) { -1; }
elsif ($a == $b) { 0; }
else { +1; }

}

compares the two numbers that are sequentially passed to it from the while loop. If the value
in $a is less than the value in $b, the subroutine returns -1. If $a is equal to $b, the subroutine
returns 0. Otherwise, the subroutine returns +1. For the numberlist file that contains the
numbers 130, 100, 121, 101, 120, and 122 (in that order), perlsort3.pl produces the sorted
output shown in Figure 9-8. In Hands-On Project 9-5, you create and run perlsort3.pl.

Sometimes, the spaceship operator can reduce coding time by replacing several lines of code.
Consider the following perlsort4.pl program:

#!/usr/bin/perl
Program name: perlsort4.pl
Purpose: Sort numerically using the spaceship operator
(<=>)
syntax: perlsort4.pl file name <Enter>
#==
$x = 0;
while (<>)
{
$somelist[$x] = $_;
$x++;

}

Figure 9-8 Sorted output of the numberlist file using perlsort3.pl

Using Perl to Sort 477

9

@sortedlist = sort numbers @somelist;
print @sortedlist;
sub numbers
{
$a <=> $b;

}

In this example, the three lines of code previously used between the open and closed
brackets in the numbers subroutine in perlsort3.pl:

sub numbers
{

if ($a < $b) { -1; }
elsif ($a == $b) { 0; }
else { +1; }

}

are replaced in perlsort4.pl by the following one line of code using the spaceship operator:

sub numbers
{
$a <=> $b;

}

You create perlsort4.pl in Hands-On Project 9-6.

Now that you are more familiar with Perl, you learn how to create a Web page.

SETTING UP A WEB PAGE

In the next sections of this chapter, you get a very basic introduction to creating Web
documents and Perl-based CGI programs. Both types of programming experiences are just
a beginning, as there are entire books written about each of these areas. The purpose of this
chapter is to help you experience them, get a glimpse of their uses, and entice you to seek
additional experiences to learn more.

You can create a Web page using Hypertext Markup Language (HTML). HTML is a
format for creating documents with embedded codes known as tags. When the document
is viewed in aWeb browser, such as Firefox or Internet Explorer, the tags give the document
special properties. Examples of properties include foreground and background colors, font
size and color, and the placement of graphic images. In addition, HTML tags let you place
hyperlinks in a document. A hyperlink is text or an object that,when clicked, loads another
document and displays it in the browser.

After you use HTML to create aWeb page,you can publish the page on aWeb server. A Web
server is a system running Web server software, such as Apache, that is connected to the
Internet. The Web server software lets other users access the HTML document via the
Internet.

478 Chapter 9 Perl and CGI Programming

Apache, which is offered through the Apache Software Foundation, is really
Apache HTTP Server. It is an open-source Web server software popularly used
on UNIX and Linux computers. If you access the Web, you have probably also
accessed a server running Apache, because at this writing the majority of Web
servers run Apache. Visit the Apache Software Foundation Web site at www.
apache.org.

You can experiment with and test HTML documents using your Linux system’s loopback
networking feature. The loopback feature allows your UNIX or Linux system to access its
own internal network configuration instead of an external network. The loopback feature
is installed automatically when you install Fedora, Red Hat Enterprise Linux, or SUSE for
example. It uses the IP address 127.0.0.1, which is the standard designation for loopback
communications. (See Discovery Exercise 7 in Chapter 8, “Exploring the UNIX/Linux
Utilities.”) Also, the name of the computer at the loopback address is localhost.

To use the loopback, you actually do not need to be connected to any network.What is
more important, the loopback can emulate a real-world Web site, so you can carry out the
testing and development of your new Web pages. Standalone testing of new Web pages is
recommended; after fully testing your work, you can then transfer your documents to any
Web server, knowing that they are ready to perform.

CREATING A SIMPLE WEB PAGE

You can use a visual HTML editor, such as Adobe Dreamweaver or Microsoft Expression
Web, to create Web pages. These programs let you graphically construct a Web page in a
“what you see is what you get” fashion. If you have no visual HTML editor, all you need is
a text editor, such as vi or Emacs. You create the HTML document by typing its text and the
desired embedded tags. The following is a sample HTML file:

<HTML>
<HEAD><TITLE>My Simple Web Page</TITLE></HEAD>
<BODY>
<H1>Just a Simple Web Page</H1>
This is a Web page with no frills!
</BODY>
</HTML>

All special codes contained inside angled brackets <> are tags. The first tag, <HTML>,
identifies the file as an HTML document. Notice the corresponding </HTML> tag at the
end of the file. Everything between the <HTML> and </HTML> tags is considered text
with HTML tags. In general, most tags are used this way. One tag marks the beginning of a
section, and a corresponding tag marks the end of the section.

Note that there are two parts to the code: a head and a body. The head contains the title,
which appears on the title bar of your browser window. The body defines what appears

Creating a Simple Web Page 479

9

www.apache.org
www.apache.org

within the browser window. All other tags refine the Web page’s appearance. Figure 9-9
shows the Web page’s appearance in the FirefoxWeb browser in Fedora.

Firefox is derived from Web browser software developed by the Mozilla Foun-
dation (visit www.mozilla.org for more information).

You can use tags to set background and foreground colors and to manipulate text with such
tags as (insert text here). You can change text sizes with the
heading tags,where <H1> is the largest and <H6> is the smallest. (However,note that users’
browsers might also automatically change the actual text size.)

Because standard HTML ignores multiple spaces, tabs, and carriage returns, you can enclose
text within <PRE></PRE> (preformatted text) tag pairs. Otherwise, any consecutive
spaces, tabs, carriage returns, or combinations produce a single space. You can also use the
<P> tag, which creates two line breaks, or the
 tag, which creates one line break.
Neither tag requires a closing tag.

Browsers automatically wrap text so you don’t need to worry about page widths. To center
text, however, use <CENTER>(text here)</CENTER>. To indent from both margins, use
<BLOCKQUOTE>(text here)</BLOCKQUOTE>. To change color, use (text here), where RGB is the RGB color code. An RGB
color code is a set of three numbers that specify a color’s red, green, and blue components.

Figure 9-9 Simple Web page in Mozilla Firefox

480 Chapter 9 Perl and CGI Programming

www.mozilla.org

For example, the code 512218 specifies a red component of 51, a green component of 22,
and a blue component of 18. The higher the number, the more intense the color
component.

The following is another example of an HTML file.

<HTML>
<HEAD><TITLE>UNIX/Linux Programming Tools</TITLE></HEAD>
<BODY>
<H1><CENTER>My UNIX/Linux Programming Tools</CENTER></H1>
<H2>Languages</H2>
<P>Perl</P>
<P>Shell Scripts</P>
<P>C and C++</P>
<H2>Editors</H2>
<P>vi</P>
<P>Emacs</P>
<H2>Other Tools</H2>
<P>awk</P>
<P>sed</P>
</BODY>
</HTML>

This Web page lists UNIX/Linux programming tools under the headings Languages,
Editors, and Other Tools. You create this Web page in Hands-On Project 9-7.

Now that you have some general knowledge of creating Web pages, you need to learn how
to use Perl and CGI to make them interactive.

CGI OVERVIEW

Perl is the most commonly used language for Common Gateway Interface (CGI)
programming. CGI is a protocol, or set of rules, governing how browsers and servers
communicate.Here is why CGI is important. When you access aWeb page that just displays
information, such as the Web page you create in Hands-On Project 9-8, what happens in
basic terms is that a Web client contacts a Web server and the Web page is sent to the client
for display. This is an example of a Web page that is static, one in which no information is
exchanged from the client.

When it is important to exchange information, such as when you order a product over the
Internet, you dynamically supply information on a form. The information you provide
might include your name, address, credit card number, and other information. To exchange
and process a form containing information typically involves (1) using CGI for communi-
cation between the client’s Web browser and the Web server and (2) a program that can be
executed. The program is often a Perl script or a program written in the C language. Also,
the program is often stored in a subdirectory on a Web server called cgi-bin. The programs

CGI Overview 481

9

in cgi-bin are set up to have executable permissions, such as the x permission in UNIX/
Linux, and also typically have r permissions so the client can view the associated Web page.

Any script that sends or receives information from a server needs to follow the standards
specified by CGI. Thus, scripts written in Perl follow the CGI protocol.CGI Perl scripts are
specifically written to get, process, and return information through your Web pages—they
make Web pages interactive.

CGI scripts can raise security concerns on a Web server. A CGI script may
contain code that enables a Web intruder to snoop through or modify files in a
Web directory. When you use a CGI script on a Web server, ensure that you
trust the source of the script or create the script yourself and have someone
check your work for security holes.

To allow your HTML document to accept input, especially where CGI rules apply, precede
the input area with a description of what you want users to enter. For example, if you want
users to enter cost, you use this code:

Total Cost? <INPUT TYPE=text NAME=cost SIZE=10>

In addition, consistent with transmitting information to and fromWeb sites, you can use the
special code INPUTTYPE=submit, which sends out the data when a user clicks the Submit
button. The destination that you want to receive the submitted information is coded into
the FORM tag. The FORM tag specifies how to obtain the information to be transferred.
There are two methods, GET and POST. The GET method transfers the data within the
Uniform Resource Locator (URL, which provides an address to an entity on the Internet)
itself. POST uses the body portion of the HTTP request to pass parameters. (You use the
POST method in this chapter.)

This book is not intended to provide you with complete information about programming
Perl scripts for CGI, but simply to make you aware of their relationship and potential.
Various Web sites offer hundreds of prepared Perl scripts that you can use with your own
Web page applications. Sample Web sites include the following:

■ www.scriptarchive.com (offering many free CGI scripts)

■ www.extropia.com

■ awsd.com/scripts

The following sites provide useful Perl script and CGI information:

■ www.perl.com (also see www.perl.com/pub/a/doc/FAQs/cgi/perl-cgi-faq.html)

■ www.devdaily.com/perl/edu/qanda/

■ www.perlaccess.com

In Hands-On Projects 9-8 and 9-9, you have an opportunity to experience Perl and CGI by
first viewing a sample Web page in this format and then creating your own.

482 Chapter 9 Perl and CGI Programming

www.scriptarchive.com
www.extropia.com
www.perl.com
www.perl.com/pub/a/doc/FAQs/cgi/perl-cgi-faq.html
www.devdaily.com/perl/edu/qanda/�
www.devdaily.com/perl/edu/qanda/�
www.perlaccess.com

For more in-depth information about Perl and CGI, consider the following
books: Perl Programming for the Absolute Beginner by Jerry Lee Ford, Jr., Perl
Power! The Comprehensive Guide by John Flynt, and Perl Fast & Easy Web
Development by Leslie Bate.

CHAPTER SUMMARY

Perl is used as a powerful text-manipulation tool similar to the Awk program.

Perl is written in scripts that are translated and executed by the Perl program.

Perl programmers need to understand how to identify data types so that their Perl
programs correctly process the data. In Perl, the data types include variables and constants,
scalars, strings, arrays, and hashes.

Perl and Awk are both powerful processing languages that function in different ways and
should become part of your toolkit, such as for creating versatile reports.

Perl uses filehandles for the I/O connection between a file and Perl, such as for opening
a file.

Perl can sort both numeric and alphanumeric data. For numeric sorts, the spaceship
(<=>) operator can be used to reduce coding requirements.

HTML is used to format text for presentation in a Web page. A key to using HTML is
learning to use its tags for formatting text.

CGI (Common Gateway Interface) is a protocol or set of rules governing how browsers
and servers communicate. Any script that sends or receives information from a server
needs to follow the standards specified by CGI.

COMMAND SUMMARY: REVIEW OF CHAPTER 9 COMMANDS

Please refer to the tables within the chapter for a command review.
Table Shows
Table 9-1 Perl’s numeric relational operators
Table 9-2 Perl’s string relational operators
Table 9-3 Perl’s double-quoted string, control, and escape characters

KEY TERMS

array — A variable that stores an ordered list of scalar values that is accessed with numeric
subscripts, starting at zero.
body — One of two parts of HTML code. (The other part is the head.) The body defines
what appears within the browser window.

Key Terms 483

9

Common Gateway Interface (CGI) — A protocol or set of rules governing how
browsers and servers communicate. Any script that sends information to or receives
information from a server must follow these rules.
constant — A value in program code that does not change when the program runs.
diamond operator (<>) — The operator used in Perl to access data from an open file.
Each time the diamond operator is used, it returns the next line from the file.
filehandle — An input/output connection between a Perl program and the operating
system. It can be used inside a program to open, read, write, and close the file.
hash — A variable representing a set of key/value pairs. A percent sign (%) precedes a hash
variable.
head — One of two parts of HTML code. (The other part is the body.) The head contains
the title, which appears on the title bar of your browser window.
hyperlink — The text or object in a Web document that, when clicked, loads another
document and displays it in the browser window.
Hypertext Markup Language (HTML) — A format for creating documents and Web
pages with embedded codes known as tags.
inline sort block — A compact Perl notation that replaces an if-else statement and
eliminates the need for a separate subroutine.
localhost — A name given to the computer that is associated with the loopback address of
127.0.0.1. See also loopback.
loopback — A feature that helps you experiment with and test HTML documents, orWeb
pages, using a UNIX or Linux system. To use localhost, you need not be connected to the
Internet. Located on your PC, localhost also accesses your PC’s internal network. Use
localhost to ensure that networking is properly configured.
Practical Extraction and Report Language (Perl) — A scripting language that has
features of C programming, shell scripting, and Awk. Created by Larry Wall in 1987 as a
simple report generator,Perl has evolved to become a powerful and popular tool for creating
interactive Web pages.
scalar — A simple variable that holds a number or a string. Scalar variables’ names begin
with a dollar sign ($).
spaceship operator (<=>) — A special Perl operator for numeric sorts that reduces
coding requirements.
subroutine or routine — A segment of code often used over and over again that can be
internal or external to a program. A subroutine typically is identified by a beginning control
statement, such as the sub statement in Perl, and a unique name that often reflects its purpose.
tags — The code embedded in a document or Web page created with Hypertext Markup
Language (HTML). When the document is viewed with a Web browser, such as Firefox or
Internet Explorer, the tags give the document special properties, such as foreground and
background colors, font size, and the placement of graphical elements. You can also use tags
to place hyperlinks in a document.
variable — A symbolic name that represents a value stored in memory.
Web server — A system connected to the Internet running Web server software, such as
Apache. The Web server software lets other users access the HTML document via the
Internet.

484 Chapter 9 Perl and CGI Programming

REVIEW QUESTIONS

1. Which of the following describes Common Gateway Interface (CGI). (Choose all
that apply.)
a. It facilitates the exchange of information over the Web.
b. It is a specialized interface for using Java scripts only.
c. It is a security program to protect a server.
d. It is a protocol or set of rules.

2. Your colleague is writing a Perl script and wants to determine if two strings are the
same. He used the = operator, but it is not working properly.What is the problem?
a. He should use the ! = operator, instead.
b. He did not surround the strings with square brackets to show they are strings.
c. He should use the eq operator, instead.
d. He should use <EQUAL>, instead.

3. In Perl a variable that starts with $, such as $value, . (Choose all
that apply.)
a. cannot be zero
b. can be numeric
c. can be nonnumeric
d. is scalar

4. Which of the following operators is used to access data in an open file in Perl?
(Choose all that apply.)
a. #
b. @
c. ()
d. <>

5. You are training a new employee and have been asked to help him learn Perl.Which
of the following statements can you use to help describe Perl? (Choose all that
apply.)
a. It is only used on UNIX and Linux systems.
b. It is popularly used to create reports, such as business reports.
c. It is a language that requires compiling.
d. It can be used to manipulate text and numeric information.

Review Questions 485

9

6. You have created the following expression in Perl: $value < 2842.What does this
expression mean?
a. The size of the value file is 2842 kilobytes.
b. The file 2842 is opened and given the name value for the purpose of the current

Pearl script.
c. The variable value is less than 2842.
d. 2842 is written to the file called value.

7. A programmer in your group has written the following subroutine, which does not
work.What is the problem?

run sort
{
if ($a < $b) { -1; }
elsif ($a == $b) { 0; }
else { +1; }

}

a. The “<” is the file handling operator and cannot be used in this context.
b. He should replace “run” with “sub.”
c. He should remove the semicolons.
d. He should replace “==” with “equate.”

8. One of your colleagues has written a Perl script, but it does not run on some peo-
ple’s computers who use a different Linux distribution or who do not use the Bash
shell.Which of the following might be the problem?
a. The script does not have a beginning line that contains the path to Perl, such as

#!/usr/bin/perl.
b. Perl can only be run in the Bash shell.
c. The script does not contain the line to specify it is a Perl script, which is make= perl.
d. Perl does not run in the root account, which must be the account some users are

accessing to run this Perl script.

9. A colleague at work has overheard you discussing the spaceship operator and is curi-
ous about what this is.What do you tell him?
a. It refers to a Perl script that has bugs.
b. It deletes one or more files in Perl.
c. It is a Perl formatting editor that helps speed the writing of Perl scripts.
d. It performs numeric sorts in Perl.

486 Chapter 9 Perl and CGI Programming

10. You are writing a Perl script that uses a segment of code over and over again,
and you are tired of repeatedly typing in this code.Which of the following should
you do?
a. Create a subroutine.
b. Use the =+= repeat operator.
c. Use the ++ operator.
d. Create a repeat script.

11. Which of the following are automatically opened by Perl? (Choose all that apply.)
a. A.OUT
b. STDOUT
c. STDERR
d. CORE

12. In the following statement, when is “Could not open students file” displayed?

open (FILEIN, "students") || warn "Could not open students
file \n" ;

a. When open (FILEIN, "students") is false.
b. When open (FILEIN, "students") is true.
c. When the last row of data has been read from the students file.
d. When the students file is larger then 1.5 MB.

13. When you make a Web page using HTML, what line do you start with to show that
what follows after that line consists of HTML tags?
a. #START
b. /NEW
c. <HTML>
d. /BEGIN/

14. Which of the following is an example of a scalar? (Choose all that apply.)
a. $income = 62,859;
b. $lname = “McGregor”;
c. value = 10,Tiger;
d. @cell* = B10;

Review Questions 487

9

15. You have written the following line in a Perl program:

$filein = $ARGV[0];

What is the purpose of this line?
a. It copies a file to the ARGV directory.
b. It closes a file.
c. It searches for a file in all subdirectories under a directory.
d. It saves the name of a file passed from the command line in ARGV[0].

16. In Perl, the control sequence \n is used to .
a. designate a horizontal tab
b. designate a new line
c. force the next character to be lowercase
d. make a bell sound

17. You are creating a data file for an inventory system.Which of the following is a
common file extension to show this is a data file?
a. .c
b. .dat
c. .a
d. .zip

18. Perl supports using which of the following logic structures? (Choose all that apply.)
a. if statement
b. while loop
c. index jump
d. presort loop

19. In Perl, strings are surrounded by which of the following? (Choose all that apply.)
a. double commas
b. colons
c. percent signs
d. single or double quotation marks

20. You colleague is creating an HTML-based Web page and wants the first line to have
the largest heading size, and so he uses the tag <LARGEHEAD>.This tag isn’t pro-
ducing the expected result.What tag should he use instead?
a.
b. <TITLE1>
c. <H1>
d. <P1>

488 Chapter 9 Perl and CGI Programming

21. When you assign values for an array, what character should precede the name of the
array?
a. +
b. \A
c. @
d. ^

22. What arithmetic operators are used in Perl scripts?

23. What is a filehandle in Perl?

24. Name at least one difference between Perl and Awk programming.

25. Name five data types used by Perl.

HANDS-ON PROJECTS

The following projects should be completed using the command line (such as
from a terminal window), the Bash shell, and your own account and home
directory, unless otherwise specified.

Project 9-1
In this project, you create the perlread1.pl program,which illustrates how to pass a file name
on the command line using the standard array variable ARGV[0].

To use Perl to display the contents of a file:

1. Use the cat command (or the editor of your choice) to create the file students,
containing the names Joseph, Alice, Mary, Zona, Aaron, Barbara, and Larry, all
on a separate line. Press Enter after typing each name, except after Larry unless you
used the cat command in which case you’ll need to press Enter after typing Larry.

2. Save the file and close the editor, or if you created the file using the cat command,
press Ctrl+d.

3. Use the editor of your choice to create the Perl program perlread1.pl:

#!/usr/bin/perl
Program name: perlread1.pl
Purpose: Display records in a file and count lines
$filein = $ARGV[0];
while (<>)
{

print "$_";
++$line_count;

}
print ("File \"$filein\" has $line_count lines. \n");

Hands-On Projects 489

9

4. Save the file and quit the editor.

5. Give the file execute permission. (Type chmod ugo+x perlread1.pl or chmod
a+x perlread1.pl and press Enter.)

6. Test the program by typing ./perlread1.pl students and then pressing Enter. Your
screen should now display the contents of the students file, shown in Figure 9-10.

Project 9-2
In this project, you create a Perl program in which you open a file from within a program.

To use Perl to open a file from within a program:

1. Use the editor of your choice to create the file perlread2.pl.

2. Enter this Perl program:

#!/usr/bin/perl
Program name: perlread2.pl
Purpose: Open disk file. Read and display the records
in the file. Count the number of records in
the file.
open (FILEIN, "students") || warn "Could not open
students file\n";

while (<FILEIN>)
{

print "$_";
++$line_count;

}
print ("File \"students\" has $line_count lines. \n");
close (FILEIN);

3. Save the file and quit the editor.

Figure 9-10 Running perlread1.pl

490 Chapter 9 Perl and CGI Programming

4. Give the file execute permission.

5. Test the program by typing ./perlread2.pl and then pressing Enter. Your output
should look similar to that for the perlread1.pl script.

6. Type clear and press Enter to clear the screen for the next project.

Project 9-3
In this project, you use a Perl script to sort words.

To use Perl’s sort statement:

1. Use the editor of your choice to create the program perlsort1.pl. Enter the following
code:

#!/usr/bin/perl
Program name: perlsort1.pl
Purpose: Sort a list of names contained inside an array
Syntax: perlsort1.pl <Enter>
#==
@somelist = ("Oranges", "Apples", "Tangerines", "Pears",
"Bananas", "Pineapples");

@sortedlist = sort @somelist;
print "@sortedlist";
print "\n";

2. Save the file and exit the editor.

3. Use the chmod command to grant the file execute permission.

4. Run perlsort1.pl. Your screen should look similar to Figure 9-11.

Figure 9-11 Using perlsort1.pl

Hands-On Projects 491

9

5. Type clear and press Enter to clear the screen.

Project 9-4
In this project, you access and sort a file in Perl by passing the file name on the
command line.

To use Perl to access a file by passing the file name on the command line:

1. Use the editor of your choice to create and save the program perlsort2.pl. Enter the
following code:

#!/usr/bin/perl
Program name: perlsort2.pl
Purpose: Sorts a text file alphabetically. File name is
entered on the command line.
Syntax: perlsort2.pl file name <Enter>
#==
$x = 0;
while (<>)
{

$somelist[$x] = $_;
$x++;

}
@sortedlist = sort @somelist;
print @sortedlist;

2. Save the file and exit the editor.

3. Give the perlsort2.pl file execute permissions.

4. Run perlsort2.pl, using students as the test file, by typing ./perlsort2.pl students
and then pressing Enter. Your screen should now display the list of student names, as
shown in Figure 9-12.

5. Type clear and press Enter.

492 Chapter 9 Perl and CGI Programming

Project 9-5
This project enables you to sort a numeric field using a subroutine.

To use Perl for numeric sorting:

1. Use cat, vi, or Emacs to create and save the file numberlist, containing the data 130,
100, 121, 101, 120, and 122. Press Enter after typing each number so that each one
is on a separate line.

2. Use the editor of your choice to create the perlsort3.pl program. Enter the following
code:

#!/usr/bin/perl
Program name: perlsort3.pl
Purpose: Sorts numerically using a subroutine. File name
is entered on the command line.
Syntax: perlsort3.pl file name <Enter>
#==
$x = 0;
while (<>)
{
$somelist[$x] = $_;
$x++;

}
@sortedlist = sort numbers @somelist;
print @sortedlist;
sub numbers
{

if ($a < $b)
{ -1; }

elsif ($a == $b)

Figure 9-12 Running perlsort2.pl

Hands-On Projects 493

9

{ 0; }
else

{ +1; }
}

3. Save the file and exit the editor.

4. Use the chmod command to grant the file execute permission.

5. Test the program by typing ./perlsort3.pl numberlist and then pressing Enter.
(Refer to Figure 9-8.)

6. Type clear and press Enter.

Project 9-6
In this project, you sort the numberlist file using perlsort4.pl, which modifies the numbers
subroutine used by perlsort3.pl to use the spaceship operator and fewer lines of code.

To use Perl’s spaceship operator in the numbers subroutine:

1. Use the editor of your choice to create and save the program perlsort4.pl. Enter the
following code:

#!/usr/bin/perl
Program name: perlsort4.pl
Purpose: Sort numerically using the spaceship operator
(<=>)
syntax: perlsort4.pl file name <Enter>
#==
$x = 0;
while (<>)
{

$somelist[$x] = $_;
$x++;

}
@sortedlist = sort numbers @somelist;
print @sortedlist;
sub numbers
{

$a <=> $b;
}

2. Save the file and exit the editor.

3. Use the chmod command to grant the file execute permission.

4. Test the program by typing ./perlsort4.pl numberlist and then pressing Enter.
Your screen (see Figure 9-13) should display the list of numbers sorted in ascending
order, similar to the result of perlsort3.pl.

494 Chapter 9 Perl and CGI Programming

Project 9-7

For the examples in Projects 9-7 through 9-9, you need access to a computer
that is running Fedora, Red Hat Enterprise Linux, SUSE with the GNOME
desktop, or Knoppix with the KDE desktop. The Firefox Web browser should
also be installed.

In this project, you create a simple HTML Web page and test it.

To create a simple Web page:

1. Use the vi or Emacs editor to create and save the UNIXtools.html file, entering the
following lines:

<HTML>
<HEAD><TITLE>UNIX/Linux Programming Tools</TITLE></HEAD>
<BODY>
<H1><CENTER>My UNIX/Linux Programming Tools</CENTER></H1>
<H2>Languages</H2>
<P>Perl</P>
<P>Shell Scripts</P>
<P>C and C++</P>
<H2>Editors</H2>
<P>vi</P>
<P>Emacs</P>
<H2>Other Tools</H2>
<P>awk</P>
<P>sed</P>
</BODY>
</HTML>

Figure 9-13 Using perlsort4.pl to sort the numberlist file

Hands-On Projects 495

9

2. Use the chmod command to grant the file execute permission.

3. In Fedora, Red Hat Enterprise Linux, or SUSE, on your desktop, double-click your
home directory’s icon, such as trbrown’s Home, which opens a Window from which to
view the files in your home directory. In Knoppix, click the K Menu and click
Home Personal Files.

4. If necessary, use the scroll bar on the right side of the window to find the
UNIXtools.html file.

5. In Fedora, Red Hat Enterprise Linux, and SUSE, double-click UNIXtools.html
(and click Display in Fedora and Red Hat Enterprise Linux) to see your Web page
in the Mozilla Firefox Web browser. (See Figure 9-14.) In Knoppix, right-click
UNIXtools.html, point to Open With, click Other, click Internet (to list Internet
applications), and double-click a Web browser, such as Konqueror.

6. Close all open windows.

Figure 9-14 Programming tools Web page viewed in Mozilla Firefox

496 Chapter 9 Perl and CGI Programming

Project 9-8
In this project, you view a sample Web page that uses CGI and Perl to handle a form. Note
that in Step 5, you need to obtain from your instructor the projest.html, projest.cgi, and
subparseform.lib files. To successfully use the Submit button on your system, check with
your instructor about enabling the necessary security for localhost (you can still do most of
this project even without the security to use the Submit button).

To see a sample Web page:

1. Access the command line, such as by opening a terminal window.

2. From your home directory, create the cgi-bin subdirectory. Type mkdir cgi-bin
and press Enter.

3. Give yourself read, write, and execute permissions to the cgi-bin subdirectory, and
give group and other read and execute permissions. To do this, type chmod 755
cgi-bin and press Enter.

4. Type cd cgi-bin and press Enter.

5. See your instructor or technical support person for instructions for copying the fol-
lowing programs and scripts to the new directory:

projest.html

projest.cgi

subparseform.lib

6. Next use the vi or Emacs editor to open the projest.html file that you copied to
your working directory in Step 5. The contents of the file are:

<!- Program Name: projest.html ->
<HTML><HEAD><TITLE>Project Analysis</TITLE></HEAD>
<BODY>
<H2>Average Profit per Project Calculation</H2>
<FORM METHOD=POST ACTION="http://localhost/home/tom/
cgi-bin/projest.cgi"> [continuation of previous line]

Total cost of projects last year? <INPUT TYPE=text NAME=
projcost SIZE=10> [continuation of previous line]

Number of Projects? <INPUT TYPE=text NAME=projects SIZE=10>
Project revenue received? <INPUT TYPE=text NAME=revenue
SIZE=10> [continuation of previous line]

<HR><INPUT TYPE=submit NAME=submit VALUE=Submit>
<INPUT TYPE=reset NAME=reset VALUE="Start over">
</FORM></BODY></HTML>

7. Find the following line of code in your file:

<FORM METHOD=POST ACTION="http://localhost/home/tom/
cgi-bin/projest.cgi">

Hands-On Projects 497

9

Change the code so that it includes the specific path to where you are storing your
HTML and CGI files, as shown:
<FORM METHOD=POST ACTION="http://path to where you are storing
your HTML and CGI files/projest.cgi">

8. Save the file and exit the editor.

9. Use the cat, more, or less commands to view the contents of the projest.cgi and
subparseform.lib files. Both of these files are really Perl scripts. The projest.cgi file
contains the code used to generate the Web page. The subparseform.lib file is a Perl
utility for managing the display of forms and is used by many Web programmers.
When you open the projest.html file, it calls projest.cgi for this dynamic Web page.
projest.cgi calls the subparseform.lib file to format the display of the form.

10. In Fedora or Red Hat Enterprise Linux with the GNOME desktop, click
Applications, point to Internet, and click Firefox Web Browser. In SUSE with
the GNOME desktop, click Computer, click More Applications, click Internet
in the left pane, and click Firefox. In Knoppix with the KDE desktop, click the K
Menu, point to Internet, and click Konqueror Web Browser.

11. In Fedora, Red Hat Enterprise Linux, and SUSE, click the File menu in the upper-left
portion of the window in Firefox. Click Open File. Browse to the location of your
projest.html file, such as /home/mpalmer/cgi-bin/projest.html. Select the projest.html
file and click Open. In Knoppix, with the Konqueror Web browser, click the Home
Folder link, click the cgi-bin subdirectory, and click projest.html. Use your mouse or
pointing device to adjust the size of the window so that “Project revenue received?” is
displayed on its own line.

12. Type 10000 in the Total cost of projects last year? text box and press Tab to advance
to the next field. Next, type 10 in the Number of Projects? text box and press Tab.
Finally, type 12000 in the Project revenue received? text box. The result that you see
should look similar to Figure 9-15.

13. To submit the information via the Common Gateway Interface connection, you can
click the Submit button. If you click Submit, the result depends on how security
and network access are configured for your computer (check with your instructor). If
your computer provides the access configuration to proceed, you might first see a
Security Warning screen; click Continue. The final Perl/CGI screen then processes
the information you have input and displays it (if your computer cannot connect via
the loopback interface, such as because of the security at the computer or in Firefox,
you’ll instead see an Unable to connect screen). If you do not have the necessary
access configuration, you see an Alert window showing that your connection was
refused. Click OK if you see the Alert window.

14. Close the Web browser window.

498 Chapter 9 Perl and CGI Programming

Project 9-9
In this project, you simulate a Web page that is a form which offers hotel management
customers an opportunity to order the promotional hotel management software items over
the Internet. To successfully use the Submit button on your system, check with your
instructor about enabling the necessary security for localhost (you can still do most of this
project even without the security to use the Submit button).

To create the Web page:

1. From the command line, switch to your cgi-bin subdirectory, if you are not already
in it. Use the editor of your choice to create the HTML document software.html.
Enter this HTML code:

<!- Program Name: software.html->
<HTML><HEAD><TITLE>Practice Form</TITLE></HEAD>
<BODY BGCOLOR=WHITE>
<CENTER><H1><U>Special Software Offers</U></H1>
</CENTER>
<FORM METHOD=POST ACTION="http://localhost/your cgi-bin
directory path/software.cgi">

<H2><U><PRE>Special Prices Qty</PRE></U></H2>

Figure 9-15 Using the projest.html Web page

Hands-On Projects 499

9

<PRE>Front Desk Management <INPUT TYPE=text NAME=frontdk
SIZE=5></PRE>

<PRE>Reservation Express <INPUT TYPE=text NAME=reserve
SIZE=5></PRE>

<PRE>Convention Management <INPUT TYPE=text NAME=convmgt
SIZE=5></PRE>

<HR><INPUT TYPE=submit NAME=submit VALUE=Submit>
<INPUT TYPE=reset NAME=reset VALUE="Start over">
</FORM></BODY></HTML>

2. Save the file in your working directory, such as your cgi-bin directory, and exit the
editor. Use the chmod command to grant read and execute permissions to all users for
the software.html file (chmod a+rx software.html).

3. Now use the editor to create the CGI Perl script software.cgi. Enter this code:

#!/usr/bin/perl
Program name: software.cgi

require "subparseform.lib";
&Parse_Form;

$frontdk = $formdata {'frontdk'};
$reserve = $formdata {'reserve'};
$convmgt = $formdata {'convmgt'};

$qtotal = $frontdk+$reserve+$convmgt;
$tfrontdk = $frontdk*200;
$treserve = $reserve*150;
$tconvmgt = $convmgt*180;
$total = $tfrontdk+$treserve+$tconvmgt;

print "Content-type: text/html\n\n";
print "<BODY BGCOLOR=WHITE>";
print "<H1><CENTER>Software
Special</CENTER></H1>
";

print "<CENTER><H2><U><P>Thank you for your
order.</P></U></H2></CENTER>";

print "
";
print "<TABLE BORDER=1 BGCOLOR=CYAN ALIGN=CENTER WIDTH=300
CELLSPACING=5>";

print "<TR><TH ALIGN=CENTER>Qty</TH>";
print "<TH ALIGN=CENTER>Software</TH>";
print "<TH ALIGN=CENTER>Total</TH></TR>";
print "<TR><TD ALIGN=CENTER>$frontdk</TD>";
print "<TD ALIGN=CENTER>Front Desk Management</TD>";
print "<TD ALIGN=CENTER>\$$tfrontdk</TD></TR>";
print "<TR><TD ALIGN=CENTER>$reserve</TD>";
print "<TD ALIGN=CENTER>Reservation Express</TD>";
print "<TD ALIGN=CENTER>\$$treserve</TD></TR>";

500 Chapter 9 Perl and CGI Programming

print "<TR><TD ALIGN=CENTER>$convmgt</TD>";
print "<TD ALIGN=CENTER>Convention Management</TD>";
print "<TD ALIGN=CENTER>\$$tconvmgt</TD></TR>";
print "<TR><TD ALIGN=CENTER>$qtotal</TD>";
print "<TD ALIGN=CENTER>Total:</TD>";
print "<TD ALIGN=CENTER>\$$total</TD></TR></TABLE>";

4. Save the file in your cgi-bin directory, and exit the editor.

5. Use the chmod command to grant the file, read and execute permissions.

Now that you have entered both the code for theWeb page and CGI script, you should test
your work.

To test the Web page:

1. In Fedora or Red Hat Enterprise Linux with the GNOME desktop, click
Applications, point to Internet, and click Firefox Web Browser. In SUSE with
the GNOME desktop, click Computer, click More Applications, click Internet
in the left pane, and click Firefox. In Knoppix with the KDE desktop, click the K
Menu, point to Internet, and click Konqueror Web Browser.

2. In Fedora, Red Hat Enterprise Linux, and SUSE, click the File menu in the Firefox
Web Browser. Click Open File. Browse to the cgi-bin subdirectory containing
your software.html file and select and open the file. In Knoppix with the
Konqueror Web browser, click the Home Folder link, click the cgi-bin
subdirectory, and click software.html.

3. Enter quantities of 10, 15, and 20 for the products. (See Figure 9-16.) If you have
security access to connect to localhost (check with your instructor), click the
Submit button to view a total page. (If your computer provides the access configu-
ration to proceed, you might first see a Security Warning screen prior to the total
page; click Continue.)

4. Close the Web browser window.

Hands-On Projects 501

9

DISCOVERY EXERCISES

1. Write a Perl script to display the line “Perl was developed by Larry Wall.”

2. Write a Perl script in which you create a variable in the script to contain the name
Beth and then have the script display “Welcome Beth.”

3. Modify the script you wrote in Exercise 2 so that you prompt for the name and then
display “Welcome name.”

4. Write down four scalar variables, two of which are numeric and two that are strings.

5. Create a Perl program that uses an array of vegetables—peas, carrots, spinach, corn,
beans—and in which all of the vegetables in the array are displayed to the screen.

6. Design a Perl program that sorts the last names Martin,Adams, Sandoval, Perry,
Yablonsky, Brown, and Ramirez.

7. Write a Perl program that attempts to open a file that does not exist, and that prints
the message “That file is nonexistent.”

8. Write a Perl program that converts a value in inches to a value in centimeters and
displays the result. (1 inch = 2.54 centimeters.)

Figure 9-16 Special Software Offers Web page

502 Chapter 9 Perl and CGI Programming

9. Create a Perl program that sorts the numbers 115, 10, 19, 35, and 2 and that uses the
spaceship operator to accomplish the sort.

10. Write a Perl program that contains a hash variable and displays the keys. The hash
variable contains the following key and value combinations:

Key Value
1 Martin
2 Hanson
3 Stephens
4 Rawlins

Discovery Exercises 503

9

This page intentionally left blank

DEVELOPING UNIX/LINUX

APPLICATIONS IN C AND C++
After reading this chapter and completing the

exercises, you will be able to:
♦ Understand basic elements of C programming

♦ Debug C programs

♦ Create, compile, and test C programs

♦ Use the make utility to revise and maintain source files

♦ Identify differences between C and C++ programming

♦ Create a simple C++ program

♦ Create a C++ program that reads a text file

♦ Create a C++ program that demonstrates how C++ enhances C
functions

The C and C++ programming languages are very compatible with UNIX
and Linux operating systems, and compilers for C and C++ are often

included with UNIX/Linux. The compliers are included because you might
encounter programming tasks that are difficult to perform using shell or Perl
scripts—and C or C++ might provide better solutions for those tasks. This
chapter offers a basic introduction to C and C++ to give you a basis for
understanding their capabilities compared to those of shell and Perl scripts. The
chapter is not intended to make you an accomplished C or C++ programmer,
but rather to help you understand the potential of C and C++ programming in
UNIX/Linux.

In this chapter, you learn how to write, compile, and execute basic C programs.
You also learn how to use the make utility. The make utility is a UNIX/Linux
software development tool that controls compilation as you make changes and
additions to programs during their development phase. At the end of the
chapter, you compare C and C++ programming and create a few simple C++
programs.

CHAPTER

10

505

INTRODUCING C PROGRAMMING

C is the language in which UNIX was developed and refined. The original UNIX
operating system was written in assembly language. Assembly language is a low-level
language that provides maximum access to all the computer’s devices, both internal and
external. However, assembly language requires more coding and a greater in-depth treat-
ment of all internal control items. The C language was partly developed to resolve the more
lengthy requirements of assembly language. It has significantly reduced those requirements
to a high-level set of easy-to-understand instructions.Dennis Ritchie and Brian Kernighan,
two AT&T Bell Labs employees, rewrote most of UNIX using C in the early 1970s.

Ken Thompson, another AT&T Bell Labs employee, also deserves credit for his
influence on the development of C. He wrote a forerunner of C, called B, in
1970 for the first UNIX system to run on the DEC PDP-7 minicomputer.

Since its inception, the C language has evolved from its original design as an operating
system language to its current status as a major tool in the development of high-performance
applications for general use. Because C is native to UNIX and now Linux, it works best as
an application development tool, in which the operating system views the application as an
extension of its core functionality. For example, daemons (specialized system processes,
such as network printing, that run in the background) are written in C. A daemon accesses
the UNIX/Linux system code just as any other part of the operating system.

C can be described, in a nutshell, as a language that uses relatively short, isolated functions
to break down large, complex tasks into small and easily resolved subtasks. This function-
oriented design allows programmers to create their own program functions to interact with
the predefined system functions—enabling programmers to write all kinds of software
applications.

Because C is a compiled language, the compiled program code cannot be viewed by
examining the executable program, which provides an extra measure of security in contrast
to shell and Perl scripts, in which the code can be viewed. However, the source code
file—the file of program code you create using an editor and then compile—can be viewed
if a user has permission to read the source code file, such as by using the cat command.

Before you create a C program, you first need to learn the basics of C programming, which
are discussed in the next sections.

506 Chapter 10 Developing UNIX/Linux Applications in C and C++

For this chapter, you need the C and C++ compilers installed in your workstation
or server setup. In Fedora, Red Hat Enterprise Linux, and SUSE, typically they
are installed in a server installation by the server administrator. If the compilers
are not already installed and you have access to the root account, you can install
them from the GNOME interface. In Fedora and Red Hat Enterprise Linux, click
Applications, click Add/Remove Software, click List, check the boxes for the C
and C++ compilers, click Apply, and follow any remaining instructions. In SUSE,
log onto root, click the Computer menu, click Install Software, select the C and
C++ options (such as devel_C_C++, gcc, gcc-c++, and other gcc selections) click
Install, and follow any remaining instructions.(Knoppix comes with the compil-
ers installed.)

Creating a C Program
A C program consists of separate bodies of code, known as functions. In other languages,
bodies of code have different names, such as subroutines, routines, or procedures (you
learned about subroutines in Chapter 9, “Perl and CGI Programming”). Each of these
bodies of code is designed so it contributes to the execution of a single task. You put
together a collection of these functions, and they become a program. Within the program,
the functions call each other as needed and work to solve the problem for which the
program was originally designed.

Creating a program is never done in a single step. As a programmer, you complete many
phases before the program is ready to run. The first phase is to create the source code of the
program. As with shell scripts and Perl programs, you use a text editor, such as vi or Emacs,
to create C programs. The source code is stored in a file with the .c (lowercase c) extension.
An example of such a file is simpleprogram.c.

The next phase is to execute the preprocessor and compiler. The preprocessor makes
modifications to your program, such as including the contents of other files and creating
constant values. After the preprocessor prepares your program, the compiler executes. The
compiler is a program that translates the source code into object code, which consists of
binary instructions. If you made errors, the compiler locates many of them. When this
happens, you use the text editor to correct the errors and recompile the program. After the
source code is compiled, it is stored by default in an executable file called a.out. Note,
however, that at the time you compile the source code, you can override the default to a file
name of your choice.

Many compilers translate source code into assembly code. This requires that an assembler
be called up to translate the assembly code into object code. The compiler usually starts the
assembler automatically, so you do not need to enter additional commands. Some compilers
translate directly from source code into object code, skipping the assembly step. Whatever
type of compiler you use, the outcome of this phase is the creation of a file that contains
object code.

Introducing C Programming 507

10

The final phase requires the use of another tool called a linker. This program links all the
object files that belong to the program, along with any library functions the program might
use. The result is an executable file. The entire process is depicted in Figure 10-1.

In some instances, the linker is not a separate tool because the compiler can be
designed to also perform linkage, as is the case with the gcc compiler used in
Fedora, Red Hat Enterprise Linux, and SUSE.

C Keywords
The C language, like all programming languages, includes keywords. These keywords have
special meanings, so you cannot use them as names for variables or functions. Table 10-1 lists
the C keywords.

Libraries

newprog.c

Preprocessor

Compiler

newprog.o

newprog

Linker

Object file

Libraries

The computer actually puts out an
assembly language version here that is
then translated into object code (binary).

Executable program

Source file

Figure 10-1 C program compilation process

508 Chapter 10 Developing UNIX/Linux Applications in C and C++

Table 10-1 C language keywords
Keyword Keyword Keyword Keyword
auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Table 10-1 contains standard keywords for ANSI C. GNU C adds several
language extensions that include additional keywords. See the Web site tigcc.
ticalc.org/doc/gnuexts.html for a reference to these language extensions.

The C Library
As you can see from Table 10-1, the C language is very small. It has no input or output
facilities as part of the language. All I/O is performed through the C library. The C library
consists of functions that perform file, screen, and keyboard operations, as well as many other
tasks. For example, certain functions perform string operations, memory allocation and
control, math operations, and much more. When you need to perform one of these
operations in your program, you place a function call at the desired point. The linker
joins the code of the library function with your program’s object code to create the
executable file.

Program Format
As mentioned earlier, C programs are made up of one or more functions. Every function
must have a name, and every C program must have a function called main(). Here is a very
simple C program:

int main()
{
}

This program does absolutely nothing, yet it contains all the elements necessary for a valid
C program. The next two paragraphs examine the bare essentials of a C program.

Note the word “main” followed by a set of parentheses. (A following section, “Specifying
DataTypes,”defines the first item—int.)This is the name of a function. As mentioned earlier,
all C programs must have a function called main(). The parentheses denote that this is a
function name.

On the next line is an open curly bracket. In a C program, this denotes the beginning of a
block of code. The closed curly bracket on the next line denotes the end of the block of

Introducing C Programming 509

10

code. All functions must have an open and a closed curly bracket. The statements that
normally make up the function appear between the two curly brackets. In the sample
program, there are no statements; therefore, the function does nothing. The curly brackets
are still required.

Including Comments
The /* symbol denotes the beginning of a comment, and the */ symbol denotes the end of
a comment. The compiler ignores everything between the symbols. This example shows a
C program comment:

/* Here is a program that does nothing. */
int main()
{
}

In the example, the comment “Here is a program that does nothing” appears at the top of
the program. The beginning of the comment is marked with /* and the end with */. The
compiler sees this program as being no different than the earlier version that had no
comment.

Using the Preprocessor #include Directive
The following is a sample program that creates output:

/* A simple C program */
#include <stdio.h>
int main()
{

printf("C is a programming language.\n");
printf("C is very compatible with UNIX/Linux.\n");

}

Figure 10-2 shows the program’s output.

In the preceding program, you see the statement:

#include <stdio.h>

This is called a preprocessor directive. As mentioned earlier, the preprocessor processes
your program before the compiler translates it into object code. It reads your program,
looking for statements that begin with the # symbol. These statements are considered
preprocessor directives and cause the preprocessor to modify your source code in some way.
For example, the #include directive causes the preprocessor to include another file in your
program at the point where the #include directive appears.

510 Chapter 10 Developing UNIX/Linux Applications in C and C++

The file stdio.h is called a header file and is part of your C development system. This file
contains information the compiler needs to process standard input or output statements.
Any program that performs standard input or output must include the stdio header file.
Because the sample program uses the printf() function (which performs standard output), it
must include stdio.h.

The C development system includes a number of header files. All library functions require
that you include a particular header file.

Specifying Data Types
Variables and constants represent data used in a C program. You must declare variables and
state the type of data that the variable can hold. A variable’s data type determines the upper
and lower limits of its range of values. Data types with wider ranges of values occupy more
memory than those with narrower ranges. The exact limits of the ranges vary among
compilers and hardware platforms.

Table 10-2 shows a list of the basic data types that can be used in a C program.

Table 10-2 C data types
Data Type Description
char Occupies a single byte; designed to hold one character from the charac-

ter set used by the running machine
int Holds integer values; the size of an int variable should be the default size

of an integer on the running machine, but this is not always the case
float A single-precision, floating-point value
double A double-precision, floating-point value

Figure 10-2 Running a simple C program

Introducing C Programming 511

10

As mentioned earlier, the exact upper and lower limits of each of the value ranges for data
types depends on the compiler and hardware platform being used. You can use three
modifiers with int data types: short, long, and unsigned. The short and long modifiers make an
integer variable smaller or larger than its default size. On some machines, a short int occupies
half the number of bits as an int, and in many cases, there is no difference between a long int
and an int.

Table 10-3 shows typical limits and memory requirements of C data types.

Table 10-3 Typical C data type limits and bytes occupied in memory

Data Type Bytes Minimum Value Maximum Value
char 1 –128 127
unsigned char 1 0 255
short int 2 –32,768 32,767
unsigned short 2 0 65,535
int 4 –2,147,483,648 2,147,483,647
long int 4 –2,147,483,648 2,147,483,647
unsigned long 4 0 4,294,967,295
float 4 –3.4028E+38 3.4028E+38
double 8 –1.79769E+308 1.79769E+308

Character Constants
Characters are represented internally in a single byte of the computer’s memory. When a
character is stored in the byte, it is set to the character’s code in the host character set. For
example, if the machine uses ASCII codes, the letter A is stored in memory as the number
65. This is because the ASCII code for A is 65.

When you represent character data in a program as a character constant, you enclose the
character in single quotation marks. Here are some examples:

'A'
'C'
'a'
'z'

Using Strings
A string is a group of characters, such as a name.Strings are stored in memory in consecutive
memory locations. When you use string constants in your C program, they must be
enclosed in double quotation marks. Here are some examples:

"Linux is a great operating system."
"Good Morning!"
"Enter your name and age."

512 Chapter 10 Developing UNIX/Linux Applications in C and C++

Unlike higher-level languages, C does not provide a specific data type for character strings.
C requires that you view strings the same way the computer does, as an array of characters.
Here is how you might declare a character array to store a string:

char name[20];

This is just like declaring a char variable, except for the [20] appended to the variable name.
It indicates that name should be an array of 20 characters. It is large enough to hold a string
of up to 19 characters. This is because in C all strings are terminated with a null character.
A null character is a single byte in which all bits are set to zero.

Including Identifiers
Identifiers are names given to variables and functions. When naming variables and
functions, resist the temptation to use short names that do not convey the meaning of the
item. Using meaningful identifiers greatly enhances the style of your program. There are
only a few rules to remember:

■ The first character must be a letter or an underscore (the _ character).

■ After the first character, you can use letters, underscores, or digits.

■ Variable names can be limited to 31 characters, and some compilers require the first
8 characters of variable names to be unique.

■ Uppercase and lowercase characters are distinct.

These are all examples of legal identifiers:

■ radius

■ customer_name

■ earnings_for_2007

■ my_name

Declaring Variables
You must declare all variables before you use them in a program. A declaration begins with
a data type and is followed by one or more variable names. Here is an example:

int days;

This example declares a variable named days. Its data type is int, so days is large enough to
hold any value that fits within the range of an int. Notice that the declaration ends with a
semicolon, as do all complete C statements.

You can declare multiple variables of the same type on the same line. Here is an example:

int days, months, years;

Introducing C Programming 513

10

This example declares three variables, each of type int, named days, months, and years. Notice
that commas separate the names.

You can initialize variables with values at the time they are declared by placing an equal sign
after the variable name followed by a constant value. Here is an example:

int days = 5, months = 2, years = 10;

Understanding the Scope of Variables
The scope of a variable is the part of the program in which the variable is defined and,
therefore, accessible. You can declare a variable either inside a function or any place that is
not inside a function.

Variables that are declared inside a function are called automatic variables. These variables
are local to the function in which they are declared. Here is an example:

/* This program declares a local variable
in function main. The program does nothing
else. */

int main()
{
int days;
}

Here, the variable days is an automatic variable and is local to the function main().

You can also declare a variable outside any function, as in the following example:

/* This program declares a global variable
The program does nothing else. */

int days;
int main()
{
}

In the preceding program, the variable is external, or global. The scope of a global variable
is the entire program, beginning at the point where the declaration was made. The scope of
an automatic, or local, variable is the body of the function in which it is declared.

The only place inside a function where local variables can be declared is at the beginning of
the body of the function—after the open curly bracket and before any statement. You can
declare global variables anywhere in a program except inside a function.

Using Math Operators
Arithmetic operators perform standard math activities, such as adding, subtracting, multi-
plying, and dividing the values held in variables or numbers. Table 10-4 lists the C
arithmetic operators.

514 Chapter 10 Developing UNIX/Linux Applications in C and C++

Table 10-4 C arithmetic operators
Operator Meaning
+ Addition
– Subtraction
* Multiplication
/ Division
% Modulus
++ Increment
-- Decrement

You can use these operators to create regular math expressions, as in the following examples:

x = y + 3;
num = num * 3;
days = months * 30;

These examples introduce the assignment operator (the equal sign). It works by assigning the
value of the expression on its right to the variable whose name is on its left. In the example
days = months * 30, the value in the variable months is multiplied by 30 and the product is
stored in the variable days.

The final two operators shown inTable 10-4 are the increment (++) and decrement (--)
operators. These are unary operators,which means that they work with one operand. The
following example shows the variable count being incremented:

count++;

Likewise, this variable can be decremented by using the following statement:

count--;

The first two examples of the count variable show these operators in their postfix form,
which means they come after the variable. You can also use them as prefix operators:

++count;
--count;

The operators behave differently depending on which form is used. For example, assume the
variable j is set to 4. In this statement,

x = j++;

the ++ operator is used in postfix form. This means the assignment operator (=) uses the
value of j before it is incremented. In effect, it says “set x equal to j, then increment j.”After
the operation, x will be equal to 4 and j will be equal to 5.

If the prefix form of the operator is used, you get different results:

x = ++j;

This statement says “increment j, then set x equal to j.” Both x and j will be equal to 5 after
the statement executes.

Introducing C Programming 515

10

Generating Formatted Output with printf()
One of the most commonly used screen output library functions is printf(). The f stands for
“formatted,” as the function allows you to format and print several arguments of differing
data types.

Syntax printf(control string, expression, expression,...);

Dissection

■ A screen output function used to format and print arguments, such as for creating reports

The first argument is called the control string. It specifies the way formatting should occur.
Following the control string can be a varying number of arguments. Each of these is an
expression with a value to be printed. The following is perhaps the most simple example of
a printf () statement:

printf("Hello");

The example uses only a control string. The word Hello is printed on the screen. Here is
another example:

printf("Your age is %d", 30);

The %d that appears in the control string is called a format specifier. It is not printed as part
of the message, but tells printf() to substitute a decimal integer in its place. The decimal
integer is the very next argument, the number 30. This printf () statement prints the
following message on the screen:

Your age is 30

Although this example illustrates the usage of the %d format specifier, it is not very realistic.
You are more likely to use it in the following manner:

printf("Your age is %d", age);

Here, printf() substitutes the value in the integer variable age for the %d. The next example
prints the values of three int variables:

printf("The values are %d %d %d", num1, num2, num3);

This message contains the values of num1, num2, and num3, in that order. You can also pass
arithmetic expressions to printf():

printf("You have worked %d minutes", hours*60);

In fact, you can pass any valid C expression to printf(). However, be certain to use an
appropriate format specifier. A format specifier is used to indicate the format of the
data—one character, a string, or a decimal integer, for example. Table 10-5 shows a list of
valid format specifiers.

516 Chapter 10 Developing UNIX/Linux Applications in C and C++

Table 10-5 C format specifiers
Format Specifier Meaning
%c Single character
%d Signed decimal integer
%e Floating-point number, e notation
%E Floating-point number, E notation
%f Floating-point number, decimal notation
%g Causes %f or %e to be used, whichever is shorter
%G Causes %f or %E to be used, whichever is shorter
%i Signed decimal integer
%o Unsigned octal integer
%p Pointer
%s Character string
%u Unsigned decimal integer
%x Unsigned hex integer using digits 0-f
%X Unsigned hex integer using digits 0-F
%% Print a percent sign

The printf function is a powerful and versatile tool for programmers. However,
it is important to be aware that a malicious user may in some instances be able
to use format specifiers for printf to launch a format string attack on a computer
that can crash the computer or possibly run a malicious program. The C and
C++ compilers included with Linux systems come with options programmers
can use to test the security of printf statements. Some examples of these
options are -Wformat, -Wformat-security, -Wall and -Wno-format-extra-args,
all of which are used with the gcc or g++ comands when compiling a program.

Using the C Compiler
The command for the C compiler in Linux operating systems is gcc. In some other versions
of UNIX, the C compiler is executed by using the cc command.

Syntax gcc [-options] filename

Dissection

■ Compiles a C source code file

■ Useful options include:
-o enables you to specify an output file (a.out is the default)
-c compiles the source code file and creates a linkable object code file (with a file name
you specify that ends in .o, such as creating the linkable object code file abs_main.o from
the source code file abs_main.c)

Introducing C Programming 517

10

-Wall enables several error checking mechanisms to give you warnings about possible
formatting and commenting problems
-Wformat provides warnings about problems with printf and scanf formatting
-Wformat-security warns of possible security problems when using printf and scanf
-Wno-format-extra-args warns of unused arguments contained in printf and scanf

In Linux, if you enter gcc simple_program.c,where simple_program.c is the source file, the default
executable file is called a.out. Many programmers use the -o option to specify a name for
the executable file. For example, if you enter gcc simple_program.c -o simple_program, then the
executable file is called simple_program. (Another way to use the -o option in this example is
to enter gcc -o simple_program simple_program.c.)

There are many options and ways to use gc c that go beyond the scope of this brief
introduction to C programming. To learn more about using the C compiler in Linux, enter
man gcc or info gcc at the command prompt. If you are using the cc command in UNIX, enter
man cc to learn more.

At this point, you have learned enough C programming basics to write a simple program.
Try Hands-On Project 10-1 to create a simple program.

Using the if Statement
The if statement allows your program to make decisions depending on whether a condition
is true or false.

Syntax if (condition) statement

Dissection

■ Used in a program to follow a decision path on the basis of whether a condition is true
or false

If the condition is true, the statement is performed. Here is an example:

if (weight > 1000) printf("You have exceeded the limit.");

If the variable weight contains a value greater than 1000, the printf() statement executes.

Sometimes, you might need to execute more than one line of code if a condition is true.
C allows you to substitute a block of code for the single statement, when necessary. The
following is an example:

if (weight > 1000)
{

printf("Warning!\n");
printf("You have exceeded the limit.\n");

518 Chapter 10 Developing UNIX/Linux Applications in C and C++

printf("Please remove some weight.\n");
}

The preceding program segment causes the three printf() statements to execute if weight is
greater than 1000.

The if-else construct allows your program to do one thing if a condition is true and another
if it is false. Here is an example:

if (hours > 40)
printf("You can go home now.");

else printf("Keep working!");

The Keep working! message prints only when the condition (hours > 40) is false. The
following is an example using blocks of code:

if (hours > 40)
{

printf("Go home.\n");
printf("You deserve it!");

}
else
{

printf("Keep working!\n");
printf("Stop playing with the computer.");

}

Hands-On Project 10-2 enables you to create a simple program using an if-else statement.

Using C Loops
Loops in C are similar to those you have used in shell scripts and Perl programs. C provides
three looping mechanisms: the for loop, the while loop, and the do-while loop. Using the for
loop is best when you know the number of times that the loop is to perform. If it is unclear
how many times the loop should perform, use the while or do-while loop.

Here is an example of the for loop:

for (count = 0; count < 100; count++)
printf("Hello\n");

This loop means the message Hello will print 100 times. Following the word for is a set of
parentheses containing three arguments. The arguments are separated by semicolons.

The first argument is the initialization. The variable count is being used to track the number
of times the loop has run. The initialization is a statement that is executed before the first
time through the loop. In the preceding example, the initialization stores the number zero
in count.

The second argument is the test condition. The for loop executes as long as the test
condition is true. It is evaluated before each iteration of the loop. If the condition is true, the

Introducing C Programming 519

10

iteration is performed. Otherwise, the loop terminates. In the example, the loop performs as
long as count is less than 100.

The third argument is the update. It is performed at the end of each iteration. In the
example, the loop increments the variable count.

The following program segment shows an example of the while loop:

x = 0;
while (x++ < 100)

printf("x is equal to %d\n", x);

This loop repeats while x is less than 100. The next example illustrates a do-while loop,which
is very similar to the while loop.

x = 0;
do

printf("x is equal to %d\n", x);
while (x++ < 100);

The difference between the while loop and the do-while loop is that the while loop tests its
condition before each iteration, and the do-while loop tests after each iteration. When you
use the do-while loop, you must be certain there will be at least one iteration (it will
successfully execute one time) to avoid an error condition.

In Hands-On Project 10-3, you create a C program that uses a for loop.

Defining Functions
When you define a function, you declare the function’s name and create the lines of code
that make up the function’s block of code. You also state what data type is returned from the
function (if any). The following is an example:

void message()
{

printf("Greetings from the function message.");
printf("Have a nice day.");

}

The word void indicates that this function does not return a value. The name of the function
is message. A set of parentheses follows the name. This function has only two statements,both
printf() statements. The function might appear in a complete program as:

#include <stdio.h>
void message();
int main()
{

message();
}
void message()
{

printf("Greetings from the function message.\n");

520 Chapter 10 Developing UNIX/Linux Applications in C and C++

printf("Have a nice day.\n");
}

The line under the include statement that reads

void message();

is called a function prototype. It tells the compiler about the function before the code for
the function is fully defined. The word “void” means that this function returns no data. Void
functions in C are like subroutines in the Fortran programming language or procedures in
Pascal. They are merely modules of code that perform some task.

After the function prototype comes the function main(). The main() function includes only
one line, which reads:

message();

This is a function call. You call a function by placing its name, followed by a set of
parentheses and a semicolon, at the desired place in the program. This causes the program’s
control to pass to the function. When the program returns from the function, it resumes
execution at the next statement after the function call.

After main is the definition of the function message(). The output of the program is:

[stephen@localhost ~] $./func1
Greetings from the function message.
Have a nice day.

Using Function Arguments
Sometimes, it is necessary to pass information to a function. A value passed to a function is
called an argument. Arguments are stored in special automatic variables. The following is an
example.

void print_square(int val);
{

printf("\nThe square is %d", val*val);
}

This function takes an int argument. When it receives the argument, the function stores the
argument in the variable val. The printf() statement causes the value of the expression val*val
to print. What follows is a complete program that uses the function:

#include <stdio.h>
void print_square(int val)
main()
{
int num = 5;
print_square(num);

}

void print_square(int val)

Introducing C Programming 521

10

{
printf("\nThe square is %d\n", val*val);

}

The output of the program is:

[stephen@localhost ~]$./func2

The square is 25

Using Function Return Values
In addition to accepting arguments, functions might also return a value. This means you can
make function calls part of arithmetic operations and assignments.For example, suppose you
have a function called triple(). It is designed to take an int argument and return that value
multiplied by three. You could use the function call in a manner such as:

y = triple(x);

The function receives the value in x, triples it, and then returns this value. The preceding
statement stores the return value in a variable called y. The following is what the triple()
function might look like:

int triple(int num)
{

return(num * 3);
}

The function is defined as an int function. This means that it returns an int value. You can
place a call to this function anywhere in your program where an int is expected. The
function takes a single argument,which is also an int. In this function, the argument is stored
in the variable num. This function’s block of code has only one line:

return(num * 3);

This is the return() function. It is used to return a value back to the calling part of the
program. In this example, the value of num * 3 is returned. The next sample program
demonstrates the function:

#include <stdio.h>
int triple(int num);
int main()
{

int x = 6, y;
y = triple(x);
printf("%d tripled is %d.\n", x, y);

}
int triple(int num)
{

return (num * 3);
}

522 Chapter 10 Developing UNIX/Linux Applications in C and C++

The program’s output is:

[stephen@localhost ~]$./func3
6 tripled is 18.

Try Hands-On Project 10-4 to create functions that accept arguments and return a value.

Working with Files in C
Files are continuous streams of data. They are typically stored on disk. Many file operations
are sequential, meaning they work from the beginning of the file to the end of the file.
When the file is opened, you are working with the beginning of the file. Every time a byte
is read from or written to the file, your current position in the file is moved forward by
one byte.

File Pointers

C file input/output is designed to use file pointers, which point to a predefined structure
that contains information about the file. The structure template is found in stdio.h. You
must declare a file pointer to use the I/O package. The following is an example:

FILE *fp;

This declares fp as a file pointer. It is used with various file access functions.

Opening and Closing Files

Before you can use a file, it must be opened. The library function for opening a file is fopen(),
as in the following example:

fp = fopen("myfile.dat", "r");

The fopen() function takes two arguments: the file name and the access mode. This example
opens a file named myfile.dat. The “r” means that the file is opened for reading. The
following statement uses the “w” access mode for writing:

fp = fopen("myfile.dat", "w");

The fopen() function returns a file pointer. If the file cannot be opened, it returns a NULL
pointer (a pointer to address zero). The following code block is one way you can test to see
if the file was opened:

if ((fp = fopen("myfile.dat", "r")) ==NULL)
{

printf("Error opening myfile.dat\n");
}

The opposite of opening a file is closing it. When a file is closed, its buffers are flushed,
ensuring that all data were properly written to it. The fclose() function is used to close files
that were opened by fopen. Here is an example:

fclose(fp);

Introducing C Programming 523

10

Performing File Input/Output

C provides many functions for reading and writing files. In this chapter, you concentrate on
two: fgetc and fputc. The two functions, fgetc() and fputc(), perform character input/output on
files. The following is an example of fgetc():

ch = fgetc(fp);

fgetc() reads a single character from the file and points to it. The character is read from the
current position. Character output is performed with fputc() as in the following example:

fputc(ch, fp);

In this example, the character stored in ch is written to the current position of the file
referenced by fp.

Testing for the End of File

Use the feof() function to determine if the end-of-file marker has been encountered during
an input operation, as illustrated in the next example:

if (feof(fp))
fclose(fp);

The feof() function returns a nonzero value if the end-of-file marker was encountered.
Otherwise, it returns zero.

Now that you have a basic understanding of file operations in C, you are ready to practice
writing a program in Hands-On Project 10-5 that performs file input/output.

Using the make Utility to Maintain Program Source Files
You might often work with a program that has many files of source code. For example, the
absolute program you create in Hands-On Project 10-4 can be divided into two files. The
following is the code for the absolute.c program.

#include <stdio.h>
int absolute(int num);
int main()
{

int x = -12, y;
y = absolute(x);
printf("The absolute value of %d is %d\n", x, y);

}
int absolute(int num)
{

if (num < 0)
return (-num);

else
return (num);

}

524 Chapter 10 Developing UNIX/Linux Applications in C and C++

If you were to divide this program into two files, one file can hold the function main() and
another can hold the function absolute(). One file, called abs_func.c, might be written as
follows:

int absolute(int num)
{

if (num < 0)
return (-num);

else
return (num);

}

A second file, called abs_main.c, might contain the following lines of code:

#include <stdio.h>
int absolute(int num);
int main()
{

int x = -12, y;
y = absolute(x);
printf("The absolute value of %d is %d\n", x, y);

}

The advantage of creating two files can be that you break down the code into smaller,
easier-to-understand modules that can be combined in different ways with other modules.
In this example, the two files can then be compiled and linked together into one executable
program. Try Hands-On Project 10-6 to practice this programming technique.

As you develop multimodule programs, such as the absolute.c program, and make changes,
you must compile the programs repeatedly. However, with multimodule source files, such as
in the two-file example, you only need to compile those source files in which you made
changes. The linker then links the newly generated object-code files with previously
compiled object code, thereby creating a new executable file. However, keeping track of
what needs to be recompiled and what does not can become an overwhelming task when
the program involves dozens of files of source code. This is where the make utility helps.

The make utility tracks what needs to be recompiled by using the time stamp field for each
source file. All you have to do is create a control file, called the makefile (which is actually
a file named makefile), for the make utility to use. The control file lists all your source files
and their relationships to each other. These relationships are expressed in the form of targets
and dependencies. A target file depends on another file to determine if any action needs to
be taken to rebuild the target file. (The ultimate target file is, of course, the executable file
that results from linking all the object files together.) The dependent files are source
files, such as the .c source files, or .h files that serve as headers to be included within the
source files.

Introducing C Programming 525

10

Syntax make [-options] filenames

Dissection

■ A utility for maintaining updates to multiple programs in a project; uses a control file
called a makefile

■ Useful options include:
-f specifies the name of the makefile

More options associated with make are beyond the scope of this book. To view
the make documentation, enter man make or info make.

The makefile must exist in the current directory. It feeds the make utility all it needs to know
to recompile any changed modules and then relink the objects to produce a new executable
program. You can also give the makefile another name, such as make_abs. To do this, you
need to enter the -f option followed by the name of the makefile. This is useful when you
are developing more than one application from within the same directory.

The contents of make_abs, an example of a makefile, are:

abs_main.o: abs_main.c
gcc -c abs_main.c

abs_func.o: abs_func.c
gcc -c abs_func.c

abs2: abs_main.o abs_func.o
gcc abs_main.o abs_func.o -o abs2

To make this file work properly, use a tab character to indent the lines beginning
with gcc. If you use the make command and see an invalid separator message,
for example, the error can often be corrected by replacing the blank spaces in
front of the gcc command in your make file with one tab (delete the spaces
in front of gcc and press the Tab key once).

Two types of lines are shown in the file: dependencies and commands. The first line is a
dependency, and the second line is a command:

abs_main.o: abs_main.c
gcc -c abs_main.c

The first line establishes a dependency between abs_main.o and abs_main.c. If abs_main.c is
newer than abs_main.o, the command on the second line executes (rebuilding abs_main.o).
The -c option after the gcc command on the second line instructs the compiler to create a
linkable object code file (in this case the abs_main.o file).

526 Chapter 10 Developing UNIX/Linux Applications in C and C++

The third and fourth lines, as well as the fifth and sixth lines, establish similar dependencies
and commands.

The command-line entry to build the abs2 program using the makefile is:

make -f make_abs abs2

The -f option instructs make to read the file make_abs instead of makefile. After executing
the command, you can run the abs2 program. Figure 10-3 shows the output of the make
command and the abs2 program.

If you forget whether you have made changes since the last time you ran the program, you
can use make to check the source files’ time stamps, and rebuild the program if necessary. The
make utility does not recompile if the program is current, and displays a message that the
makefile is up to date, as shown in the following:

[stephen@localhost ~]$ make -f make_abs abs2
make: 'abs2' is up to date.

The make utility follows a set of rules, both defaults and user defined. In general, a make rule
has the following:

■ A target, the name of the file you want to make (in the previous example, the target
is abs2)

■ One or more dependencies, the files upon which the target depends

■ An action, a shell command that creates the target

Now that you have learned the structure of a makefile, you can create a simple multimodule
C project by trying Hands-On Project 10-7.

After writing a simple program in C, the next step is to learn how to debug your program.

Figure 10-3 Making and running the abs2 executable file

Introducing C Programming 527

10

DEBUGGING YOUR PROGRAM

Typical errors for new C programmers include using incorrect syntax, such as forgetting to
terminate a statement with a semicolon. Or, because almost everything you type into a C
program is in lowercase, your program might have a case-sensitive error. Here is an example
of what you might see on the screen if you omit a closing quotation mark inside a printf
command:

simple.c:10: unterminated string or character constant
simple.c:10: possible real start of unterminated constant
simple.c:4:10: missing terminating " character
simple.c:5: error: syntax error before '}' token

The compiler generally produces more error lines than the number of mistakes it finds in the
code. The compiler reports the error lines and any surrounding lines affected by the
mistake(s).

Remember that every time you modify (correct or add text to) your program
source file, you must recompile the program to create a new executable
program.

To correct syntax errors within your programs, use the following steps:

1. Write down the line number of each error and a brief description.

2. Edit your source file, moving your cursor to the first line number the compiler
reports.

3. Within the source file, correct the error, and then move the cursor to the next
line number. Most editors display the current line number to help you locate
specific lines within the file.

4. After correcting errors, save and recompile the file.

When you first compile a program in C or C++ you may well see an unnerving
number of compiler errors. Always keep in mind that there may only be one or
two actual errors in your code, far fewer than the number of errors reported.
The source of the error messages is often something simple, such as leaving out
a semicolon, omitting a closing bracket, or a single instance of a misspelled
variable. When you debug your program and fix an error or two, go ahead and
recompile it to see if all of the error messages go away. This can save you time
and frustration rather than trying to solve the meaning of every error message.

Now that you understand how to write and debug simple C programs, you are ready to
create interactive programs that read input from the keyboard.

528 Chapter 10 Developing UNIX/Linux Applications in C and C++

CREATING A C PROGRAM TO ACCEPT INPUT

You can draw from many standard library functions to accept input, that is, characters
entered using the keyboard. Some, such as getchar(), are character-oriented, whereas others,
such as scanf(), are field-oriented. This section concentrates on scanf().

Unlike many other library input functions, scanf() can be used to input values of a variety of
data types.

Syntax scanf (control string, expression, expression,...)

Dissection

■ Reads input, such as from the keyboard or from stdin, according to a specified format

The scanf() function uses a control string with format specifiers in a manner similar to
printf(). The arguments that follow the control string are the addresses of variables where the
input is to be stored. Consider the following example:

scanf("%d", &age);

The %d format specifier works just like it does for printf(). Here, it indicates that scanf()
should interpret the input value as a decimal integer.

The &age argument tells scanf() to store the input value in the variable age. The & is the
address operator. When used with a general variable, it returns the memory address where
this variable is located. The scanf() function needs the address of a variable to store an input
value there. The next example shows how scanf() can be used to input a string:

scanf("%s", city);

Notice that this example does not use the & operator. Anytime you use the name of an array,
it resolves to the address of the first element. It would be an error to use the & operator with
the name of an array.

The format specifiers for scanf() are generally the same as those used with printf(). Table 10-6
shows the format specifiers for scanf().

Table 10-6 scanf() format specifiers
Format Specifier Interpretation
%c Single character
%d Signed decimal integer
%e, %f, %g Floating-point number
%E, %G Floating-point number
%i Signed decimal integer
%o Unsigned octal integer
%P Pointer

Creating a C Program to Accept Input 529

10

Table 10-6 scanf() format specifiers (continued)

Format Specifier Interpretation
%s String; ignores leading whitespace characters, then reads until it

encounters another whitespace character
%u Unsigned decimal integer
%x, %X Unsigned hex integer

Table 10-7 shows a list of modifiers you can use with scanf() format specifiers.

Table 10-7 Modifiers for scanf() format specifiers
Modifier Meaning
h Used to indicate a short int or short unsigned int, for example,

“%hd”
l Used to indicate a long int or long unsigned int, for example, “%ld”;

also used to indicate a double, for example, “%lf”
L Used to indicate a long double, for example, “%Lf”

Although it rarely contributes to a program’s user-friendliness, the scanf() statement can
accept multiple inputs. Here is an example:

scanf("%d %f %d", &x, &y, &z);

The preceding statement accepts values in the variables x, y, and z, which are int, float, and
int, respectively. While typing values, the user must separate the three values with whitespace
characters. Whitespace characters are spaces, tabs, and newlines.

Now try Hands-On Project 10-8 to write a C program to accept input from a keyboard
using scanf().

This concludes your introduction to C programming. You have learned some fundamentals
of programming in C, including working with files, using the make utility to maintain
program source files, debugging your programs, and creating a program to accept input. At
this point, try Hands-On Projects 10-9 and 10-10, which enable you to put together what
you have learned about C programming to create a program to encrypt information and
then write a program to decrypt information.

INTRODUCING C++ PROGRAMMING

C++ is a programming language developed by Bjarne Stroustrup at AT&T Bell Labs. It
builds on the C language to add object-oriented programming capabilities. Typically, C++
is best learned after you have been programming in C for a while. With C++, you can do
“more with less” after you learn its nuances. Functions, the building blocks of C program-
ming, are incorporated in C++ with added dimensions such as function overloading,
which makes the functions respond to more than one set of criteria and conditions.

530 Chapter 10 Developing UNIX/Linux Applications in C and C++

C and C++ are similar in many ways.For example,programs in both languages start with the
main() function and call other functions that include blocks of instructions enclosed within
curly brackets. Both languages support compiler directives, such as #include and #define. In
Linux, the C++ compiler is called from the g++ command; in many UNIX versions, it is
called using the cc command. Also, the g++ command supports using the -o option to name
the executable file, such as by entering g++ myprogram.C -o myprogram to compile the
myprogram.C source code file into the executable file, myprogram.

One important distinction should be made about C++ programs. You can place
your variable declarations anywhere inside the program, before or after the
instructions. This is not true of C programs, in which program variables must
precede all the instructions.

The major differences between the two languages become evident when you start using the
C++ enhancements and class structures, which depart dramatically from standard C
procedures. C follows procedural principles, whereas C++ primarily follows object-
oriented programming principles while still allowing procedural programming methods.
Procedural programming follows long-standing traditions that separate the data to be
processed from the procedures that process that data. Procedural techniques require that the
data fields be named and defined by data types (integers, characters, strings, floating decimals,
and a variety of structures and arrays) before any processing begins. Object-oriented
programming, on the other hand, uses objects for handling data—allowing the data to be
described by name and type anywhere in the program. It is more significant that C++
programs introduce objects as a new data class. An object is a collection of data and a set
of operations, called methods, which manipulate the data. Unlike standard C functions,
C++ methods are part of the object to which they belong, not the program.

Other more minor differences between C and C++ concern the name of the compiler
(Linux calls the C++ compiler g++) and the suffix attached to a C++ source file, often .C
or .cpp.

CREATING A SIMPLE C++ PROGRAM

To illustrate the similarity between C and C++, consider a short program, simple.C, which
displays a message on the screen exactly as the C program simple.c does. The differences
between the two languages start with the #include <iostream> instead of #include <stdio.h>
statement. (In later versions of C++, the compiler complains if you use the older form:
<iostream.h>.) Also, after <iostream>, you place the line, using namespace std;. Another
difference is the use of the cout I/O stream object instead of printf(). Consider the following
program:

//==
// Program Name: simple.C
// By: MP
// Purpose: First program in C++ showing how to
// produce output

Creating a Simple C++ Program 531

10

//==
#include <iostream>
using namespace std;
int main(void)
{
cout << "C++ is a programming language.\n";
cout << "Like C, C++ is compatible with UNIX/Linux.\n";

}

For reading input from the keyboard, C++ uses cin instead of scanf() although
C++ also recognizes and compiles scanf() lines.

Looking at the program, notice that C++ uses // to denote a comment line. (You can also
use C’s /* and */ to enclose comments in your C++ program.) Recall that comments
help to identify and describe the program for all who need to review the program.
Comments are ignored by the compiler and do not cause the computer to perform any
action when the program runs.

Furthermore, note that the standard library functions for I/O are found in iostream instead of
stdio.h,as in the C program,and the line using namespace std is added. Another difference between
the C and C++ programs is the use of cout in the C++ program, as mentioned earlier. In
Hands-On Project 10-11, you create, compile, and execute the code in the simple.C file.

To continue the comparison between C and C++, you next see how a C++ program reads
and displays the information in a file.

CREATING A C++ PROGRAM THAT READS A TEXT FILE

You learn further differences between C and C++ by examining the following C++
program, which reads a text file:

//==
// Program Name: fileread.C
// By: MP
// Purpose: A C++ program that reads the contents
// of a file
//==
#include <iostream>
#include <fstream>
using namespace std;
int main(void)
{

ifstream file("testfile");
char record_in[256];
if (file.fail())

cout << "Error opening file.\n";

532 Chapter 10 Developing UNIX/Linux Applications in C and C++

else
{
while (!file.eof())
{
file.getline(record_in, sizeof(record_in));
if (file.good())

cout << record_in << endl;
}

}
}

There are several differences in the way C and C++ handle file operations. For example, the
following code:

ifstream file ("testfile");

tells the compiler to use the ifstream class (object) to perform file input and output
operations. The identifier file follows the class name. This statement is similar to the
following C statement:

FILE *file;

Further, the file.fail() function is a part of the ifstream class and reports an invalid condition
with the file access. The endl stream manipulator causes the screen output to skip a line,
similar to \n in the C language.

The file.getline() function reads in a line from the file and stores it in the buffer record_in for
subsequent processing. The file.good() flag is a component of the ifstream class and is used to
determine if the record accessed contains data.

Try Hands-On Project 10-12 to create and use the fileread.C program.

Now that you have an understanding of how C++ is similar to C, in the next section you
see how C++ provides additional enhancements.

HOW C++ ENHANCES C FUNCTIONS

C++ creates a way to define a function so that it can handle multiple sets of criteria; as you
learned, this feature is called function overloading. Whereas C functions are quite flexible,
function overloading adds considerably to the overall functions’ use by expanding the
function definition to accept varying kinds and numbers of parameters.During compilation,
the C++ compiler determines which function to call based on the number and types of
parameters the calling statement passes to the function. For example, consider the following
code that overloads a function to access the system date in two different ways:

//==
// Program Name: datestuf.C
// By: MP
// Purpose: Shows you two ways to access the
// system date

How C++ Enhances C Functions 533

10

//==
#include <iostream>
#include <ctime>
using namespace std;
void display_time(const struct tm *tim)
{

cout << "1. It is now " << asctime(tim);
}
void display_time(const time_t *tim)
{

cout << "2. It is now " << ctime(tim);
}
int main(void)
{

time_t tim = time(NULL);
struct tm *ltim = localtime(&tim);
display_time(ltim);
display_time(&tim);

}

The #include <ctime> statement calls the C++ <ctime> library that consists of date types,
structures, and functions for manipulating the time and date. Notice how the same function
name is used for the different calls to the different date types that are contained in <ctime>.
One is a structure (struct tm); the other is a date type for storing calendar time (time_t).

void display_time (const struct tm *tim)
void display_time (const time_t *tim)

In the line cout <<“1. It is now “ << asctime(tim);, you see that asctime() is a function included
in <ctime> that is used with struct tm to yield the local time and date. In the line cout <<“2.
It is now “ << ctime(tim);, you see that ctime() is a function in <ctime> that is used with time_t
to yield the local time and date.

The program is able to distinguish which function to use based on the date type being passed
to it.

Display_time(ltim); Uses the structure type
Display_time(&tim); Uses the time_t type

Hands-On Project 10-13 enables you to create the datestuf.C program.

CHAPTER SUMMARY

The C language concentrates on how best to create commands and expressions that can
be elegantly formed from operators and operands.

C programs often consist of separate source files called program modules that are
compiled separately into object code and linked to the other object codes that make up
the program.

534 Chapter 10 Developing UNIX/Linux Applications in C and C++

The C program structure begins with the execution of instructions located inside a main()
function, which calls other functions that contain more instructions.

The make utility is used to maintain the application’s source files. The default make control
file is called makefile.

An important difference between C and C++ is that C follows procedural principles and
C++ primarily follows object-oriented programming principles.

The standard stream library used by C++ is iostream.

C++ provides two statements for standard input and standard output: cin and cout,
respectively. These are defined in the class libraries contained in <iostream>.

C++ offers a way to define a function so that it can handle multiple sets of criteria
through a process called function overloading.

COMMAND SUMMARY: REVIEW OF CHAPTER 10 COMMANDS

Command Purpose Options Covered in This Chapter
g++ Compiles a C++ source

code file
-o enables you to specify an output file.

gcc Compiles a C source
code file

-o enables you to specify an output file.
-c compiles the source code file and cre-
ates a linkable object code file.

make Maintains updates to
multiple programs in a
project

-f specifies the name of the makefile.

printf() Formats and prints
arguments, such as for
creating reports

scanf() Used to input values of
a variety of data types.

Please refer to the tables within the chapter for additional command review.

Table Shows
Table 10-1 C language keywords
Table 10-2 C data types
Table 10-3 Typical C data type limits and bytes occupied in memory
Table 10-4 C arithmetic operators
Table 10-5 C format specifiers
Table 10-6 scanf() format specifiers (C language)
Table 10-7 Modifiers for scanf() format specifiers

Command Summary: Review of Chapter 10 Commands 535

10

KEY TERMS

assembler — The program that is called by a compiler to translate assembly code into
object code.
assembly language — A low-level language that provides maximum access to all the
computer’s devices, both internal and external. Writing an assembly language program
requires a great deal of coding and time.
automatic variable — A variable declared inside a function and local to the function in
which it is declared.
C — A programming language developed in part to overcome the disadvantages of assembly
language programming, which requires a great deal of coding and time. The result is a
high-level set of easy-to-understand instructions. UNIX was originally written in assembly
language but further developed and refined in C, largely due to the efforts of Dennis Ritchie
and Brian Kernighan of AT&T Bell Labs.
C++ — A programming language developed by Bjarne Stroustrup of AT&T Bell Labs.
Stroustrup added object-oriented capabilities and other features to the C language.
C library — A collection of functions that perform file, screen, and keyboard operations,
and many other tasks. To perform or include one of these functions in your program, you
insert a function call at the appropriate location in your file.
class — A data structure in the C++ programming language that enables the programmer
to create abstract data types. In this context, an abstract data type is one defined by the
programmer for a specific programming task.
control string — An argument that specifies how formatting should occur when using the
screen output library function printf().
daemon — A specialized system process that runs in the background. A daemon accesses
UNIX/Linux system code like any other part of the operating system.
decrement operator (--) — A C/C++ arithmetic operator that decreases the value of a
variable by a specified amount.
executable file — A usable program, the result of the program development cycle.
function — A separate body of code designed to contribute to the execution of a single
task. You can put together a number of functions to create a program. In some languages,
functions are called subroutines or procedures.
function call — A feature that you insert in the appropriate location of a program file to
specify and use one of the functions in the C/C++ library or a user-defined function.
function overloading — A feature of the C++ programming language that lets functions
respond to more than one set of criteria and conditions.
function prototype — A C program statement line that tells the C compiler about a
function before the code for the function is fully defined.
header file — A file containing the information the compiler needs to process standard
input or output statements.
identifiers — The names given to variables and functions.
increment operator (++) — A C/C++ arithmetic operator that increases the value of a
variable by a specified amount.

536 Chapter 10 Developing UNIX/Linux Applications in C and C++

keywords — The components of all programming languages; these words have special
meaning and must not be used as variable or function names.
linker — In program development, the tool used after the compiler to link all object files
that belong to the program and any library programs the program might use.
main() — A required function in a C or C++ program. A C/C++ program is made up of
one or more functions. Every function must have a name, and every C/C++ program must
have a function called main().
makefile — A file used with the make utility that contains instructions for a project
consisting of multiple source and executable files.
method — A set of operations that manipulate data; a part of the new data class, objects,
used in the C++ programming language.
null character — A single byte whose bits are all set to zero.
object code —The binary instructions translated from program source code by a compiler.
object-oriented programming — A method of programming that uses objects for
programming and handling data—allowing the data to be described by name and type
anywhere in the program.
objects — A new data class introduced in the C++ programming language.An object is a
collection of data and a set of operations called methods that manipulate data.
preprocessor — The routine that is used after initial application development and before
the compiler to make necessary modifications to the program and to include the contents of
other files.
preprocessor directive — A statement that you place in your program to instruct the
preprocessor to modify your source code in some way. A preprocessor directive always
begins with the # symbol. An example is #include, which tells the preprocessor to include
another file or library in your program.
scope — The part of the program in which a variable is defined and accessible. The scope
can be either inside or outside a function.
source code — The program code that you create using an editor and that either is
interpreted, if you are using an interpreted programming language, or is compiled, if you are
using a compiled language.
stdio.h — A header file that is part of the C programming language development system. This
file contains information the compiler needs to process standard input or output statements. Any
C program that performs standard input or output must include the stdio.h header file.

REVIEW QUESTIONS

1. A new programmer whom you are training is writing a C program and wants to
place comment lines in the program.Which of the following characters should be
used at the beginning and end of the comments?
a. Use # at the beginning and end of the comments.
b. Place !# at the beginning of each new comment line and #! at the end.
c. Place (at the beginning and) at the end of the comments.
d. Use /* at the beginning of the comments and */ at the end.

Review Questions 537

10

2. You’ve written a C program, but are now getting an error message about the use of
standard input and output statements when you compile the program.Which of the
following might be the cause?
a. You omitted the preprocessor directive for the file stdio.h.
b. You forgot to declare the print I/O as a char data type.
c. Your computer is not configured to use I/O.
d. You did not specify an object file for your program.

3. Which of the following is in the proper format for a character constant? (Choose all
that apply.)
a. C!
b. <c>
c. 'C'
d. 'c'

4. Which of the following are performed by functions in the C library? (Choose all
that apply.)
a. screen operations
b. memory allocation operations
c. file operations
d. math operations

5. A daemon is a .
a. source code program for using the C compiler
b. log file to track compiler errors
c. specialized system process that runs in the background
d. memory management process for automatically deleting unused swap space when a

C++ program has ended

6. A colleague of yours is just learning to use the C compiler in Linux.When she tries
to compile a program called firststart.c using gcc firststart.c she is expecting the execut-
able file to have the name firststart, but there is no firststart file.What is the execut-
able file’s name?
a. c.file
b. a.out
c. prog.o
d. file$.o

538 Chapter 10 Developing UNIX/Linux Applications in C and C++

7. You have written a C program using the variables num, enum, sum, and long.When
you compile the program you get an error message about using a variable the com-
piler finds unacceptable.Which of the following is likely to be the problem?
a. These variables must be declared inside a function instead of at the beginning of the

program code.
b. C does not allow you to declare more than three variables.
c. enum and long are keywords and cannot be used as variables.
d. Variables must be declared in alphabetic order, but you have used the order num,

enum, sum, and long.

8. Which of the following are examples of data types in the C language? (Choose all
that apply.)
a. whole
b. int
c. double
d. float

9. Which of the following is the right way to use the string constant, Enter your ID:, in
the C language?
a. ~ Enter your ID:~
b. \ Enter your ID:
c. >> Enter your ID:
d. "Enter your ID:"

10. Which of the following functions must be in a C program? (Choose all that apply.)
a. start.io ()
b. main()
c. run()
d. absolute()

11. Which of the following statements enables you to print File updated. on the screen
when a C++ program is finished?
a. cout << "File updated.\n";
b. cout >> File updated./n
c. scanf ~File updated.
d. scanf >> File updated.\n;

Review Questions 539

10

12. Which of the following are important characteristics of C++ programming?
(Choose all that apply.)
a. elimination of hexadecimal variables
b. object-oriented programming
c. use of classes for specialized programming needs
d. designation of file size before opening a file

13. Your program to calculate values in physics requires working with positive and nega-
tive whole numbers between -14,242 and 12,528.What data types would you use to
work with these numbers in a C program?
a. unsigned short
b. char
c. short int
d. signed whole

14. In your C program, you want to use a while loop and decrement the value, counter,
each time the program goes through the while loop.Which of the following opera-
tors enables you to decrement the value in counter?
a. counter #-1;
b. dec01 counter;
c. ++counter;
d. counter--;

15. Which of the following functions is used to open a file in the C language?
a. file.o()
b. scan()
c. fopen()
d. void()

16. What started as a simple C program has now turned into several program modules as
you have refined it over the past several months.The problem is that now you do not
always remember which modules you have changed at what time.What should you do?
a. Make the modification date part of the each program’s name.
b. Use the track() version tracking function.
c. Use the C language file logging capability to track version changes.
d. Use the make utility and create makefiles.

540 Chapter 10 Developing UNIX/Linux Applications in C and C++

17. What compiler is started by using the g++ command?
a. the C++ compiler
b. the preprocessor compiler
c. the object and binary linker compiler
d. the C compiler

18. The programmer you are training wants to write code to determine when the end
of a file has been reached.Which of the following can he use?
a. putc
b. feof()
c. end()
d. filemarker

19. Your C++ program needs to access the system date in different ways.Which of the
following enables you to do this?
a. time.d
b. <ctime> library
c. const time subroutine
d. time()

20. Which of the following is an acceptable way to insert a comment line in a C++
program? (Choose all that apply.)
a. // Program Name: calc.C
b. # Program Name: calc.C
c. rem Program Name: calc.C
d. \ Program Name: calc.C

21. What character shows that you are starting a block of code in the C and C++
languages?
a. ~
b. `
c. {
d. <

22. What is an automatic variable?

23. Name a function that enables you to read the contents of a file and another function
that enables you to write to the file in the C language.

24. What are three examples of looping logic structures that can be used in the C
language?

25. Most programmers have to do some debugging of a C or C++ program at some
point. Suggest a series of steps to follow when debugging a program.

Review Questions 541

10

HANDS-ON PROJECTS

For the following projects, log into your own account and use your home
directory. Also, access the command line, such as through a terminal window.

Project 10-1
In this project, you create and run a simple C program.

To write a simple C program:

1. Use the vi or Emacs editor to create and save the file inches.c. (Remember that the
C compiler uses the .c extension to identify a file containing C source code.) Enter
this code:

/* This program converts 10 feet to inches. */

#include <stdio.h>

int main()
{

int inches, feet;
feet = 10;
inches = feet * 12;
printf("There are %d inches in %d feet.\n", inches,
feet);

}

2. Save the program and exit the editor.

3. The C compiler is executed by the gcc command in Linux. Type gcc inches.c and
press Enter. If you typed the program correctly, you see no messages. If you see error
messages, load the program into the editor, and correct the mistake.

4. By default, the compiler stores the executable program in a file named a.out.
Execute a.out by typing ./a.out and pressing Enter. Your screen looks similar to
Figure 10-4.

5. You can specify the name of the executable file with the -o option. Type gcc -o
inches inches.c and press Enter. The command compiles the inches.c file and
stores the executable code in a file named inches.

As you learned when gcc was first introduced in this chapter, you can put the
-o filename option before the name of the file you are compiling, as in gcc -o
inches inches.c or after the name of the file you are compiling, such as gcc
inches.c -o inches.

542 Chapter 10 Developing UNIX/Linux Applications in C and C++

6. Run the inches program by typing ./inches and pressing Enter.

7. Type clear and press Enter to clear the screen for the next project.

Project 10-2
In this project, you create a C program that uses an if-else statement.

To use the C if-else statement:

1. Create the file radius.c with your choice of editor. Enter the following C code:

/* This program calculates the area of a circle */
#include <stdio.h>
int main()
{

float radius = 50, area;
area = 3.14159 * radius * radius;
if (area > 100)

printf("The area, %f, is too large.\n", area);
else

printf("The area, %f, is within limits.\n", area);
}

2. Save the file and exit the editor.

3. Compile the program by typing gcc -o radius radius.c and pressing Enter. If you
see error messages, edit the file, and correct your mistakes.

4. Execute the program by typing ./radius and pressing Enter (see Figure 10-5).

5. Type clear and press Enter to clear the screen.

Figure 10-4 Running a.out

Hands-On Projects 543

10

Project 10-3
In this project, you create a C program using a for loop.

To practice using a C for loop:

1. Use the editor of your choice to create the file rain.c, entering this C code:

/* rain.c */
#include <stdio.h>
int main()
{

int rain, total_rain = 0;
for (rain = 0; rain < 10; rain++)
{

printf("We have had %d inches of rain.\n", rain);
total_rain = total_rain + rain;

}
printf("We have had a total ");
printf("of %d inches of rain.\n", total_rain);

}

2. Save the file and exit the editor.

3. Compile the program and store the executable code in a file named rain.

4. Run the program. Your screen should look similar to Figure 10-6.

5. Type clear and press Enter to clear the screen.

Figure 10-5 Using the radius executable file

544 Chapter 10 Developing UNIX/Linux Applications in C and C++

Project 10-4
Functions can be powerful tools in C programming. In this program, you create two
functions that accept arguments and return a value.

To practice writing functions that accept arguments and return a value:

1. Use the editor of your choice to create the file absolute.c. Enter the follow-
ing code:

#include <stdio.h>
int absolute(int num);
int main()
{

int x = -12, y;
y = absolute(x);
printf("The absolute value of %d is %d\n", x, y);

}
int absolute(int num)
{

if (num < 0)
return (-num);

else
return (num);

}

2. Save the file and exit the editor.

3. Compile the program and save the executable code in a file named absolute.

4. Run the program to test it (see Figure 10-7).

5. Type clear and press Enter to clear the screen for the next project.

Figure 10-6 Using the rain executable file

Hands-On Projects 545

10

Project 10-5
In this project, you create a C program that performs file input and output.

To perform file input/output:

1. Use the editor of your choice to create the file buildfile.c. Enter the following code
in the file:

#include <stdio.h>
int main()
{

FILE *out_file;
int count = 0;
char msg[] = "This was created by a C program.\n";
if ((out_file = fopen("testfile", "w")) == NULL)
{

printf("Error opening file.\n");
}
while (count < 33)
{

fputc(msg[count], out_file);
count++;

}
fclose(out_file);

}

2. Save the program and exit the editor.

3. Compile the program and save the executable in a file named buildfile.

Figure 10-7 Executing the absolute program

546 Chapter 10 Developing UNIX/Linux Applications in C and C++

4. Run the buildfile program. The program creates another file, testfile.

5. To see the contents of testfile, type cat testfile and press Enter (see Figure 10-8).

6. Type clear and press Enter to clear the screen.

Project 10-6
In this project, you create two files (refer to the functions in Project 10-4, which are now
split into two files in this project) and link them together into one executable file.

To compile and link two files:

1. Use the editor of your choice to create the file abs_func.c and enter the follow-
ing code:

int absolute(int num)
{

if (num < 0)
return (-num);

else
return (num);

}

2. Save the file.

3. Create the file abs_main.c. Enter this code:

#include <stdio.h>
int absolute(int num);
int main()
{

int x = -12, y;

Figure 10-8 Viewing the testfile contents

Hands-On Projects 547

10

y = absolute(x);
printf("The absolute value of %d is %d\n", x, y);

}

4. Save the file and exit the editor.

5. Compile and link the two programs by typing gcc abs_main.c abs_func.c -o abs
and then press Enter. The compiler separately compiles abs_main.c and abs_func.c.
Their object files are linked together, and the executable code is stored in the
file abs.

6. Run the abs program (see Figure 10-9).

7. Type clear and press Enter to clear the screen.

Project 10-7
In this project, you use the make utility and a makefile to create a multimodule C project.

To create a simple multimodule C project:

1. Use the editor of your choice to create the file square_func.c, entering the follow-
ing code in the file:

int square(int number)
{

return (number * number);
}

Figure 10-9 Running the abs executable created from two files

548 Chapter 10 Developing UNIX/Linux Applications in C and C++

2. Save the file.

3. Next create the file square_main.c. Enter the following code:

#include <stdio.h>
int square(int number);
int main()
{

int count, sq;
for (count = 1; count < 11; count++)
{

sq = square(count);
printf("The square of %d is %d\n", count, sq);

}
}

4. Save the file.

5. Next create a makefile named make_square. Enter the following text:

square_func.o: square_func.c
(press Tab)gcc -c square_func.c
square_main.o: square_main.c
(Tab)gcc -c square_main.c

square: square_func.o square_main.o
(Tab)gcc square_func.o square_main.o -o square

In some UNIX/Linux versions of the make command, such as in Fedora, Red Hat
Enterprise Linux, and SUSE, you must place a tab character before each com-
mand line that calls the gcc compiler. If you do not, the make command returns
an error.

6. Save the file and exit the editor.

7. Build the program by typing make -f make_square square and pressing Enter. (If
you have errors, load the incorrect module into the editor and correct your
mistakes.)

8. Run the program. Your screen should look similar to Figure 10-10.

9. Type clear and press Enter to clear the screen for the next project.

Hands-On Projects 549

10

Project 10-8
In this project, you use scanf() in a C program to accept input from the keyboard.

To use scanf() to accept keyboard input:

1. Use the editor of your choice to create a file named keyboard.c and enter the fol-
lowing lines of code:

/*===
Program Name: keyboard.c
Purpose: Enter data using the keyboard
== */
#include <stdio.h> /* the standard input/output library */
int main()
{
char string[50]; /* a string field */
float my_money; /* a floating decimal field */
int weight; /* an integer field */
printf("\nEnter your First Name: ");
scanf("%s", string);
printf("\nEnter your Desired Monthly Income: ");
scanf("%f",&my_money);
printf("\nEnter your friend's weight: ");
scanf("%d",&weight);
printf("\n\n Recap\n");
printf("I am %s and I wish to have %6.2f per month",
string, my_money);

printf("\nI never would have guessed your friend weighs
%d lbs", weight);

printf("\n\n");
}

Figure 10-10 Building and running the square executable file

550 Chapter 10 Developing UNIX/Linux Applications in C and C++

2. Save the file and exit the editor.

3. Compile the program by typing gcc keyboard.c -o keyboard and then press
Enter.

4. Execute the program by typing ./keyboard and then press Enter. Provide answers
to the questions on the screen (see Figure 10-11).

5. Type clear and press Enter to clear the screen.

Project 10-9
If a file contains sensitive information, you might wish to encrypt it so others cannot read its
contents. When a file is encrypted, its contents are encoded or modified in such a way that
the original contents are not distinguishable. A formula is used to perform the encryption
so that a complementary decryption algorithm can restore the file to its original contents.
In this project, you use your knowledge of C programming to create an encoding program.
The program you create opens a file, reads a character from the file, adds 10 to the character’s
ASCII value, and then writes the character to a second file. This procedure repeats until all
characters in the file have been read, modified, and written to the second file. The second
file is an encoded version of the first file. After you complete this project, you create the
programs to decode information in the next project.

Figure 10-11 Running the keyboard executable file

Hands-On Projects 551

10

To create the encoding program:

1. Use the editor of your choice to create the file encode.c and enter the following
lines of code in the file:

#include <stdio.h>

void encode_file(FILE *, FILE *);
int main()
{

FILE *in_file, *out_file;
char infile_name[81], outfile_name[81], input;
printf("Enter the name of the file to encode: ");
scanf("%s", infile_name);
if ((in_file = fopen(infile_name, "r")) == NULL)
{

printf("Error opening %s\n", infile_name);
}
printf("Enter the output file name: ");
scanf("%s", outfile_name);
if ((out_file = fopen(outfile_name, "w")) == NULL)
{

printf("Error opening %s\n", outfile_name);
}
encode_file(in_file, out_file);
printf("The file has been encoded.\n");
fclose(in_file);
fclose(out_file);

}

2. Save the file.

3. Create the file encode_file.c and enter the following code:

#include <stdio.h>
void encode_file(FILE *in_file, FILE *out_file)
{
char input;
while (!feof(in_file))
{
input = fgetc(in_file);

input += 10;
fputc(input, out_file);

}
}

4. Save the file.

5. Type clear and press Enter to clear the screen, if you haven’t done this already.

552 Chapter 10 Developing UNIX/Linux Applications in C and C++

Project 10-10
In this project, the decoding program works opposite to the way the encoding program
works. It reads a character from the encrypted file, subtracts 10 from its ASCII code, and
writes the character out to another file. This procedure repeats until all encrypted characters
have been converted to their original state and stored in the second file.

To create the decrypting program:

1. Use an editor to create the file decode.c and enter the following code:

#include <stdio.h>
void decode_file(FILE *, FILE *);
int main()
{
FILE *in_file, *out_file;
char infile_name[81], outfile_name[81], input;
printf("Enter the name of the file to decode: ");
scanf("%s", infile_name);
if ((in_file = fopen(infile_name, "r")) == NULL)
{

printf("Error opening %s\n", infile_name);
}
printf("Enter the output file name: ");
scanf("%s", outfile_name);
if ((out_file = fopen(outfile_name, "w")) == NULL)
{

printf("Error opening %s\n", outfile_name);
}
decode_file(in_file, out_file);
printf("The file has been decoded.\n");
fclose(in_file);
fclose(out_file);

}

2. Save the file.

3. Use an editor to create the file decode_file.c. Enter the following code:

#include <stdio.h>
void decode_file(FILE *in_file, FILE *out_file)
{
while (!feof(in_file))
{
char input;
input = fgetc(in_file);
input -= 10;
fputc(input, out_file);

}
}

Hands-On Projects 553

10

4. Save the file. You are now ready to create the makefiles for both the encode and
decode programs.

5. Enter the following code in the editor, and save it in the file encode_make
(remember to press the Tab key for the 2nd, 4th, and 6th lines that begin with gcc):

encode: encode.o encode_file.o
gcc encode.o encode_file.o -o encode

encode.o: encode.c
gcc -c encode.c

encode_file.o: encode_file.c
gcc -c encode_file.c

6. Create a file named decode_make, and enter this code (press the Tab key to indent
the 2nd, 4th, and 6th lines):

decode: decode.o decode_file.o
gcc decode.o decode_file.o -o decode

decode.o: decode.c
gcc -c decode.c

decode_file.o: decode_file.c
gcc -c decode_file.c

7. Save the file. You are ready to build the programs.

8. Type make -f encode_make and press Enter.

9. Type make -f decode_make and press Enter. Your screen should resemble
Figure 10-12.

You test the encode program by encrypting the testfile that you created in the file I/O
exercise. The file contains the string “This was created by a C program.”

Figure 10-12 Running the makefiles

554 Chapter 10 Developing UNIX/Linux Applications in C and C++

10. Type clear and press Enter to clear the screen.

11. Type ./encode and press Enter. Your screen appears similar to Figure 10-13.

12. In response to the prompt, type testfile and press Enter.

13. The program now asks for the name of the output file.

14. Type secret_file and press Enter. The contents of testfile have been encoded and
stored in secret_file.

15. Use the cat command to look at the contents of secret_file. Your screen looks simi-
lar to Figure 10-14.

16. Type clear and press Enter.

17. Run the decode program by typing ./decode and pressing Enter. The program
asks you to enter the name of the file to decode.

18. Type secret_file and press Enter. Next, the program asks you to enter the output
file name.

19. Type normal_file and press Enter. The contents of secret_file have been decoded
and stored in normal_file.

20. Use the cat command to look at the contents of normal_file. Your screen should
look similar to Figure 10-15. In some cases, you might see a couple of residual
encoded characters, which appear before the prompt and represent the end-of-file
marker from the encoded file. You need not be concerned with their appearance.

21. Type clear and press Enter to clear the screen.

Figure 10-13 Running the encode executable file

Hands-On Projects 555

10

Project 10-11
In this project, you create a simple C++ program.

To write a C++ program:

1. Use the editor of your choice to create the simple.C file. Enter the following code:

//==
// Program Name: simple.C
// By: Your initials here
// Purpose: First program in C++ showing how to
// produce output

Figure 10-14 Results of running encode

Figure 10-15 Decoding the file you encoded

556 Chapter 10 Developing UNIX/Linux Applications in C and C++

//==
#include <iostream>
using namespace std;
int main(void)
{
cout << "C++ is a programming language.\n";
cout << "Like C, C++ is compatible with UNIX/Linux.\n";

}

2. Save the simple.C file and exit the editor.

3. Use the C++ compiler to create a program called sim_plus by typing g++
simple.C -o sim_plus and then press Enter.

4. Run sim_plus. Your screen should look similar to Figure 10-16.

5. Type clear and press Enter to clear the screen for the next project.

Project 10-12
Reading a file is important for C++ programming. In this project, you create a C++
program that reads the contents of the file, testfile, that you have worked with in previous
projects.

To create a C++ program that reads a text file:

1. Use the editor of your choice to create the file fileread.C. Enter the following code:

//==
// Program Name: fileread.C
// By: Your initials here
// Purpose: A C++ program that reads the contents

Figure 10-16 Running the sim_plus executable file

Hands-On Projects 557

10

// of a file
//==
#include <iostream>
#include <fstream>
using namespace std;
int main(void)
{

ifstream file("testfile");
char record_in[256];
if (file.fail())

cout << "Error opening file.\n";
else
{

while (!file.eof())
{
file.getline(record_in, sizeof(record_in));
if (file.good())

cout << record_in << endl;
}

}
}

2. Save the file and exit the editor.

3. Use the g++ compiler to create an executable program called fileread.

4. Test the fileread program (see Figure 10-17).

5. Type clear and press Enter to clear the screen.

Figure 10-17 Testing the fileread program

558 Chapter 10 Developing UNIX/Linux Applications in C and C++

Project 10-13
In this project, you use function overloading to determine the system time.

To use function overloading:

1. Use the editor of your choice to type the contents of datestuf.C. (When you enter
the statement cout << "1. It is now " << asctime(tim);, be certain to enter the number
one after the first double quotation mark and not the letter l.)

//==
// Program Name: datestuf.C
// By: Your initials here
// Purpose: Shows you two ways to access the
// system date
//==
#include <iostream>
#include <ctime>
using namespace std;
void display_time(const struct tm *tim)
{

cout << "1. It is now " << asctime(tim);
}
void display_time(const time_t *tim)
{

cout << "2. It is now " << ctime(tim);
}
int main(void)
{

time_t tim = time(NULL);
struct tm *ltim = localtime(&tim);
display_time(ltim);
display_time(&tim);

}

2. Save the file and then exit the editor.

3. Compile datestuf.C by typing g++ datestuf.C -o datestuf and then press Enter.

4. Test the program. Your screen should be similar to Figure 10-18.

5. If you are using a terminal window, close it and log off.

Hands-On Projects 559

10

DISCOVERY EXERCISES

After you write each program in the following exercises, compile the program
and test it.

1. Write a C program called fedora.c that displays the line “Fedora is a version of
Linux.”

2. Create a simple C program which declares the variable number as a local variable
that is an integer.

3. Modify the rain.c program you created in this chapter so that when all inches of rain
are added together, the total is 136 inches.

4. Write a C program in which a prompt asks for your first name, and after you enter
your first name the program displays it.

5. Write a C program in which you enter a number and then the program calculates
and displays that number cubed.

6. Create a C program that lets you input a positive integer and that then tells you if it
is a prime number or if it can be divided by 2.

7. Create a C program in which the user enters the outside temperature in Fahrenheit.
If the temperature is 60 or over, print a comment that states “It is just fine outside.”
If the temperature is under 60, print a comment that states “It’s not so warm
outside.”

Figure 10-18 Using the datestuf program

560 Chapter 10 Developing UNIX/Linux Applications in C and C++

8. Write a small C++ program that writes to the screen the make and model of the car
or bicycle you own (or one that you wish to own).

9. Rewrite the C program keyboard.c (that you created earlier in this chapter) to com-
pile as a C++ program.

10. Create a C++ program that tests to see if the file accounts exists and prints a mes-
sage to say whether the file exists.

Discovery Exercises 561

10

This page intentionally left blank

THE X WINDOW SYSTEM
After reading this chapter and completing the

exercises, you will be able to:
♦ Describe the X Window System and its client/server model

♦ Understand the role of the Window Manager

♦ Understand desktops such as GNOME and KDE

♦ Start the X Window System

♦ Interact with the X Window System and use its components

♦ Use Nautilus and Konqueror for file management

♦ Run an application

♦ Configure a desktop

♦ Shut down a system from the desktop

So far in this book, you have been working at the UNIX/Linux command
line or from a terminal window. UNIX and Linux also offer the ability to

use the X Window interface to provide a rich GUI experience for your work.
In this chapter, you learn about XWindow and about elements that can be used
with it, including Window Managers and desktops. You focus on learning the
popular GNOME and KDE desktops, including using windows, the Nautilus
application in GNOME, Konqueror in KDE, and personalizing your desktop.

CHAPTER

11

563

WHAT IS THE X WINDOW SYSTEM?
The XWindow System is a GUI that runs on Linux and many UNIX operating systems.
Like Windows and Macintosh operating systems, it provides an easy-to-use, graphical
method of operating the computer. Programmers can also develop applications that run on
the X Window System and support GUI components, such as windows, dialog boxes,
buttons, and pull-down menus. Figure 11-1 shows an XWindow screen in Fedora using the
GNOME desktop with two windows open at the same time. Figure 11-2 shows an X
Window screen in Knoppix using the KDE desktop (you learn about the GNOME and
KDE desktops later in this chapter).

Figure 11-1 An X Window screen in Fedora using the GNOME desktop

564 Chapter 11 The X Window System

The X Window System was originally developed at the Massachusetts Institute of Tech-
nology (MIT). It was created so different brands of hardware, running different variations of
UNIX, would all look and feel the same to the user. It was also designed to run applications
across a network consisting of different types of computers. The system developed at MIT,
currently in its eleventh version, is appropriately called X11. At this writing, seven releases
of X11 are available, with the current release called R7.2.0 (X11R7). To find out more
about X11, go to the source at www.x.org. You can also download the latest version at this
Web site.

XFree86 is a free version of X11 that was ported from non-PC-based UNIX computers to
run on PCs. XFree86 is compatible with Linux, which is commonly used on PCs. You can
learn more about XFree86 and obtain the latest release at www.xfree86.org.

When you port software, you are adapting it from one type of computer or
operating system to run on a different computer or operating system. A
significant advantage of UNIX/Linux systems is that the operating systems and
the associated software are generally adapted to work in nearly the same way
when moved from less powerful (Intel-type) computers to more powerful
computers (RISC-based or even mainframes), and vice versa. This characteristic
is called scalability—the ability to port software to more or less powerful
machines.

Fedora, Red Hat Enterprise Linux, SUSE, and Knoppix are Linux systems that
combine features of XFree86 and X11R7.

Figure 11-2 An X Window screen in Knoppix using the KDE desktop

What Is the X Window System? 565

11

www.x.org
www.xfree86.org

X WINDOW CLIENTS AND SERVERS

Although you can easily use the X Window System to run programs stored on your local
computer, you can also run applications over a network. X Window uses a client/server
model in which a program can run on one computer but display its output on another. For
example, suppose you have a network with two computers: system A and system B. On
system A, you can start and run a program that resides on system B. Although you see the
program running in a window on system A, it might actually be executing on system B. This
interaction is transparent to you on system A; you might not know the program is actually
running on a different computer. In addition, systems A and B can be different types of
computers, each running a different variation of UNIX/Linux.

In X Window network terminology, the underlying desktop system from which you run a
program is called the X server. The system that hosts and executes the program is called the
X client.

In normal network terminology, the server is the system that hosts a program,
and the client is the system that is run by the user. In X Window jargon, the
terms client and server mean the opposite. The terms are reversed because the
X Window server (on the desktop) performs operations requested by the client
(on the host system). For example, the client might request that the server
display a window or ask the server to move a window to a different position on
the screen.

Two popular X server approaches for Windows-based PCs are X-Win32 and X-Win32
Flash from Starnet Communications. Both of these systems enable a computer running a
Windows operating system, such as Windows XP or Vista, to remotely connect to a
UNIX/Linux computer. X-Win32 is software that is loaded onto the PC and X-Win32
Flash comes pre-installed on a flash drive that is plugged into a PC’s USB port.TheWindows
PC with this software displays an XWindow type of GUI with windows, menus, and other
features.Also, the remote connection is handled through SSH for secure communications.
You can learn more about X-Win32 and X-Win32 flash at www.starnet.com.

Another popular X server system is Exceed from Hummingbird Connectivity.The Exceed
X server applications are targeted to enable remote GUI access to UNIX/Linux computers
for UNIX/Linux and Windows desktop users. Exceed also includes software for sharing
resources between systems using NFS (see Chapter 2, “Exploring the UNIX/Linux File
Systems and File Security”).Visit connectivity.hummingbird.com/home/connectivity.html to learn
more about Exceed.

566 Chapter 11 The X Window System

www.starnet.com

USING WINDOW MANAGERS

Like the UNIX operating system itself, the X Window System is layered and built from
components. At the top layer is the Window Manager. The Window Manager controls
how windows appear and how users control them. In many respects, the Window Manager
is to the X Window System as the shell is to UNIX/Linux: Each provides the user an
interface to the underlying components.

Many Window Managers have been developed, and most of them are available for free.
Linux supports over 50 different ones. Table 11-1 presents some common Window
Managers currently in use.

Table 11-1 Common Window Managers
Window
Manager

Description

AnotherLevel Based on the fvwm Window Manager and often used with some Red
Hat versions of Linux

Blackbox A lightweight or “minimalist” window manager written for speed and
intended to manage windows only (no icons or shortcuts)

CDE Common Desktop Environment, for large and small computers using
open systems

Enlightenment Popular Window Manager sometimes called E; also often used with
Fedora and Red Hat versions of Linux

FluxBox Similar to Blackbox and offers see-through windows, window tabs and
title bar configuration options (fully compatible with KDE and partially
compatiable with GNOME)

fvwm Virtual Window Manager, a full featured virtual desktop and window
system for X Window

fvwm95 Version of fvwm with a Windows 95 look and feel
gwm Generic Window Manager (based on the Window Object-Oriented

Language [WOOL])
IceWM Window Manager developed in C++ that is designed for speed and

compliance with the GNOME desktop
kwm Window Manager used by KDE
lwm Lightweight Window Manager that offers a minimal presence with no

icons, no button bars, and that cannot be configured
olwm Open Look Window Manager, which was orginally on Sun computers,

but later Sun switched to mwm, CDE, and GNOME
Metacity Window Manager developed by Havoc Pennington with Red Hat;

used in Red Hat versions and Fedora; integrates well with the
GNOME desktop

mwm Motif Window Manager, used on some commercial UNIX systems
including Sun computers

Oroborus Theme-based Window Manager
sawfish Window Manager compatible with the LISP programming language,

and provides a desktop that has little clutter from icons

Using Window Managers 567

11

Table 11-1 Common Window Managers (continued)

Window
Manager

Description

twm Tab Window Manager or Tom’s Window Manager
Window
Maker

Window Manager that provides support for the GNUstep Desktop
Environment

Many of the Window Managers shown in Table 11-1 are compatible with the X
Window GNOME desktop discussed in the next section. These Window Man-
agers include Enlightenment, IceWM, fvwm, fvwm95, Metacity, Oroborus,
sawfish, and Window Maker. Also, three popular “lightweight” window man-
agers are listed: Blackbox, Fluxbox, and lwm. These are for users who want a
faster booting and faster running system that uses fewer resources for the GUI
by enabling fewer GUI options. To learn more about these and other Window
Managers, visit the Web site www.xwinman.org.

USING A DESKTOP

When you use the X Window System and a Window Manager in UNIX/Linux, these are
also accompanied by a desktop. The desktop provides the specific GUI appearance,
software applications, and other resources that you use. The desktop works hand-in-hand
with aWindow Manager. For example, the desktop includes a space on the screen in which
to open and use windows. It enables you to create and place icons in your screen’s
workspace from which to start programs or windows, and it can include other features that
you can customize to match the way in which you work.

Many desktops can be used on a UNIX/Linux system, but two of the most popular (both
come with most Linux systems) are GNOME and KDE.

Using GNOME
The GNU Network Object Model Environment (GNOME), a product of the GNU
Project, is a desktop environment that is used along with aWindow Manager.Fedora and Red
Hat Enterprise Linux install GNOME (pronounced“guh-nome”) by default. However,Fedora,
Red Hat Enterprise Linux, and SUSE all enable you to install either GNOME or KDE.

The GNU Project is an organization that focuses on developing a free, UNIX-like
operating system named GNU. The Linux kernel is used in many GNU
distributions. The project’s Web site is www.gnu.org. You can learn more about
GNOME at www.gnome.org.

GNOME is considered by many to be very user-friendly and at this writing enjoys more
popularity on UNIX/Linux desktops in the United States than the runner-up, which is
KDE.Besides its user-friendly approach,GNOME is popular because many applications are
written for it, including file-access applications, office applications, and general utilities.

568 Chapter 11 The X Window System

www.xwinman.org
www.gnu.org
www.gnome.org

Using KDE
KDE is another popular desktop that is an alternative to GNOME or that can be installed
along with GNOME so that you can use both GNOME and KDE utilities. KDE is more
popular internationally than GNOME and offers a broader range of drag-and-drop
capabilities. KDE is currently growing in use in the United States.

Like GNOME, KDE is intended to provide UNIX/Linux users with a graphical point-
and-click experience that is similar to Microsoft Windows and Mac OS. Both KDE and
GNOME are compatible with X11 and with a variety of Window Managers—taking
advantage of navigating UNIX/Linux through icons,windows, and other graphical features.

You can learn more about KDE by going to the KDE organization’s Web site at
www.kde.org.

STARTING THE X WINDOW SYSTEM

If your system does not start the X Window System automatically, you can start it by using
the startx command from the command line.

Syntax startx [-options]

Dissection

■ This command starts the X Window System.

■ The specific options and arguments available depend on which version of X Window is
installed. At the command line, enter man startx or info startx to determine the options you
can use.

Typically, you would not use startx from the terminal window, because use of a terminal
window means that a desktop is already started. startx is intended for a computer or login
session that does not automatically boot into XWindow, for example. The general steps for
starting the X Window System from a command prompt are as follows:

1. Log in to your account or into the root account.

2. From the command line, type startx and press Enter.

Your desktop should look similar to Figure 11-1 or 11-2, but with either a startup window
open or no windows opened, instead of the two windows shown.

Starting the X Window System 569

11

www.kde.org

Configuring Linux to Automatically Start the X Window System
If your system does not automatically start the X Window System, you can configure it to
do so. This is accomplished by modifying the following line in the file /etc/inittab:

id:3:initdefault:

The number in this line establishes the operating system’s default runlevel, or mode of
operation, at 3.Runlevel 3 is full multiuser mode. To have XWindow start automatically, the
runlevel should be raised to 5 (id:5:initdefault:), as shown in Figure 11-3.Doing so causes the
system to start in X11 mode, which automatically starts the X Window System. Table 11-2
lists the runlevels for Linux systems.

Configuring your system requires superuser privileges. You must be able to log
in as root to change the runlevel. Also, if you opt to change the runlevel, first
use the cp command to make a backup of the /etc/inittab file before you use an
editor to change its contents, such as by entering cp inittab inittab.bak.

Hands-On Project 11-1 enables you to view the runlevel setting on your system.

Table 11-2 Runlevels for Linux systems
Runlevel Explanation
0 Halt (shuts the system down; NEVER use this in the /etc/inittab file)
1 Single-user mode for administrative purposes via the root account
2 Multiuser mode, but network services are not enabled
3 Multiuser mode with network services enabled and nongraphical access
4 Not used

Figure 11-3 Viewing the /etc/inittab file

570 Chapter 11 The X Window System

Table 11-2 Runlevels for Linux systems (continued)

Runlevel Explanation
5 Multiuser mode enabling graphical access via X Window
6 Reboot (shuts the system down and reboots; NEVER use this in the /etc/

inittab file)

On some systems, you can use the runlevel command from the root account to
determine the current runlevel. Also, you can use the telinit command to
change the runlevel. Fedora, Red Hat Enterprise Linux, SUSE, and Knoppix all
support the runlevel and telinit commands. In all systems except Knoppix, you
must be logged on as root to use the commands.

Now that you know how to start the X Window System, you are ready to learn how to
navigate it and control its common components.

INTERACTING WITH THE X WINDOW SYSTEM USING GNOME
You interact with the XWindow environment through its many components, including the
GNOME and KDE desktops. In this section you learn about GNOME and later in
the chapter you learn about KDE. Figure 11-4 shows the GNOME desktop, with its major
components labeled.

Panel

Panel menus
Panel icons/applets

Desktop icons

Desktop area

Window

Panel

Figure 11-4 Major GNOME components in Fedora

Interacting with the X Window System Using GNOME 571

11

The following list describes the components in Figure 11-4:

■ Icons—A number of icons, or small images, are on the desktop. Each causes an
action to take place when activated. You activate an icon by positioning the mouse
pointer over it and clicking the left mouse button.

■ Panel—This component is a strip that runs across the top and bottom of the screen,
and includes menus and a number of icons (mainly in the top Panel). For example,
in Fedora and Red Hat Enterprise Linux, the top Panel menus include Applica-
tions,Places, and System.The Applications menu displays categories of applications
that you can access, such asAccessories,Office,and Programming.The Places menu
enables you to access local files/directories, the CD/DVD drive, and network
servers and resources.There is also a powerful Search option in the Places menu.
The System menu has options to manage the system, find help, and log out or shut
down. In SUSE there is one bottom panel by default that includes the compre-
hensive Computer menu from which to access all programs and utilities.Each icon
in the Panel invokes an applet when activated. An applet is a small application
written specifically to be placed on the Panel.

■ Windows—Every program, application, or applet that runs under the X Window
System runs in a window. Windows have many of their own components, which
you learn about in this chapter.

■ Desktop area—This is the background area that holds the windows and icons you
are working with during your X Window session.

Now that you can identify the major components of the GNOME screen, you learn to
interact with each one in the following sections.

Interacting with Windows
Windows have their own components, as shown in Figure 11-5.

A description of the window components follows:

■ Title bar—At the top of the window border is a title bar. The title bar lists the name
of the window or the application running in the window.

■ Window Menu button—On the left side of the title bar is theWindow Menu button.
Click this button to see a menu offering several useful window operations.

■ MinimizeWindow (or Iconify) button—Click this button to collapse the window into
a small icon. The icon appears in a section of the Panel in a rectangular box in an
area of the Pager called the Window List (the Pager is described later in this
chapter). The program in the window is still running, but is hidden from sight.

■ Maximize/UnmaximizeWindow button—Click this button to alternately expand the
window to fill the screen and reduce the window to its original size.

■ Close Window button—Click this button to close the window and terminate the
application running in it.

572 Chapter 11 The X Window System

■ Side pane—This pane contains information about the window, or the window
contents currently selected. It might also contain additional options, such as
buttons or tabs, depending on what is active in the window. (You can also choose
not to display the side pane.)

■ Menu bar—Under the title bar, you find menu items that are appropriate to the
purpose of the window, such as a File menu from which you can open a new
window or close the current one. (You can choose not to display the menu bar.)

■ Main toolbar—Under the menu bar is the main toolbar, which contains buttons for
activities appropriate to the window, such as a Back button to go back to the
previous window display. In some cases, buttons are deactivated because they do
not currently apply. For example, the Forward button is deactivated in Figure 11-5
because there are no recent windows to go forward to.

■ Location bar—This bar, generally located under the main toolbar, enables you to
access a particular location, such as a directory or a URL (address) for a Web site

Side pane

Menu bar

Title bar

Minimize Window
(or Iconify) button

Maximize/Unmaximize
Window button

Close Window button

Location bar

Window Menu button

Main toolbar

Main pane
Scroll bar

Statusbar

Figure 11-5 GNOME window components

Interacting with the X Window System Using GNOME 573

11

(click the location icon on the far left side of the location bar to see a box in which
to enter a URL).

■ Scroll bar—If a window contains more information than it can display, you see a
scroll bar. The scroll bar, which is similar to scroll bars in Microsoft Windows
operating systems, lets you scroll through all the window’s content.

■ Statusbar—This bar shows status information related to your current actions, such
as the name and size of a file on which you have selected to work or the number
of items and free space in the main pane.

■ Main pane orView pane—This pane shows the main display information.For example,
if the window is used to view files, you see the actual files in the Main pane.

Many GNOME window components appear and function exactly like their
counterparts in a Windows-based system, such as Windows XP or Vista. If you
are already comfortable with one of these systems, you should be comfortable
with most window operations in GNOME.

You can configure a window to display or not display any of the following: side
pane, main toolbar, location bar, or statusbar. To hide any or a combination of
these bars, click the View menu in the menu bar, and select to hide the
appropriate bar by removing the check mark near it. Repeat this process until
you have made all of your selections.

Now try Hands-On Project 11-2 to practice using these and other features in a GNOME
window.

More About the Window Menu Button
The Window Menu button provides several useful capabilities that merit further
explanation. When you click the Window Menu button, you see the following options:

■ Minimize—Makes the screen disappear into the Panel.

■ Maximize/Unmaximize—Causes the window to expand to the full size of the
screen or shrink back to its original size.

■ On Top—Places the window on top of other open windows (turns on or off).

■ Move—Enables you to move/drag the window to another location on the desktop.

■ Resize—Enables you to customize the size of the window by using your mouse to
drag in or out the top, bottom, and sides.

■ Close—Terminates the application and closes the window.

■ Always onVisibleWorkspace/Only onThisWorkspace—Opens the current window to
all GNOME workspaces. GNOME enables you to have several workspaces, each
appearing as a separate desktop. In this way, if you have too many windows open
in one workspace, you can open a window to another workspace, or to all

574 Chapter 11 The X Window System

workspaces. When you open a window to another workspace, the desktop is clean,
other than the window (or other windows) you have open in that workspace.
Fedora and Red Hat Enterprise Linux support four workspaces by default (work-
space 1,workspace 2,workspace 3,workspace 4),which is like having four different
desktops on which to work. If you think of a desktop as a desk, this means you have
four different desks on which to work. When one gets too piled up with work,you
can move to another desk that is empty or that has fewer piles. To see what is open
in your workspaces, press Ctrl+Alt along with the right, left, up, and down arrows
to go to different workspaces, or click the box for that workspace in the Panel. Try
Hands-On Project 11-3 to use and access workspaces.

■ Move to Workspace Right—Opens the window to the next workspace on the right
(for example, if you are in the first workspace it transfers the window to the second
workspace).

■ Move to Workspace Left—Opens the window to the previous workspace or the
workspace on the left (for example, if you are in the second workspace it moves
the window to the first workspace, but you won’t see this option if you are already
in the first workspace).

■ Move to Another Workspace—Opens the window to any of the other three work-
spaces you are not currently in, so that if you are in workspace 1 you can open the
window to any of the workspaces 2, 3, or 4.

The workspaces are shown in the bottom Panel as four side-by-side rectangles.
You can also click one of the rectangles to open that workspace. When you click
the Window Menu button, the workspace you are currently in is the one that is
deactivated in the menu. At this writing, workspaces are not available by default
in SUSE Linux, but you can install them.

Hands-On Projects 11-2 and 11-3 enable you to use the Window Menu button.

Interacting with the Panel
The Panel in Fedora and Red Hat Enterprise Linux appears, by default, at the top of the
desktop and another Panel is at the bottom.The top Panel contains menus and icons on
the left side. It also has a clock and a volume control icon (if your system has speakers)
on the right side (see Figure 11-6).The bottom Panel contains a button on the left side to
hide all windows and on the right side it contains access to the four workspaces you learned
about in the last section (if you haven’t tried Hands-On Project 11-3 yet, do the project now
to learn how to use the workspaces from the bottom Panel).

Figure 11-6 The GNOME top Panel in Fedora

Interacting with the X Window System Using GNOME 575

11

The Applications menu is a good starting place to access software that you can run on your
system. When you access the Applications menu, you see submenus and programs that you can
open. Submenus are indicated by a right-pointing arrow. Some examples of submenus include:
Accessories, Games, Internet, Office, Programming, Sound &Video, and SystemTools. To view
the contents of a submenu, click the Applications menu on the Panel, and then point to the
submenu. Try Hands-On Project 11-4 to use the Applications menu and open submenus.

To the right of the Applications menu is the Places menu.The Places menu has options to:

■ Open your home folder

■ Access items on the desktop

■ Open storage devices and file systems on the computer

■ Create a CD/DVD

■ Access network servers and resources

■ Perform a fast search for a specific item

■ Access recently opened documents

The System menu is to the right of the Places menu and contains the following options:

■ A submenu for setting preferences on the computer

■ A submenu for administering the computer

■ An option to obtain help

■ A option to find out about GNOME

■ An option to learn more about the operating system

■ An option to lock the screen when you temporarily leave the computer

■ An option to log off the currently open account

■ An option to suspend the computer’s operation

■ An option to shutdown the computer (if the account has this authority)

Icons that might typically appear to the right of the menus in the Panel include the following:

■ A globe with a mouse wrapped around it to open the Mozilla Firefox Web
browser.

■ A stamp and letter to launch Evolution Email.

■ A pen and paper to start OpenOffice.orgWriter, a word processor,which is part of
the OpenOffice.org suite of office programs.

■ A slide and bar chart of different colors from which to start OpenOffice.org
Impress to create slide presentations.

■ A spreadsheet and circle chart to start OpenOffice.org Calc for creating spreadsheets.

■ Various other icons depending on your particular system, including a clock on the
right-most side of the top Panel.

576 Chapter 11 The X Window System

You can determine the nature of an icon on the top or bottom Panel (other than
the rectangles representing workspaces) by pointing to it and reading the brief
explanation or screentip. Also, the icons in your Panel will depend on the system
you are using, so you might see different icons.

USING NAUTILUS

GNOME offers a powerful file management tool called Nautilus (or Nautilus File
Manager) that enables you to manage files and folders. Through Nautilus, you can:

■ View files and folders.

■ Create new folders.

■ Delete and move files and folders.

■ Copy and paste files and folders.

■ Configure permissions.

■ Open a file or start a program.

■ Access the Internet.

■ Set a bookmark to return to a specific file, folder, or Internet location.

One of the easiest ways to start Nautilus is to double-click the desktop icon for your home
directory, which is labeled with your user name plus the word Home, for example, mpalmer’s
Home.Figure 11-7 shows the opened Nautilus window with minimal toolbars. Another way
to open Nautilus into your home directory in a full-featured file browser mode is to click
Applications, point to System Tools, and click File Browser.

Figure 11-7 Using Nautilus

Using Nautilus 577

11

Try Hands-On Projects 11-5, 11-6, and 11-7 to use Nautilus File Browser.

CONFIGURING THE DESKTOP

You can customize many aspects of the X Window System. In this section, you learn to
personalize your desktop environment by changing the background image and specifying a
screensaver. Then, you learn to configure the items on the Panel and add new applets to it.
Finally, you learn to add a new Panel to you desktop.

Changing the Background
The background is the desktop area behind all windows and icons. You can change the color
of the desktop or specify a graphic image, called wallpaper, to be used as a background.
Changing the desktop background in GNOME simply involves right-clicking a blank area
in the desktop and then selecting Change Desktop Background. GNOME offers many
picture files from which to select for the background, or you can use your own picture file
(typically, the picture files are in .png format).

Try Hands-On Project 11-8 to change the desktop background.

Changing the Screensaver
You can use the XWindow screensaver to deter unauthorized use of a server or workstation
by requiring a password. When the screensaver is active and locked, it does not deactivate
until the user enters a login password. If you have access to sensitive information, you should
strongly consider implementing a screensaver and activating the screensaver lock feature. For
example, to configure a screensaver in Fedora and Red Hat Enterprise Linux, click the
System menu, point to Preferences, and click Screensaver. In SUSE click the Computer
menu,click Control Center, and click Screensaver.Use Hands-On Project 11-9 to configure
a screensaver for your system.

Configuring the Panel
You can configure almost every aspect of the GNOME Panel. For example, you might want
to add an icon or applet to the Panel from which to run a program, or you might decide to
rearrange the placement of icons on the Panel to better match the way you work. You can
even add programs you have written to start them from the Panel.

In another example, you can move the Panel so that it is located at the top of the desktop
or on the side. The following are general steps for moving the location of the top Panel in
Fedora and Red Hat Enterprise Linux, or the bottom panel in SUSE:

1. Move your pointer into a blank area of the Panel.

578 Chapter 11 The X Window System

2. In Fedora and Red Hat Enterprise Linux click and hold down the mouse but-
ton while you drag the top Panel to the right side of the desktop and then
release the mouse button (see Figure 11-8). In SUSE, right-click a blank area
in the bottom Panel and ensure Allow Panel to be Moved appears in the
menu, and if it does not appear click Lock Panel Position to change the move-
ment setting. Drag the bottom Panel to the right side of the desktop.This
action locates the Panel on the right side of the desktop. Another option is to
drag a Panel to a different location, such as to the left side of the desktop.

Try Hands-On Projects 11-10, 11-11, and 11-12 to configure the Panel.

Adding a Menu to the Panel
There might be a menu within the Applications menu (in Fedora and Red Hat Enterprise
Linux) or Computer menu (in SUSE) that you want to add directly to the Panel so you can
access that menu without first opening the Applications or Computer menu. For example,
if you frequently use the OpenOffice.org applications, you can put the Office menu on the
Panel. Try Hands-On Project 11-13 to place a menu on the Panel.

Adding a New Panel
You can create a new Panel in addition to having one or more Panels already in place. This
capability enables you to further customize your desktop for the way you prefer to work.For
example, you might have default Panels located at the top and bottom of the desktop with
the default icons and applets, and you might add a new Panel to the right side of the desktop

Figure 11-8 Changing the location of the top Panel in Fedora

Configuring the Desktop 579

11

containing icons to launch specific programs you run frequently. The general steps for
adding a new Panel are as follows:

1. Right-click an open space on an existing Panel.

2. Click New Panel.

3. If you want to change the location of the new Panel, click and drag it to the
new location, such as to the right side of the desktop.

4. Right-click the new Panel, click Add to Panel, and select what you want to
place on the Panel, such as by double-clicking Application Launcher to add an
icon from which to open a specific program.

SHUTTING DOWN FROM THE GNOME DESKTOP

When you use the GNOME desktop, proper shutdown is important to ensure that all files
are closed and to protect the integrity of file systems. For example, in Fedora and Red Hat
Enterprise Linux, click the System menu and click Shut Down to properly shut down your
computer. In SUSE, click the Computer menu, click Log Out, and click Shut down.Try
Hands-On Project 11-14 to learn about logging out and shutting down your system.

On some UNIX/Linux systems, you also have an option to press Ctrl+Alt+Del to
shut down.

INTERACTING WITH THE X WINDOW SYSTEM USING KDE
KDE is another desktop that enjoys wide use with X Window. Like GNOME, KDE
provides access to your computer’s resources through a GUI that includes menus, icons,
desktop workspace, and drag-and-drop features.The specific look and feel of KDE may be
a little different from GNOME,but what you can accomplish with the KDE desktop is very
similar. KDE typically comes with more free or open-source software including utilities,
multimedia, graphics, and other open source software (you learn about open source software
later in this chapter.) Figure 11-9 illustrates the KDE desktop on Knoppix Linux.

Here are the descriptions of the components in Figure 11-9:

■ Icons—Similar to GNOME, KDE uses a number of icons on the desktop. Each
icon actives a program or opens a window. Move your cursor over any icon to see
a small help box that names the icon and provides a brief description of its purpose.

■ Kicker—In KDE, there is a Kicker that provides similar functions to the Panel in
GNOME. By default the Kicker appears across the bottom of the desktop.The
Kicker contains icons that invoke applets or applications.

580 Chapter 11 The X Window System

■ Windows—Programs, applications, and applets run under XWindow via a window.
One of the most commonly used windows is the Konqueror which is a file and
Internet browser.

■ Desktop area—This is the background area on the desktop in which you can
customize your own wallpaper (background scene), access and place icons, open
windows, and perform work and entertainment activities.

Try Hands-On Project 11-15 for an introduction to the KDE desktop.

Interacting with Konqueror
Much of the work in KDE is accomplished through Konqueror, which provides similar
functions for KDE as Nautilus does for GNOME. Konqueror is a combined file manager,
Web browser, and document viewer. To supplement these functions, you can use
Konqueror I/O (KIO) plugins, which add new functionality to the native capabilities of
Konqueror. For example, there is a KIO plugin to access zipped (compressed) files and
another KIO plugin to view the contents of an audio CD.There are network KIO plugins
for transferring files and viewing shared Windows folders via Samba (you learned about
Samba in Chapter 8,“Exploring the UNIX/Linux Utilities”).

Figure 11-10 shows an example Konqueror window with the components labeled.

A description of the Konqueror window components includes:

■ Title bar—At the top of the window border is a title bar. In Konqueror, the title bar
shows the application name (Konqueror) and what it is viewing, such as the /etc
directory as shown in Figure 11-10.

Kicker icons

Desktop icons

Window

Kicker icons
Kicker (Panel)

Desktop area

Figure 11-9 Major KDE components

Interacting with the X Window System Using KDE 581

11

■ Menu button—On the left side of the title bar is the Menu button,which looks like
an open folder.This button enables you to relocate Konqueror to another part of
the desktop; to have the window show on top of other windows; to move the
Konqueror window to any of the four desktops in KDE; to maximize, minimize,
or resize the window; to shade the window; and to configure other aspects of the
window’s behavior.

■ MinimizeWindow (or Iconify) button—Click this button to collapse the window into
a small icon.The icon appears in the Kicker at the bottom of the desktop.The
program in the window is still running, but is hidden from sight.

■ Maximize/Unmaximize Window button—Click this button to alternately expand
the window to fill the screen and reduce the window to its original size.

■ Close Window button—Click this button to close the window and terminate the
application running in it.

What’s This? button

Side toolbar
Side pane

Menu bar

Title bar

Minimize Window
(Iconify) button

Maximize/Unmaximize
Window button

Close Window button

Location bar
Main toolbar

Main pane
Scroll bar

Statusbar

Menu button

Figure 11-10 Konqueror Window components

582 Chapter 11 The X Window System

■ What’s This? Button—Click this button and then move the cursor to an icon or
function in the Konqueror window to see a short description of its purpose.

■ Side pane—This pane contains information that is determined by which icon is
currently selected in the side toolbar.

■ Side toolbar—This toolbar contains icons that set up the display of information in
the side pane. For example, if you click the Home Folder icon (the default) you
view the home folder contents (as in Figure 11-10) in the side pane. If you click the
Root Folder icon, you see the contents of the root folder in the side pane.When
you click the Bookmark icon, the side pane shows locations you have bookmarked
to come back to in Konqueror.

■ Menu bar—Under the title bar, you find menu items in the menu bar that are
appropriate to the purpose of the window, such as a Location menu from which
you can open a new window or open a particular directory or file.

■ Main toolbar—Under the menu bar is the main toolbar, which contains buttons for
activities appropriate to the window, such as a Back button to go back to the
previous window display. In some cases, buttons are deactivated because they do
not currently apply.

■ Location bar—Found under the main toolbar, the location bar enables you to access
a particular location, such as a directory or a URL (address) for a Web site.When
you click the down arrow on the location bar, you can view other locations you
have recently visited.

■ Scroll bar—When a window contains more information than it can display, you see
a scroll bar so you can scroll up or down through that information.

■ Status bar—This bar shows status information related to your current actions, such
as the number of files and folders within a folder and their total size.

■ Main pane—This pane shows the main display information. For example, if the
window is used to view files in a folder, you see the files in the main pane.
Depending on what you are doing currently, you may also see the contents of a
Web site or the text in a document file.

In Hands-On Project 11-16, you explore Konqueror in KDE.

You can learn more about Konqueror through the Web site:
www. konqueror.org.

Interacting with Kicker
Kicker is similar to the Panel in GNOME and theTaskbar in MicrosoftWindows. On most
Linux distributions with X Window and the KDE desktop, Kicker is at the bottom of the
desktop and appears as shown in Figure 11-11.

Interacting with the X Window System Using KDE 583

11

www.konqueror.org
www.konqueror.org

Kicker and Panel are sometimes used interchangeably in KDE, but in this chapter
Kicker is used for consistency with other KDE utilities that begin with the
letter “K.”

Within Kicker are the following elements:

■ K Menu—The primary default menu on the KDE desktop and provides compre-
hensive access to applications, submenus that list multiple applications, and actions,
such as opening a Run Command box to issue a command. (Hands-On Project
11-15 enables you to use K Menu.)

■ Applets—To the right of the K Menu are applets to start commonly used programs
such as a listing of open windows, access to the home folder, the Konsole terminal
window, Konqueror, and OpenOffice.org office applications.

■ Desktop switcher—Next to the applets is the desktop switcher that consists of four
squares representing the four desktops you can use within KDE. If Desktop 1 is full
of open windows, click the Desktop 2, 3, or 4 square to switch to a desktop that is
not crowded with open windows. Four desktops is the default, but you can
configure fewer or more desktops.

■ Boxes representing started windows—A started window is represented in Kicker
within a box labeled for that open window. If the box’s label is bold, that means the
window is viewable on the desktop and if the label is not bold, the window is
minimized into Kicker and not viewable on the desktop.

■ System tray—This is an area in Kicker that contains small icons for opening key
utilities, such as a utility to adjust display parameters and another to control the
volume on speakers.

■ Clock—The right-most area in Kicker displays a digital clock by default.

You can customize Kicker in several ways. For example, you can drag Kicker so that it
appears on the right or left side of the desktop or on the top.You have the option to add or
remove applets to Kicker to match the way your work.You can add additional Kicker panels
to the desktop, so you have a Kicker at the top and the bottom, for example.

In Hands-On Project 11-17 you learn how to use and customize Kicker.

K Menu

Desktop switcher

Applets

Boxes representing
open windows

System tray
Clock

Figure 11-11 Kicker in the Knoppix KDE desktop

584 Chapter 11 The X Window System

Configuring the KDE Desktop
As is true in XWindow with GNOME,you can customize the KDE desktop in XWindow.
In the next sections you learn how to change the desktop background, the screensaver, and
how to create additional desktops beyond the four already set up by default.

Changing the Background in KDE
Linux distributions with KDE often come with several desktop background selections that
are well worth exploring for their diversity. You can change the background by right-
clicking in an unused portion of the desktop and clicking Configure Desktop.This action
starts the Configure – KDesktop utility as shown in Figure 11-12. Click Background
selection in the side pane (which is the default). To view the wallpaper options for your
desktop, click the down arrow in the Picture box or click the Get New Wallpapers button
(for more wallpaper that you can download from the Internet).

Configuring the Screensaver
As you learned earlier in this chapter, configuring a screensaver is a first line of defense for
protecting your computer from an intruder.Also, KDE offers a huge selection of interesting
screen savers that are fun to check out. By using the Configure – KDesktop utility you can
choose a screensaver that matches your tastes and set it up so that it requires a password after
it starts. Use the Screen Saver option to set up your screensaver preferences.

Figure 11-12 Using the Configure – KDesktop utility

Interacting with the X Window System Using KDE 585

11

Configuring Additional Desktops
KDE is set by default to enable four desktops that you can access through Kicker. However,
you can configure fewer than four desktops or up to 20 different desktops, depending on
how you use your computer.The number of desktops is configured from the Configure –
KDesktop utility by clicking Multiple Desktops in the side pane. Having multiple desktops
can truly make you more productive and is worth investigating.

Try Hands-On Project 11-18 to use the Configure – KDesktop utility to set up your
background, screensaver, and number of desktops.

Shutting Down from the KDE Desktop
Proper shutdown of the KDE desktop is as important as properly shutting down GNOME.
This ensures that all of your open program and system files are properly closed and kept
intact.The general steps for logging off your account or shutting down the system (if you
have authority to shut down) are as follows:

1. Click the K Menu.

2. Click Log Out.

3. To log out of your current session click End Current Session, or to shut down
the computer click Turn Off Computer.

OPENOFFICE.ORG AND OPEN SOURCE SOFTWARE

OpenOffice.org is a suite of office productivity software with applications similar to those in
Microsoft Office.An important difference is that OpenOffice.org is open source software,
which means it’s free to the user, and any user can join the project to work on new features.
Users can download the latest versions from www.openoffice.org.They can also make copies
and give them to others at no charge.

There is a very large body of open source software available for UNIX/Linux
systems. To learn about the open-source initiative visit www.opensource.org.
Also, a good starting point to obtain open-source software is www.gnu.org.

The suite of applications in OpenOffice.org are developed by hundreds of project members
all over the world. Members of the OpenOffice.org project contribute in all kinds of ways
from making code more efficient, to adding new features, to creating patches, to marketing
the end product.As a grassroots project, this office suite is continuously evolving through the
efforts of users to meet the needs of users.

Many UNIX and Linux distributions come with the OpenOffice.org suite, including
Fedora, Red Hat Enterprise Linux (with commercial modifications), SUSE, and Knoppix.

586 Chapter 11 The X Window System

www.openoffice.org.They
www.opensource.org
www.gnu.org

OpenOffice.org is also available for Windows and Mac OS systems. In general you can
transport files between OpenOffice.org and Microsoft Office programs by saving the files
with the appropriate extensions, such as saving an OpenOffice document with the .doc
extension for use with Microsoft Word. OpenOffice.org comes with tools or wizards to
provide step-by-step guidance through a particular process, for example creating a letter or
setting up a spreadsheet or database.

The program elements of OpenOffice.org include:

■ Writer—A complete word processor for writing short or book-length documents.

■ Calc—A spreadsheet program for managing numbers and data.

■ Impress—A program for creating presentations including slide shows, drawings,
outlines, handouts and others; and also includes diagramming tools, animation
capabilities, and 3D effects.

■ Draw—A drawing package for creating graphics and diagrams that supports
3D graphics and multiple formatting techniques.

■ Math—A mathematical equation tool used to set up and solve mathematical
equations.

■ Base—A tool for creating and maintaining databases so that you can generate
tables, indexes, and queries and reports, and perform other functions typically
available in robust database software.

CHAPTER SUMMARY

The X Window System is a graphical user interface, or GUI, that runs on many UNIX
and Linux systems. It allows users to run applications transparently across a network.

The X Window System is built in layers. The top layer, with which the user interacts, is
called the Window Manager.

Use the startx command at the command line to start the X Window System. A line can
be added in the /etc/inittab file to direct Linux to start the X Window System
automatically.

The GNOME environment consists of icons, Panels, windows, and the desktop area.

You resize, move, minimize, maximize, and close a window by interacting with its border,
title bar, and buttons.

The GNOME Panel provides access to menus, icons, Workspace Switcher (to access
workspaces), and other utilities.

Nautilus in GNOME is a graphical application for managing your directories and files
and for navigating the file system.

Your desktop background can be customized to include a picture or to display a
particular color.

Chapter Summary 587

11

Configuring a desktop screensaver gives you privacy and security when you leave your
computer.

You can customize the Panel by adding and moving applet icons. You can even add icons
that launch your own programs.

If you frequently use a specific GNOME menu, such as one to start office software, you
can place that menu on the Panel to save steps, rather than accessing it through the
Applications or Computer menus in systems using GNOME.

KDE is another popular desktop similar in functionality to GNOME.

The major KDE components include icons, the Kicker, windows, and a desktop area on
which to work.

The KDE Kicker is similar to the Panel in GNOME and includes K Menu, applets,
Desktop Switcher, boxes for started windows, system tray, and a clock (the default setup).
You can customize Kicker in ways similar to the Panel in GNOME.

In KDE the application for managing files and folders is Konqueror.

KDE enables you to customize the desktop background, screen saver, and other features.

COMMAND SUMMARY: REVIEW OF CHAPTER 11 COMMANDS

Command Purpose
startx Starts the X Window System graphical interface

KEY TERMS

applet — Usually a program or small software application that is represented by an icon. In
the X Window GNOME and KDE desktops, an applet can be placed on the Panel or the
Kicker for fast access.
desktop — The overall screen display and software that provides the specific GUI appear-
ance and includes software applications and other resources for a UNIX/Linux system that
has X Window installed, and works hand in hand with a Window Manager.
GNU Network Object Model Environment (GNOME) — A desktop environment
produced by the GNU Project and that must be used with a Window Manager.
GNU Project — An organization created to develop a free, UNIX-like operating system
named GNU.
icon — A small graphic symbol in a GUI that represents a program or an action that can be
started by clicking or double-clicking the symbol.
KDE — A popular desktop environment for XWindow that must be used with aWindow
Manager.
Kicker — A bar appearing on the KDE desktop that contains icons, applets, menus, and
other elements that can be used to start programs or display windows in KDE.Also see Panel.

588 Chapter 11 The X Window System

Konqueror — An application that opens into a window and enables the user to manage
files, browse the network and Internet, and view documents.
Konqueror I/O (KIO) plugins — Programs and utilities that add new functionality to
the native capabilities of the Konqueror browser and file manager.
Nautilus — An application that opens into a window and is used to manage files and
folders. Also called Nautilus File Manager.
open source software — Software and accompanying source code that is available to the
general public free of charge.
Panel — A bar in the the GNOME desktop that contains icons and applets for opening
menus or applications. Also see Kicker.
port —The process of adapting software so that it can be moved from one type of computer
or operating system to another.
runlevel — The level of function at which a UNIX/Linux system is running. On Linux
systems, runlevels go from 0 to 6. Also called a system state or mode.
scalability — The capability for a computer operating system to be used on smaller
computers, such as those with a single Intel-type processor, and on larger computers, such as
those with 64-bit or RISC processors or even mainframes.
Window Manager — The top layer of the X Window System and the user’s interface to
the system’s components. It controls how windows appear and how users control them.
workspace — An area on the desktop in which you can place icons, open windows, and
add Panels or Kickers.Desktops such as GNOME and KDE offer four virtual workspaces by
default and enable you to switch from one to another using the Workspace Switcher.
X client — In X Window network terminology, the system that hosts and executes a
program.
X server — In X Window network terminology, the desktop system from which the user
runs a program.
X Window System — A GUI that runs on Linux and many UNIX operating systems.
X11 — The eleventh version of the X Window System.
XFree86 — A version of X11 that was ported to the PC and on Linux.

REVIEW QUESTIONS

1. Your department is developing its own set of marketing applications. In a meeting, a
member of the department asks whether a menu can be set up in the GNOME
desktop for easy access to the new applications.What is your response?
a. A menu can be set up and launched from a Panel in GNOME.
b. A menu can be set up only through use of third-party software called CUSTOMIZE.
c. Menus are run by default from the Start menu on the bottom Panel.
d. GNOME does not support the setup of custom menus and so you recommend using

KDE, which does.

Review Questions 589

11

2. Once in a while after your system has been improperly shut down, such as during a
power outage, it reboots into the command line.After you log in, what command
can you use to start X Window and your desktop?
a. gui
b. xwin
c. startx
d. run gui

3. You want to delete several old files in your home directory.Which of the following
is a good tool to use for this purpose in GNOME?
a. Nautilus
b. System Tray
c. My Computer
d. GNUFile

4. Which of the following is a good tool to use for finding and deleting files in KDE?
(Choose all that apply.)
a. KFiler
b. Kabinet
c. Knop
d. Konqueror

5. Which of the following are Window Managers that can be used with X Window?
(Choose all that apply.)
a. fvwm
b. sawfish
c. kwm
d. Window Maker

6. A new inventory specialist in your company inherited a computer that has KDE
installed, but the operating system boots into the command line instead of starting
KDE automatically.What can the inventory specialist do to have her computer go
into KDE automatically at startup?
a. Press Ctrl+g while the system is booting.
b. Press Alt+g while the system is booting.
c. Change the .bashrc file to contain the ./KDE command.
d. Edit the /etc/inittab file to have the line id:5:initdefault:.

590 Chapter 11 The X Window System

7. Which of the following would you find in the Kicker in KDE by default? (Choose
all that apply.)
a. applets
b. system monitor button
c. network connect launcher
d. K Menu

8. The colleague at the desk next to you has the habit of turning the power off on his
computer at the end of the day by turning off the power strip—even though he has
windows still open on his computer’s desktop.Which of the following is a better way
to shut down the computer?
a. Press Ctrl+Del.
b. Use a menu option in GNOME or KDE to shut down the computer.
c. Open a terminal window and enter stopGNOME or stopKDE to properly shut down

windows and files.
d. Open a terminal window and enter stopit!.

9. Sometimes when you walk away from your desk and come back you find your work
associate from a nearby cubicle using the Internet on your computer, because he says
your connection is faster. How can you best protect your computer from this type of
intrusion?
a. Use the Panel’s postit program to display the note, Please do not use my computer

while I’m away.
b. Set up a screensaver and have it lock your computer when it is activated.
c. Turn off your monitor when you get up, but leave the CPU on.
d. Set the Panel or Kicker to hide mode.

10. In which locations can you have a Panel in GNOME? (Choose all that apply.)
a. at the top of the desktop
b. at the bottom of the desktop
c. on the left side of the desktop
d. on the right side of the desktop

11. You currently have four open windows in KDE and are out of space on your
desktop. Because you are feverishly working on a project, you need to leave all four
windows open and start three new windows to access other data and programs.What
can you do to make your work easier?
a. Use the link option to link another computer to yours.
b. You have no choice; you must keep the maximum open windows to four in KDE,

so you have to delay opening a new window until you are finished with one that is
currently open.

c. Open the new windows on another desktop.
d. Invoke the window switcher to tile your windows for easer viewing.

Review Questions 591

11

12. When you have the default GNOME desktop set up, how can you quickly access
the contents of your home directory?
a. Double-click a blank area on the Panel.
b. Double-click a blank spot in the desktop area.
c. Right-click the Applications or Computer menu.
d. Double-click the icon that is labeled with your account name and the word Home.

13. You want to use a more lively desktop background than the one installed by default
via KDE. How can you set up a new desktop background?
a. Click the Kicker in a blank area and click Change Background.
b. Right-click an open spot in your current desktop background and click Configure

Desktop.
c. Open a terminal window and enter the desk command plus the name of the file you

want to use for the background, such as zingers.png.
d. Click the background and drag it into the trash, which causes the Background

Configure tool to start so you can choose a new desktop.

14. Which of the following are options available from the Windows Menu button in a
GNOME window? (Choose all that apply.)
a. Minimize
b. Move
c. Calibrate
d. Place as applet in Panel

15. Another name for the X Window system is .
a. Win
b. GNUWin
c. Sysw.1
d. X11

16. When you run X Window over the network for the purpose of running applications
on a remote computer, you use which of the following essential elements? (Choose
all that apply.)
a. Net Logon
b. Port software
c. X client
d. X server

592 Chapter 11 The X Window System

17. Your new colleague is tuning the performance of her computer and is planning to
set the runlevel to 6 to speed it up.What is your advice?
a. A runlevel of 6 is too slow because it should be at a minimum of 8.
b. The runlevel affects only the speed of displaying windows.She should instead set the

CPU level to 6 for better performance.
c. The runlevel should never be set to 6.
d. 6 is the ideal setting for the runlevel.

18. A new user in your organization is just starting to use Linux with the GNOME desktop.
She has opened a window, but is unsure of how to close it.What should she do?
a. Press Ctrl+e.
b. Click the Close Window button.
c. Drag the window off of the desktop.
d. Right-click the window and click End on the shortcut menu.

19. Which of the following enables you to access a Web page from KDE?
a. Konqueror
b. KWeb
c. Knop
d. Web Explorer

20. A Window Manager does which of the following? (Choose all that apply.)
a. controls how windows appear in the X Window system
b. limits the number of open windows to four because of memory constraints in

X Window
c. is the top layer of the X Window system
d. establishes how users control windows in the X Window system

21. Which of the following would you find in the title bar of a window in GNOME?
(Choose all that apply.)
a. file launcher icon
b. maximize/unmaximize window button
c. application menu button
d. home folder access button

22. What is open source software?

23. What version of X Window has been ported to PC-based UNIX and Linux
computers?

24. What is the purpose of an applet?

25. Name a file manager in either GNOME or KDE and suggest five things you can
accomplish with it.

Review Questions 593

11

HANDS-ON PROJECTS

Project 11-1
If your system does not automatically boot into X Window, check the /etc/inittab file. In
this project, you view the /etc/inittab file to determine the current setting for system
initialization. For this project, you need to access the command line, such as by using a
terminal window from your own account.

To view the contents of /etc/inittab:

1. Type more /etc/inittab and press Enter. What is the number in the id:x:initdefault:
line (where x represents the number)? To start X Window, the number should be 5.
If your system does not start X Window, the number is likely to be 3 (for multiuser).
Notice the documentation about the runlevels that can be set up for your system.

2. Type q to exit the more command.

3. If necessary, close the terminal window.

Hands-On Projects 2-14 all require that you have the GNOME desktop installed
and started. Also, use your own account from which to complete the projects.

Project 11-2
In this project, you work with an open window in GNOME. You begin by resizing a
window. Next, you practice moving and then placing a window on top. In the third set of
steps, you practice opening a pop-up Help menu. Finally, you practice minimizing, maxi-
mizing, and closing a window.

To practice resizing a window:

1. In Fedora or Red Hat Enterprise Linux, click Applications, point to System
Tools, and click File Browser. (This opens the Nautilus File Browser in GNOME.)
In SUSE double-click the folder on the desktop labeled with your account name
and the word Home, such as mpalmer’s Home.

2. Move the mouse pointer to the right edge of the window border. The pointer becomes
a horizontal, double-headed arrow. Click and hold the left mouse button while dragging
the mouse pointer to the right. You see the window expand horizontally. Drag the
mouse pointer back to the left, and the window shrinks horizontally. Release the mouse
button to stop resizing the window.

3. Move the mouse pointer to the bottom edge of the window. The pointer becomes a
vertical, double-headed arrow. Click and hold the left mouse button as you move the
pointer, first up and then down. The window expands and shrinks vertically.

594 Chapter 11 The X Window System

4. Move the mouse pointer to the lower-right corner of the window. The pointer
becomes a slanted, double-headed arrow. Click and hold the left mouse button while
dragging the mouse pointer toward the lower-right corner of the screen. The win-
dow expands both horizontally and vertically. Drag the pointer back toward the
upper-left corner of the screen, and the window shrinks horizontally and vertically.

5. Release the mouse button to stop resizing the window. Leave the window open for
the next set of steps.

Other basic window operations include moving or placing the window on top of all
other windows.

To practice moving a window or placing it on top:

1. Move the mouse pointer to the window’s title bar.

2. Click and hold the left mouse button as you drag the mouse pointer across the
screen. The window moves to follow the mouse pointer.

3. Release the mouse button to stop moving the window.

4. Click the Window Menu button in the upper-left corner of the window and click
Move. Do not press a mouse button. Move the cursor and notice that the window
moves with it. Click the left mouse button to stop movement of the window.

5. Click the Window Menu button in the uppermost left corner of the window in
the title bar. Click On Top.

6. Click Applications, point to Accessories, and click Terminal (or open another
window of your choice).

7. Try moving the window you opened over the File Browser window. Notice that the
File Browser window always stays on top.

8. Click the Window Menu button in the File Browser window and click On Top
(to turn off this option). Now click and drag the other open window over the File
Browser window. Notice that the other window is now on top. Close the other win-
dow (such as the terminal window).

Some window components offer context-sensitive, pop-up Help boxes or screentips. These
are useful for discovering the purpose of a button or another component.

To practice using the pop-up Help boxes:

1. Position the mouse pointer on the window’s toolbar.

2. Move the pointer to a button that is activated (has regular print instead of lighter
print), such as the Home or Computer button.

3. After a brief moment, a screentip describing the purpose of that button pops up.

4. Perform this action with other active buttons on the window, and discover their use.

Hands-On Projects 595

11

By now, you have probably realized that pointing to an object on the screen and
clicking the left mouse button carries out most operations. From this point
forward, this action is called “clicking.” Actions that require you to click the
right mouse button are called “right-clicking.”

The MinimizeWindow,Maximize/UnmaximizeWindow,and CloseWindow buttons are at
the upper-right corner of the window. In this project, you use these to adjust the window’s
size and to terminate the window’s application.

Refer to Figure 11-5 to review each button’s location.

To practice using the Minimize Window, Maximize/Unmaximize Window, and
Close Window buttons:

1. Click the Minimize Window button. The window disappears from the desktop.

2. The File Browser window is still running, however. Look at the Panel located at the bot-
tom of the screen.You’ll see a button in the Panel with File Browser (preceded by the
name of the folder or device you are accessing, such as your home folder’s name).

3. Click the button in the bottom Panel, such as [mpalmer – File Browser]. You see
the window reappear.

4. Click the Maximize Window button. The window expands to fill the entire
screen.

5. Click the Unmaximize Window button. The window shrinks back to its
previous size.

6. Click the Close Window button. The application terminates, and its window disap-
pears from the screen.

Project 11-3
Using workspaces is like having multiple desktops. If one desktop is cluttered, you can go to
a different workspace to use a desktop that is not as cluttered. In this project, you learn how
to use different workspaces in GNOME (workspaces are used in Fedora and Red Hat
Enterprise Linux, but not by default in SUSE, thus the following steps exclude SUSE).

To practice using multiple workspaces:

1. Click Applications, point to System Tools, and click File Browser.

2. Click the Window Menu button in the upper-left corner of the window.

3. Click Move to Workspace Right. Notice that the window disappears because it is
now in Workspace 2 and you are currently in Workspace 1.

4. Double-click the Trash icon on the desktop.

596 Chapter 11 The X Window System

5. Click the Window Menu button.

6. Point to Move to Another Workspace and click Workspace 4.

7. Notice the four rectangles on the right side of the bottom Panel (see Figure 11-13).
This is called the Workspace Switcher.The left-most rectangle is highlighted because
it represents the currently active workspace, which is workspace 1.

8. In the Workspace Switcher, click the rectangle for Workspace 2 (the second rectangle
from the left).You are now in Workspace 2 and you see the File Browser window.
Also, notice in the Panel that the square representing Workspace 2 is now
highlighted.

9. Press Ctrl+Alt+right arrow two times to go to Workspace 4 and view the open
Trash window. Close the Trash Window.

10. Press Ctrl+Alt+left arrow two times to go back to Workspace 2. Close the File
Browser window.

11. Press Ctrl+Alt+left arrow to go to Workspace 1.

12. Close any open windows.

When you delete a folder or file using Nautilus File Browser in GNOME, that
folder or file is placed in the Trash, from which it can be recovered. When you
delete a folder or file using a command such as rm at the command line, it is not
placed in the Trash for optional recovery on most systems.

Project 11-4
The GNOME Applications or Computer menu offers access to a wide range of submenus
and programs. In this project, you learn about using the Applications or Computer menu.

To use the Applications menu in Fedora or Red Hat Enterprise Linux:

1. Click the Applications menu on the top Panel.

2. Notice that items followed by an arrow contain submenus. Position the mouse
pointer over each of these to see the submenu appear. For example, when you point
to Accessories, you see a list of submenu items from which to select.

3. Point to Accessories and click Calculator to practice starting an application.

4. Close the Calculator window.

Workspaces

Figure 11-13 Workspaces shown on the bottom Panel

Hands-On Projects 597

11

To use the Computer Menu in SUSE:

1. Click the Computer menu in the Panel at the bottom of the desktop.

2. Click More Applications.

3. Notice the categories of applications in the side (left) pane, such as New Applica-
tions, Games, Graphics, Internet, and so on.

4. Click each category in the side pane and observe the associated applications in the
main pane.

5. Click the Multimedia category in the side pane.

6. Click Dictionary in the main pane to practice opening an application.

7. Close the application window you just opened.

Project 11-5
Nautilus is a file management tool that is included with the GNOME desktop. Through
Nautilus, you can view,delete,move, copy, and perform other operations on files and folders.
In this project, you open Nautilus to explore its features.

To explore features in Nautilus:

1. In Fedora and Red Hat Enterprise Linux, click Applications, point to System
Tools, and click File Browser. In SUSE double-click the icon on the desktop for
your home folder, such as mpalmer’s Home (there is the same icon in Fedora and Red
Hat Enterprise Linux, but on some systems it does not start the full-featured version
of the File Browser).

2. Be certain the window is not maximized. (Click the UnmaximizeWindow button if
it is.) Click the View menu and be certain that View as Icons is selected. If it is not
selected, click View as Icons so that your window display shows folder and file icons.

3. If there is more to see in your home directory than can fit in the window, use the
scroll bar on the right side of the window to scroll through the contents of your
home directory.

4. Click the File menu and click Create Folder.

5. Enter the word test plus your initials for the folder’s name, such as testmp, and press
Enter.

6. Double-click the folder you created to open it.

7. Click the Up button on the toolbar to go back to your home directory.

8. Click the Back button on the toolbar to return to the folder you created.

9. Click the Forward button on the toolbar to return to your home directory.

10. Double-click File System in the side pane.You should now see the contents of the
/ root-level folder. Double-click the etc folder to open it, as shown in Figure 11-14.

598 Chapter 11 The X Window System

11. Scroll to find the inittab file in the /etc directory (the same file you viewed in
Project 11-1). Double-click the inittab file to open a new window that shows the
file’s contents (see Figure 11-15). Close the window showing the inittab contents.

12. Click the Home button on the toolbar to return to your home directory. Leave
Nautilus open for the next project.

Figure 11-14 Using Nautilus to view the /etc folder in Fedora

Figure 11-15 Viewing the contents of the /etc/inittab file in Fedora

Hands-On Projects 599

11

Project 11-6
Nautilus File Browser also provides convenient methods for creating, copying, renaming,
and deleting files, which you use in this project.

To create, copy, rename, and delete files:

1. Verify that Nautilus File Browser is still open to your home directory.

2. Click File, point to Create Document, and click Empty File.Type testno1 and
press Enter. Repeat the same process to create the testno2 and testno3 files.

3. Right-click testno1 and notice the options on the menu.

4. Click Copy.

5. Scroll to and double-click the test directory you created in Project 11-5.

6. Move the cursor to a blank spot in the file listing on the right side of the window.
Right-click the blank spot, and click Paste. You should see the testno1 file copied
to the test directory. Now, the original testno1 file is in your home directory and a
copy of it is in your test directory.

7. Find and right-click the testno1 file in your test directory. Delete the file by clicking
Move to Trash.

8. Click the Home button to return to your home directory.

9. Use the scroll bar to find testno2 and then right-click it. Click Cut.

10. Scroll to and then double-click the test directory you created in Project 11-5. Move
the cursor to a blank spot in the File view on the right side of the screen, right-click
the blank spot, and click Paste. Now, the testno2 file is moved from your home
directory to your test directory. Verify this by finding the testno2 file in your test
directory. Next click the Back button to go to your home directory, and verify that
testno2 is not there.

11. Find the testno3 file in your home directory. Now, you can rename it by right-
clicking testno3 and clicking Rename.

12. Notice that the file name is now highlighted with a box around it. Type the name
testno4 and press Enter. Notice that the name is now changed to testno4. Point to
an empty location in the window, and click so that the testno4 file is no longer
highlighted.

13. Use the scroll bar, if necessary, to find the testno1 and testno4 files in your home
directory. Press and hold Ctrl and click testno1 and then click testno4 so that both
files are highlighted. Release the Ctrl key, then press the Delete (or Del) key to
delete both files.

14. Open your test directory and delete the testno2 file that you moved from your home
directory. Click the Home button to return to your home directory and leave Nau-
tilus open for the next project.

600 Chapter 11 The X Window System

When you are in the View as Icons mode (click the View menu and then click
View as Icons), you can select multiple files by holding down the Shift or Ctrl
keys and then clicking each file you want to select. If you are in the View as List
mode (click the View menu and then click View as List), when you select a file
and then hold down the Shift key while selecting another file, you also select all
the files whose names appear between the two selected files. Also, while in the
View as List mode, you can hold down the Ctrl key while selecting files to add
them to your selection one at a time.

Project 11-7
In this project, you use Nautilus File Browser to configure the permissions on a folder.

To configure permissions using Nautilus File Browser:

1. Be certain Nautilus File Browser is open to your home directory.

2. Find the test directory that you created in Project 11-5. Right-click the directory
and click Properties.

3. Click the Permissions tab (see Figure 11-16).

4. Find the Group section and click the up and down arrows for the Folder Access
box. Click Create and delete files. Click the up and down arrows for the File
Access box for Group. Click Read and write. Find the Others section under the
Group section and click the up and down arrows for the Folder Access box. Click
None. Click Close.

5. Right-click your test folder again and click Properties. Click the Permissions but-
ton and notice that the changes you made are now in effect. Click Close.

6. Click your test folder and press Delete (or Del) to delete it.

7. Close Nautilus File Browser.

Project 11-8
In this project, you change the desktop background.

To change the background:

1. Right-click a blank area on the desktop.

2. Click Change Desktop Background.

3. Scroll through the Desktop Wallpaper and click one you like such as GNOME
Curves.

4. Click Close in the Fedora and Red Hat Enterprise Linux or click Finish in SUSE.

Hands-On Projects 601

11

Project 11-9
Using a screensaver not only gives you some privacy when you are not using your system,
but it can enable you to password protect your system when you leave your computer for a
period of time. In this project, you configure a screensaver in GNOME.

To select and configure a screensaver:

1. In Fedora and Red Hat Enterprise Linux click the System menu, point to
Preferences, and click Screensaver. In SUSE click the Computer menu, click
Control Center, and click Screensaver.

2. Select a screensaver image that you want to use under Screensaver theme:.

3. Move the slider bar for Regard the computer as idle after: to 7 minutes (or
adjust to your preference).

4. Ensure the box is checked for Activate screensaver when computer is idle.

5. If it isn’t checked, click the box for Lock screen when screensaver is active.This
means that after the screensaver has started, the screen is locked and you must enter

Figure 11-16 Viewing the Permissions tab

602 Chapter 11 The X Window System

your user name and password to return to your login session and your open work on
the desktop.The security advantage is that while you are away from your desk, your
open work is protected until you return.

6. Click Close to save your changes (Close the Control Center window, if you are
using SUSE.).

Project 11-10
In this project, you learn to adjust the position of icons on the Panel. Note that for
Hands-On Projects 11-10, 11-11, and 11-12, the same steps work for Fedora, Red Hat
Enterprise Linux, and SUSE.

To adjust the position of icons on the Panel:

1. Right-click an applet icon on the Panel, such as the printer icon.

2. On the menu, click Move. The mouse pointer becomes a four-way arrow.

3. Drag the mouse pointer to the left or right. As you do, the icon moves along the
Panel.

4. When you decide where you want to move the icon, click the mouse. The icon
stays in its current position.

Project 11-11
You can use several other applets in addition to those that appear on the Panel by default. In
this project, you learn how to add applets to the Panel.

To add applets to the Panel:

1. Position the mouse pointer over any part of the Panel (on the top or bottom of the
desktop) not occupied by an icon, and right-click.

2. On the menu, point to Add to Panel. Scroll to find Lock Screen and click this
option to add to the Panel. Click the Add button.This places a lock icon on the
Panel for a utility that enables you to lock your desktop when you step away from
your computer. Close the Add to Panel window.

3. Click the Lock icon and wait a few moments until your screensaver is displayed and
then press any key.When you see the login screen, provide the password to your
account and click Unlock to access the desktop.

4. To remove the new icon, right-click the Lock icon, and click Remove From Panel.

Project 11-12
In addition to the available applets, you can also add your own programs as applets to the
Panel. In this project, you place the phoneadd script you developed in Chapters 6 and 7
(“Introduction to Shell Script Programming” and “Advanced Shell Programming,” respec-
tively) on the Panel.

Hands-On Projects 603

11

To add the phoneadd script to the Panel as an applet:

1. You need to add a launcher applet to the Panel. A launcher executes another pro-
gram when you click its icon. Right-click the Panel (at the top or bottom of the
desktop), click Add to Panel, and double-click Custom Application Launcher.

2. For the Type: text box, click the up and down arrows and select Application in
Terminal.

3. In the Name: text box, type phoneadd Script.

4. In the Command text box, type ./source/phoneadd.

5. In the Comment: text box, type Adds a phone number to the
corp_phones file.

6. Your window should now look similar to Figure 11-17.

7. Click the No Icon button. The Browse icons window appears.

8. Scroll through the set of icons. When you see one you want to use for the phoneadd
script, click it, and then click OK.

9. In the Create Launcher window, click OK. The icon you selected appears on the Panel.

10. Position the mouse pointer over the phoneadd icon, but do not click it yet. After a
moment, a Help box appears with the text you entered in the Create Launcher
applet Name and Comment boxes.

11. Click the icon. The script file executes in a terminal window. The window looks
similar to Figure 11-18.

12. Close the terminal window and any other open windows.

Figure 11-17 Create Launcher window

604 Chapter 11 The X Window System

Project 11-13
In this project, you place the Office menu on the Panel.

To place the Office menu on the Panel:

1. Right-click the Panel (at the top or bottom of the desktop), click Add to Panel,
click Application Launcher, and click the Forward button.

2. In Fedora and Red Hat Enterprise Linux, notice that the same submenus appear as
you see from the Applications menu. In SUSE, you see the same application catego-
ries as when you click Computer and More Applications, plus the Control Center
andYaST applications.

3. Click Office and click the Add button.

4. A new Office icon is added to the Panel.

5. Click the new Office icon and you’ll see a menu of office applications that you can
start, such as a word processor or spreadsheet application, or you’ll see additional sub-
menus (depending on the Linux distribution).

Figure 11-18 phoneadd script window

Hands-On Projects 605

11

Project 11-14
Proper logout is important for any operating system, including UNIX/Linux. In this
project, you use the GNOME desktop to log out of your system.

To log out and shut down a system:

1. In Fedora and Red Hat Enterprise Linux, click the System menu. On the menu
notice there are options to log out of your account, and if your account has the right
privileges, to shut down the system.

2. In SUSE, click the Computer menu and click Log Out. In the Are you sure you
want to log out? window, notice there are four options:

Log out—Does not shut down the system and enables you or another user to log
back in

Shut down—Logs out and properly shuts down the system

Restart the computer—Logs out, shuts down, and reboots the system

Suspend the computer—puts the computer in a suspeneded operations mode

3. When you are ready to log out and shut down, use the mouse clicks that are appro-
priate for your system as discussed in Step 1 or Step 2.

The following projects are included to enable you to learn about the KDE
desktop. You can use the Knoppix CD that comes with this book to complete
the projects. Knoppix can be run from most PCs by inserting the CD in a
CD/DVD drive and booting from that drive. See Appendix C, “How to Install
Fedora and How to Use the Knoppix CD” for further information about using
Knoppix.

Project 11-15
The KDE desktop is another example of a desktop you can use in XWindow. In this project
you learn to use the K Menu to access applications and you use icons on the KDE desktop.

To briefly explore the KDE desktop:

1. Locate the Kicker at the bottom of the desktop.

2. Click the K Menu on the far-most left side of the Kicker.

3. You’ll see three sections of items that you can access as follows:

Recently Used Applications—shows the applications you have started most recently, so
you can quickly return to any of these. (This section will not appear if you have just
installed your system, just booted from the Knoppix CD, or have not yet run any
applications.)

606 Chapter 11 The X Window System

All Applications—mostly consists of submenus you can open to start a specific
application, but also contains applications like Control Center to set up KDE and
Find Files/Folders which opens a window from which to access your files.

Actions—lists actions you can take immediately, such as setting up bookmarks for
places you frequently visit or running a command.

4. Point to each submenu under All Applications to quickly view the applications you
can start within that submenu.

5. Start an application of your choice, such as an editor or a graphics application.

6. Close the application you started in Step 5.

7. Click one of the icons on the desktop, such as an icon that opens the files on a disk
drive or click the Trash icon to view if there are any files that have been discarded.

8. Close any open windows.

Project 11-16
In this project, you examine Konqueror in the KDE desktop.

To use Konqueror:

1. Click the K Menu in the Kicker and click an option to view your home files, such
as Home Personal Files in Knoppix.

2. Move your cursor over each button on the main toolbar and pause long enough to
see the brief description of the button’s purpose.

3. Move your cursor over each button on the side toolbar and pause to see the descrip-
tion for each button.

4. In the location bar, enter /etc, and press Enter.You’ll see the files and folders in the
/etc folder.

5. If you have Internet access, type the following URL in the location bar,
http://www.konqueror.org and press Enter to view the Web site for Konqueror.

6. If it is not already selected, click the Home Folder button in the side toolbar.You’ll
see the contents of your home folder in the side pane.

7. Click the Root Folder button in the side toolbar. Now you see the folders under /.
Click the /dev folder to view its contents in the main pane.

8. Click the Services button in the side toolbar to view a list of submenus or applica-
tions you can start from Konqueror. Click one of the submenus, such as Office (see
Figure 11-19 for an example). Notice that the OpenOffice.org applications you can
start are now displayed in the main pane. Move your cursor over different application
icons to see a summary box about the application. Click one of the applications to
start it, such as OpenOffice.org Calc..(If this is the first time one of these applications
has been used, follow the steps in the wizard to initialize the application.)

Hands-On Projects 607

11

http://www.konqueror.org

9. Close the window for the application you started in Step 8.

10. Click the Menu button in the title bar (on the far left side).

11. Notice the options on the menu.

12. Point to Advanced on the menu.This presents another menu of options, such as the
option to Keep Above Others (have the window stay on top of other windows) or
Keep Below Others (have the window stay behind or under other windows).

13. From the title bar’s Menu button, point to To Desktop, and notice that this option
enables you to move the Konqueror window to any of the four desktops or to all of
the desktops.

14. Click the Tools button on the menu bar. Notice that there are options to open a
terminal window and to find a file on your computer, in addition to other options.

15. Click Open Terminal to start a terminal window. Close the terminal window after
it appears.

16. Click the Go button in the menu bar and click Applications. In the main pane,
you’ll notice the same submenus that you saw in Step 8 when you clicked the
Services button on the side toolbar.

17. Close the Konqueror window.

Project 11-17
Customizing the Kicker in the KDE desktop can help make you more productive.You learn
how to use and customize the Kicker in this project.

Figure 11-19 Viewing the contents displayed via the Services button on the side toolbar

608 Chapter 11 The X Window System

To use and customize Kicker:

1. If you have the icon, click Konsole to instantly open a terminal window. Close
Konsole.

2. If you have it, click the Home icon in Kicker to quickly open Konqueror to display
your home folder.

3. In Konqueror, click the Menu button in the title bar, point to To Desktop, and
click 4 Desktop 4.

4. In Desktop Switcher, click the Desktop 4 square to go to Desktop 4 to see the
open Konqueror window on that desktop. Close Konqueror.

5. In Desktop Switcher, click the Desktop 1 square to return to Desktop 1.

6. Right-click Kicker in an open area.

7. Click Add Applet to Panel.

8. Select an applet to add that is not already in Kicker, such as Find or Recent
Documents. (Find is a quick search utility and Recent Documents shows the docu-
ments you have accessed recently so you can open any one of them). Double-click
the applet you want to add to Kicker.

9. Close the Add Applet – KDE Panel box.

10. Now remove the applet you added. Right-click the Kicker in a blank area, point to
Remove From Panel, point to Applet, and click the name of the applet, such as
Find or Recent Documents.

11. Next, you try adding an application to Kicker. Right-click Kicker in a blank area
and point to Add Application to Panel.

12. Click Control Center (or add a different application if you do not have Control
Center—Control Center centralizes utilities in one place for configuring your
system). Note that some applications are accessed by first pointing to open an appli-
cation submenu.

13. Click the icon for Control Center (or another application you added to Kicker) to
start that application. Close the application’s window after it opens (or first take a
few minutes to explore the capabilities of Control Center and then close it).

14. Right-click the Control Center icon (or the icon for another application you
added) in Kicker and click Remove Control Center Button.

Project 11-18
Use the Configure – KDesktop utility to set up your desktop background, screensaver, and
desktops. In this project you learn to configure all three elements of your desktop.

To use configure the background, screensaver, and number of desktops:

1. Right-click an open space in the KDE desktop.

Hands-On Projects 609

11

2. Click Configure Desktop to start the Configure – KDesktop utility.

3. Ensure that Background is selected in the left pane.

4. Click the down arrow in the Picture box.

5. Scroll through the list of wallpapers and click the ones you want to view as
possibilities.You’ll see example clips in the right pane.

6. Select a wallpaper and click Apply.

7. Click Screen Saver in the left pane.

8. Scroll through the categories of screensavers, such as Banners & Pictures, Desktop
Distortions, Flying Things, Fractals, and so on (your specific categories may differ).

9. Select a category by clicking the plus sign in front of it. Select a few possibilities to
see them displayed in the right pane.

10. Once you decide on a screensaver, click it and click Apply.

11. Click the box for Start automatically and set the After: box to 7 min (if it is not
already set for 7 minutes).This causes the screensaver to start after 7 minutes of inac-
tivity at your computer.

12. Click the box for Require password to stop and set the After: box for 90 sec
which means that you have to enter your account password if the screensaver has
been going for 90 seconds or longer (see Figure 11-20).

13. Click Apply.

14. Click Multiple Desktops in the left pane.

15. Move the Number of desktops: slider bar to 5.

Figure 11-20 Configuring the screensaver in KDE

610 Chapter 11 The X Window System

16. Click Apply. Notice that there are now five boxes in the desktop switcher in the
Kicker.

17. Click Behavior in the left pane and notice the options you can configure.

18. Click Display in the left pane and observe the options to configure.

19. Close the Configure – KDesktop window.

DISCOVERY EXERCISES

1. If you have the GNOME desktop, open the Applications or Computer menu and
find at least five menus or programs that you can start. If you are using KDE, open
the K Menu and record five menus or programs that you can start.

2. In your system, right-click the desktop and record the options on the menu that you see.

3. Use two ways to open your home directory.

4. Right-click the Panel or Kicker and view its properties. How can you set the Panel
or Kicker to automatically hide when not in use?

5. How can you empty the Trash in GNOME or KDE?

6. Determine what spreadsheet programs are installed on your system.

7. Add a new Panel or Kicker to your desktop and then delete it.

8. How can you remove an icon on a Panel or the Kicker?

9. Determine how to move an icon on a Panel or the Kicker.

10. Determine where you can start a Samba-based application to enable you to view
Windows computers on your local network.

11. Create two applets in the Panel or in the Kicker—an applet to enable you to log out
of your current session and an applet to enable you to run a command-line
command.

12. Open the Emacs editor into a window on the desktop without using a terminal
window to start it. (Note that the Knoppix CD does not have the Emacs editor
because of space limitations.)

Discovery Exercises 611

11

This page intentionally left blank

HOW TO ACCESS A UNIX/LINUX

OPERATING SYSTEM

As you learned in Chapter 1,“The Essence of UNIX and Linux,” you can
access a computer running UNIX or Linux by using a directly connected

terminal or a remotely connected computer usingTelnet or Secure Shell (SSH).
A terminal is a CPU-less monitor and keyboard that is directly connected to
the UNIX or Linux computer using specialized communications equipment.
A remotely connected computer is connected through a telecommunications
or network connection (or a combination of these). Many operating systems
support remote connections of computers through Telnet, SSH, or both. For
example, you can remotely access a UNIX/Linux workstation or server from a
remote Fedora computer by usingTelnet or SSH. Your remote computer might
also be running Windows XP/Vista and Telnet or Mac OS X and SSH.

A UNIX/Linux class at a school also might have one Red Hat Enterprise
Linux server that students access from a lab of computers running Fedora or
Windows XP/Vista and Telnet. In another example, an on-call system admin-
istrator who has a Mac OS X computer at home might use SSH to connect to
and troubleshoot a UNIX or Linux server.

APPENDIX

A

613

ACCESSING UNIX/LINUX COMPUTERS FROM AN ATTACHED TERMINAL

Terminals have largely been replaced by PCs, but there are still contexts in which terminals
are used because they are cheaper than PCs.As you learned in Chapter 1,“The Essence of
UNIX and Linux,” a terminal is a device that connects to a server or host, but consists of
only a monitor and keyboard and has no CPU. When you use a terminal to access a
UNIX/Linux system,you only need to turn on the terminal and press a key on the keyboard
to begin your session. At the login prompt, enter your assigned user name and password to
begin your session. Depending on your terminal and administrator, you might see either a
graphical user interface (GUI) or text-mode login screen.

One advantage of using a terminal is the relative ease of beginning the session. Another
advantage is how convenient it is to replace a malfunctioning terminal and have the user
continue a session, virtually uninterrupted.

USING TELNET

TheTelnet protocol can be used by one remote computer to access another over a network
or the Internet. Telnet specifies how sessions are created, how data is passed, and how an
interactive shell or prompt is displayed to the remote user. Telnet has been around a long
time, with relatively few changes to the protocol.

Telnet has been implemented on a huge variety of systems for the purpose of establishing a
session on a remote host. The different systems that use Telnet all adhere to a standard that
determines how a system sends or generates the correct signals from theTelnet client to the
correspondingTelnet daemon or server. Both the client and the server must understand and
support at least a base level of the protocol for communications to be established and a
session granted.

Systems normally run Telnet over TCP/IP connections, with a few systems supporting
Telnet over IPX (a protocol used by older Novell servers). Regardless of the systems’
traditional role, such as a user’s workstation and a file server, all UNIX/Linux systems have
the capability to be used as a client and to perform the role of a server. In fact, it’s common
for an administrator to connect to a server-class machine for administrative work using a
Telnet client computer. The only restrictions are the software running on the machines and
the security measures that have been implemented. An account and password are also
needed.

Telnet uses TCP (or UDP) port 23 to send and receive its data. On a computer running
UNIX/Linux,Windows XP/Vista,orWindows Server 2003/2008, theTelnet service should
be started and enabled through that computer’s firewall.

614 Appendix A How to Access a UNIX/Linux Operating System

For all remote computing, SSH is strongly recommended. Telnet is included in
this book since some organizations still use it. Also, Telnet is offered by default
in Windows systems instead of SSH. However, because of security concerns,
many organizations have discontinued the use of Telnet. Auditors of business
and other financial departments strongly discourage using Telnet. If you use
Telnet, it is important to recognize that transmissions are not encrypted, so it
should be used only in a trusted environment, such as on a local network
protected from outside traffic by a router.

USING SSH
As mentioned in Chapter 1, SSH was created to provide more sophisticated security than
Telnet, such as providing encrypted authentication and communications.

SSH was developed in 1995 by Tatu Ylönen of the Helsinki University of Technology in
Finland in response to a network security attack. SSH uses public key encryption, which is
really a combination of public key and private key encryption that can be used over an
unsecured connection. Public key encryption uses the Diffie/Hellman encryption algo-
rithm, which is based in the use of prime numbers. SSH is also compatible with tunneling,
a security technique used on the popular virtual private networks to create a secure“tunnel”
of communications through a larger network.Two other advantages of SSH are that it is very
compatible with X Window and it uses a secure network protocol for file transfers.

SSH is particularly suited to UNIX/Linux systems, including Mac OS X, because pipes can
be used with applications for redirection through the command prompt. As you will recall,
a pipe is an operator that redirects the output of one command to the input of another
command using the following syntax:

first_command | second_command

When an application runs, its output can be redirected as input for SSH-secured FTP
transfers of files over a network or the Internet, for example. Fedora, Red Hat Enterprise
Linux,and SUSE use OpenSSH,which is primarily developed by the Open BSD Project for
free use on UNIX/Linux systems. You can learn more about OpenSSH and obtain the latest
version at www.openssh.com.

For commercial and non-commercial versions of SSH consider SSH Communications
Security at www.ssh.com. SSH Communications Security is the company established byTatu
Ylönen to further develop SSH. If you are using a Windows operating system, you can
obtain SSH forWindows at either www.openssh.com or www.ssh.com. Figure A-1 illustrates the
SSH login screen using a version of SSH from SSH Communications Security.

Using SSH 615

A

www.openssh.com.For
www.openssh.com.For
www.ssh.com.SSH
www.ssh.com.SSH
www.openssh.com
www.ssh.com

ACCESSING A UNIX/LINUX SYSTEM FROM A MICROSOFT WINDOWS

COMPUTER

When accessing a UNIX/Linux system from a computer running MicrosoftWindows, you
can use the version of Telnet that comes with the operating system or you can obtain other
utilities from a third party.For example,one popular utility is PuTTY,which can be obtained
at www.chiark.greenend.org.uk/~sgtatham/putty. This appendix focuses on the Telnet version
that comes with Windows operating systems.

All versions of MicrosoftWindows—fromWindows forWorkgroups toWindows XP/Vista
toWindows Server 2003/2008—have access toTCP/IP networking, either natively or as an
add-on. If the computer already has TCP/IP loaded, you can use the existing address and
utilities to attach to a remote UNIX/Linux computer.

For example, if you are using a Microsoft Windows XP orVista computer in the computer
lab at your school to access the Internet, it’s very likely that this computer can also be used,
as is, to telnet to a remote host. To successfully connect, you need to know the IP address or
host name of the UNIX/Linux computer that allows Telnet sessions.

On a Windows XP/Vista or Windows Server 2003/2008 computer that is configured for
TCP/IP access, three tasks are generally involved in using Telnet:

Figure A-1 Login screen for SSH from SSH Communications Security

616 Appendix A How to Access a UNIX/Linux Operating System

www.chiark.greenend.org.uk/~sgtatham/putty

1. Configure the Telnet service.

2. Enable the firewall security for Telnet.

3. Open a Command Prompt window and start Telnet.

Configuring the Telnet Service
Before you can use Telnet, you must start the Telnet service in Windows XP or Windows
Server 2003. In Windows XP and Windows Server 2003, you can either start the service
manually or configure the service to start automatically when you log in. In WindowsVista
and Windows Server 2008, you simply need to install Telnet.

The following general steps are for configuring the Telnet service in Windows XP Profes-
sional and Windows Server 2003 to start automatically at login and show you how to start
the service immediately:

1. Log in to an account that has Administrator privileges.

2. Click Start, right-click My Computer, and click Manage.

3. Double-click Services and Applications in the left pane.

4. Click Services in the left pane.

5. Double-click Telnet in the right pane.

6. If the Startup type is not set to Automatic (and you want to start it automati-
cally when you boot the computer), click the down arrow for Startup type,
and select Automatic.

7. If the Service status shows Stopped, click the Start button to start the Telnet
service.

8. Click OK.

9. Close the Computer Management dialog box.

10. Log out of Windows

In Windows Vista and Windows Server 2008, it is necessary to install the Telnet Client
software. Use the following steps to install Telnet Client:

1. Click Start, click Control Panel, and click Programs.

2. Under Programs and Features, click Turn Windows features on or off.

3. If you see a window asking for permission to continue, click Continue.

4. You may need to wait a minute or two while the Windows Features box
builds the list of features.

5. Scroll to find Telnet Client and check the box, if it is not already checked.

Accessing a UNIX/Linux System from a Microsoft Windows Computer 617

A

6. Click OK.

7. Close the Control Panel > Programs > window.

Starting a Telnet Session
To start a Telnet session, first open a Command Prompt window and then use the Telnet
command at the prompt. You need the IP address or host name for the computer you want
to access, as well as an account name and password for that account on the remote computer.
The following general steps are for accessing a remote computer via Telnet in Windows
XP/Vista or Windows Server 2003/2008:

1. Click Start, point to All Programs, point to Accessories, and click Command
Prompt.

2. Type telnet and the name and domain or IP address of the remote UNIX/
Linux computer, such as telnet 192.200.10.8. Press Enter. If prompted, read the
security warning message, then type y and press Enter to connect.

3. Type the account name and then press Enter.

4. Type the password and then press Enter.

You practiced connecting through Telnet in Hands-On Project 1-1 in Chapter 1.
Also, Telnet services and the firewall on the remote computer must be config-
ured in advance to allow access. See the next section for details about how to
enable access at the remote computer when it is running Fedora or Red Hat
Enterprise Linux.

USING A UNIX/LINUX COMPUTER TO PROVIDE ACCESS OR TO ACCESS

ANOTHER COMPUTER

Because you are using the same general program and access structure, connecting to a
UNIX/Linux Telnet server from a UNIX/Linux client is relatively uncomplicated. The
Telnet client application is almost always installed and available on the workstation, unless
specifically uninstalled or removed as a security measure.

Where Is My Telnet or SSH Client Program?
Finding the Telnet client on your UNIX/Linux computer is quite simple. On a UNIX/
Linux computer, use the which command to see the first occurrence of a Telnet executable
in your path. The which command also shows you all instances of any queried command in
your path; for example, in Fedora, Red Hat Enterprise Linux, and SUSE entering which -a
telnet yields the following display:

[robert@localhost ~]$ which -a telnet
/usr/bin/telnet
[robert@localhost ~]$

618 Appendix A How to Access a UNIX/Linux Operating System

If you have the Kerberos version of Telnet installed for authentication security, you might
also see the following:

[robert@localhost ~]$ which -a telnet
/usr/kerberos/bin/telnet
/usr/bin/telnet
[robert@localhost ~]$

The output in the second example shows two instances of the telnet command. The first
instance is for the Kerberos version of Telnet. In the second instance, the /usr/bin location
exists for systems that don’t have Kerberos installed (the default for Fedora and Red Hat
Enterprise Linux). Kerberos is a security mechanism that helps systems and users more
securely authenticate their user name and password across a wide area network (WAN) or
across the Internet, without the security risks typically associated with programs such as
Telnet and FTP.

You can also use the which command to determine the location of SSH by entering which -a
ssh,which by default displays /usr/bin/ssh. SSH uses a combination of RSA (named after the
authors Rivest, Shamir, and Adleman) and digital certificates for secure authentication and
communications.

Enabling Telnet and SSH
Typically, you can take the same steps on both the remote UNIX/Linux computer to which
you want to connect and on the UNIX/Linux computer from which you are connecting.
These steps include the following:

1. Configure the routing table to contain the IP addresses and host names of
both computers.

2. Configure the firewall to allow Telnet, SSH, or both types of communications.

The general steps for configuring the routing table in Fedora and Red Hat Enterprise Linux
are as follows (do this on both the computer acting as the server and on the client):

1. Log in as root.

2. Click Applications, point to Accessories, and click Terminal to open a terminal
window.

3. Type ifconfig and press Enter. Record the inet addr and mask information for
eth0. This provides the IP address and subnet mask for the computer. To
facilitate loopback access, such as for the Hands-On Projects in Chapter 9, also
record the lo (loopback) information—which should be 127.0.0.1 for the inet
addr and 255.0.0.0 for the subnet mask. Close the terminal window.

4. Click the System menu, point to Administration, and click Network.

5. Double-click the Ethernet device (eth0) shown as Active (this is usually high-
lighted by default).

Using a UNIX/Linux Computer to Provide Access or to Access Another Computer 619

A

6. Click the Route tab.

7. Click the Add button.

8. Enter the address (IP address) and subnet mask you recorded in Step 3 for
your network card (eth0). Also, provide the gateway address, if you have it
(check with your network administrator). Click OK. (In addition, for a loop-
back connection, repeat Step 7 and this step, entering the address and subnet
mask information for lo, the loopback information, from Step 3.)

9. Click the Add button. Enter the address and subnet mask of the other com-
puter used in the connection (you can find this information by using Step 3
from the root account on that computer). Click OK. Click OK again.

10. Close the Network Configuration dialog box. ClickYes to save the changes.
Click OK in the information window.

11. Shut down and reboot the computer to ensure the changes take effect.

To configure the routing table in SUSE:

1. Log in to the root account.

2. Click the Computer menu and click Control Center.

3. Click Configure Network in the left pane.

4. You may need to wait a few moments as your network is initialized.

5. Click User Controlled with Network Manager and click Next.

6. Ensure that your network card is highlighted and click Edit.

7. Click Routing.

8. Click Expert Configuration.

9. Click the Add button.

10. Enter the IP address of the destination computer, the gateway address, and the
netmask (subnet mask). In this case the destination computer is a computer
that the current computer will connect to or that will connect to it.

11. Click OK.

12. Repeat steps 9 through 11 for other computers that will connect to this
computer.

13. When you are finished adding information to the routing table, click OK.

14. Click Next.

15. Click Finish.

16. Close any open windows.

17. Shut down and reboot the computer.

620 Appendix A How to Access a UNIX/Linux Operating System

To configure the firewall forTelnet and SSH access in Fedora and Red Hat Enterprise Linux
(do this on both the computer acting as the server and on the client):

1. Log in as root.

2. Click the System menu, point to Administration, and click Security Level and
Firewall.

3. If the firewall is disabled, enable it by clicking the up and down arrows for the
Firewall: box and selecting Enable.

4. Ensure the SSH and Telnet check boxes are checked.

5. Click OK.

6. Log out as root.

To configure the firewall for SSH (Telnet is not an option in the firewall) in SUSE:

1. Log in to the root account.

2. Click the Computer menu.

3. Click Control Center.

4. Click System in the left pane.

5. ClickYaST.

6. Click Security and Users in the left pane of theYaST window.

7. Click Firewall in the right pane.

8. Click Allowed Services in the left pane, and ensure that SSH is listed under
the Allowed Service column. If SSH is not listed, open the Service to Allow
list box and select SSH. Click the Add button.

9. Click Next.

10. Click Accept.

11. Close any open windows and log out of root.

An additional step to enable network and Internet access on the computer to
which you are connecting is to configure the /etc/hosts.allow file from the root
account. Create a separate line giving the IP address, host and domain name,
and host name for each computer that will connect. For example, to configure
the file for loopback access, provide the following line in the file:
127.0.0.1 localhost.local.domain localhost

Using a UNIX/Linux Computer to Provide Access or to Access Another Computer 621

A

Connecting via Telnet or SSH
You connect using Telnet or SSH by accessing the command line and entering either telnet
or ssh plus the IP address or host and domain name for the computer to which you want to
connect. The general steps for connecting through Telnet or SSH are as follows:

1. Log in to the account from which you want to connect.

2. Access the command line or a terminal window.

3. To connect using Telnet at the command prompt, type telnet plus the IP
address or the host name of the computer to which you want to connect, such
as telnet 192.29.20.19 or telnet jphost, and press Enter. Next enter the account
name and then the password for the account. To connect using SSH and the
account name on the command line, enter ssh -l plus the account name and
host name, such as ssh -l rtbrown jphost and press Enter. Next provide the
password. Or, to connect using the IP address and no account name on the
command line, enter ssh and the IP address, such as ssh 192.29.20.19. Next
enter the account name and then the password.

If this is a first-time connection and you are asked whether you want to
continue connecting, type yes and press Enter. Also, note that you practiced
using SSH in Hands-On Project 1-2 in Chapter 1.

USING MAC OS X AND SSH TO ACCESS A REMOTE COMPUTER

SSH is the preferred method for remote access using Mac OS X. Complete the following
three steps to use SSH in Mac OS X (Panther or Tiger):

1. Enable Remote Login as a service.

2. Enable Remote Login – SSH (22) through the firewall.

3. Access a terminal window to use SSH.

Enabling Remote Login as a Service and Through the Firewall
In Mac OS X Panther orTiger,when you enable Remote Login as a service, you also enable
SSH access through the Mac OS X firewall (when the firewall is in use,which is typically the
case). The general steps for enabling the Remote Login service are as follows:

1. Open System Preferences by clicking its icon in the Dock at the bottom of
the desktop. Another way to open System Preferences, if its icon has been
removed from the Dock, is to click the Go menu at the top of the desktop,
click Applications, and double-click System Preferences.

2. In the Internet & Network section, click the Sharing icon.

622 Appendix A How to Access a UNIX/Linux Operating System

3. Click the Services tab, if it is not already selected.

4. Be certain that the check box for Remote Login is checked.

5. Click the Firewall tab and be certain that Remote Login – SSH is selected. (In
Mac OS X Panther, the option is Remote Login -- SSH (22). 22 is the port
that SSH uses in the TCP or UDP protocol for SSH network
communications.). Note that when SSH is enabled as a service, it is also auto-
matically enabled in the firewall.

6. Close the Sharing dialog box.

7. Close the Applications window if it is open.

Using SSH via a Terminal Window
Because Mac OS X is built on BSD UNIX, you can use a terminal window and
command-line commands as in other UNIX/Linux systems. The general steps for con-
necting to a remote computer using the Mac OS X terminal window and SSH in Mac
OS X Panther or Tiger are as follows:

1. Click the Go menu at the top of the desktop, click Utilities, and double-click
Terminal.

2. At the command line, enter ssh and the IP address of the remote computer,
and then enter the account name and the password. If necessary, type yes and
press Enter to continue. Another option is to enter ssh -l plus the account
name and host name, such as ssh -l rtbrown jphost, and then enter the password.

You can find out more about SSH in a UNIX/Linux system, including Mac OS X,
by accessing the command line in a terminal window and entering man ssh. The
same applies to Telnet, for which you can enter man telnet.

Using Mac OS X and SSH to Access a Remote Computer 623

A

SYNTAX GUIDE TO UNIX/LINUX

COMMANDS

This appendix is a quick reference for essential UNIX/Linux utilities avail-
able on most systems.

Table B-1 lists the commands alphabetically, including the command name, its
purpose, and useful options. Table B-2 lists the UNIX/Linux utilities by
category. Table B-3 summarizes the vi editor commands, and Table B-4
summarizes the Emacs editor commands. The UNIX/Linux command syntax
uses the format diagrammed in Figure B-1.

For example, to use the ls command to see a directory’s contents and use the -a
option to view hidden files plus the -l option to view a long listing of file detail,
you would enter:

ls -al or ls -a -l

In another example, to make a backup copy using the cp command of the file
myorginalfile.txt to the file clonecopy.txt (where the file names are arguments),
you would enter:

cp myorginalfile.txt clonecopy.txt

$ command [-options] arguments

File names or paths

Single-letter options,
preceded by a minus sign

Command name

System prompt

Figure B-1 Command syntax format

APPENDIX

B

625

Table B-1 Common UNIX/Linux commands
Command Purpose Useful Options and Examples
alias Creates an alias

for a command
Include in the .bashrc file for access each time you log
in; example: alias dir=’ls -1’.
-p prints all aliases.

awk Starts the Awk
program to
format output

-f indicates code is coming from a disk file, not the
keyboard.
-F specifies the field separator.

cal Shows the
system calendar
for a specified
year or month

-1 shows a single month.
-3 shows three months beginning with the previous
month.
-j displays the calendar in Julian date format.
-s shows Sunday as the first day in the week.
-m shows Monday as the first day in the week.
-y shows all of the months for the current year.

cat Creates files,
concatenates
files, or can be
used to display
the contents of
files

cat -n displays line numbers.
cat filename displays the contents of a file.
cat > filename creates a new file or enables you to
overwrite the contents of an existing file.
cat >> filename creates a new file or enables you to
add information to an existing file.
cat file1 file2 > file3 concatenates two existing files
into one new file.

cd Changes
directories

cd by itself takes the user to his home directory.
. Changes to the current working directory.
.. Changes to the parent directory.

chmod Changes security
mode of a file or
directory (r: read,
w: write, x:
executable); sets
file permissions
for specified
users (u: user, g:
group, o: others,
a: all)

+ assigns permissions.
- removes permissions.
chmod a+x sets the execute bit for owner, group, and
other (all).

clear Clears the screen Commonly aliased to cls; see the alias command.
comm Compares sorted

files and shows
differences

comm file1 file2 compares the files line by line.
-1 does not display unique lines in the first file.
-2 does not display unique lines in the second file.
-3 does not display unique lines in both files.

626 Appendix B Syntax Guide to UNIX/Linux Commands

Table B-1 Common UNIX/Linux commands (continued)

Command Purpose Useful Options and Examples
cp Copies files from

one directory to
another

-b makes a backup of the destination file, if an origi-
nal one already exists (so you have a backup if over-
writing a file).
-i requests confirmation if the target file already
exists.
-r copies directories to a new directory.
-s creates a symbolic link or name at the destination
rather than a physical file.
-u overwrites an existing file only if the source is
newer than the file in the current destination.

cut Selects and
extracts specified
columns or fields
from a file

-c specifies the character position.
-d specifies the field separator.
-f specifies the field position.

date Displays the
system date

-u displays the time in Greenwich Mean Time.

diff Compares and
selects differ-
ences in two files
or directories

diff /dir1 /dir2 compares the file entries in both
directories and shows only the missing files for each
directory.
-b ignores blanks that repeat.
-B does not compare for blank lines.
-i ignores case.
-c shows lines surrounding the line that differs (for
context).
-y displays the differences side-by-side in columns.

. (dot) Represents the
current directory
(the “.” is a link
to the inode for
the current
directory)

Used mostly in specifying that something happened
in the current directory; for example, cp /dir/file .
copies the file to the current directory.

.. (dot dot) Represents the
parent directory
(the “..” is a link
to the inode for
the parent
directory)

Used for changing to a different directory, either the
parent of the current (cd ..) or up one directory and
down a different tree (cd ../dir2/dir3).

echo Displays the
specified
arguments on the
output device

echo $VAR, where VAR is the variable name, echoes
the data from an environment variable to standard
output; can also be used in scripts and programs.

emacs Starts the Emacs
editor

exit or
logout

Logs out of your
current session

Ctrl+d also logs the user out of a session or a subshell
and back to the parent shell.

Syntax Guide to UNIX/Linux Commands 627

B

Table B-1 Common UNIX/Linux commands (continued)

Command Purpose Useful Options and Examples
export Makes a variable

an environment
variable; and
exports a
specified list of
variables to other
shells

-n can be used to undo the export.
-p lists the exported variables.

find Locates files that
match a given
value

-amin n finds files accessed more recently than n min-
utes ago.
-atime n finds files last accessed n*24 hours ago.
-fstype type finds files that exist only on the speci-
fied file system type, such as ext3.
-iname pattern finds files with names that match a
pattern.
-inum inode# finds files with inodes that match
inode.
-name specifies the name of the files you want to
locate but the search is case sensitive.
-mmim m displays files that have been changed
within the last n minutes.
-mtime n displays files that have been changed within
the last n days.
-size n displays files of size n.
-user uname finds files owned by user matching
uname.

fuser Displays the
process ID (PID)
of processes
using a given
resource

Useful for finding which users have mounted a drive
that needs maintenance; for example, fuser –vu /mnt
shows all processes accessing a resource and their
associated user names.

grep Selects lines or
rows that match
a specified
pattern

-c only counts the number of lines matching the pat-
tern instead of showing them.
-i ignores case.
-l lists only file names that contain the pattern.
-L lists only file names that do not contain the
pattern.
-n displays line numbers.
-r searches through files under all subdirectories.
-v displays lines in a file that do not match the speci-
fied pattern.

head Displays the first
few lines of a file

Shows the first 10 lines by default.
-n n displays the first n lines of the specified file.

history Lists all the
commands
contained in the
bash history file

Bash history file is .bash_history by default and resides
in the user’s home directory; default number of last
commands kept in the history file is 500.

628 Appendix B Syntax Guide to UNIX/Linux Commands

Table B-1 Common UNIX/Linux commands (continued)

Command Purpose Useful Options and Examples
join Combines files

having a
common field

-1 fieldnum specifies the common field in file 1 on
which to join.
-2 fieldnum specifies the common field in file 2 on
which to join.
-a n produces a line for each unpairable line in file n,
where n = 1 or 2.
-e string replaces the empty fields for the unpairable
line with the string specified by string.
-o specifies a list of fields to be output.
-t specifies the field separator character. By default,
this is a blank, tab, or newline character. Multiple
blanks and tabs count as one field separator.

kill Ends a process -9 destructively ends a process.
-HUP causes the service or daemon to stop (hang up)
and restart, which causes the rereading of its configu-
ration files; often used to make changes to a running
service.

last Shows the login
history of all
users on the
system

-a displays the host name from which the user
connected.
-d shows the corresponding IP address for remotes.

less Scrolls long files
to screen

Allows for scrolling up and down in a file, whereas
the more command only allows advancing down
a file.

let Stores the results
of arithmetic
operations in a
variable

ln Creates symbolic
or hard links to
files

By default, creates a hard link, which is another name
for a particular inode.
-s creates a symbolic link to a file, like a shortcut.

lpr Prints a file -P printer prints on a specified printer.
#n prints a specified number of copies of the file.
-r deletes a print file after it is printed.

ls Lists a directory’s
contents,
including its
files and
subdirectories

-a lists hidden files.
-l lists files in long format, showing detailed
information.
-r lists files in reverse alphabetic order.
-s shows the size of each file.
-S sorts the listing by file size.
-t sorts by the time when the file or directory was last
modified.
-X sorts by extension.

Syntax Guide to UNIX/Linux Commands 629

B

Table B-1 Common UNIX/Linux commands (continued)

Command Purpose Useful Options and Examples
lspci Displays informa-

tion about all
PCI buses on the
system (but you
must be logged
in as root)

-v is verbose output.
-vv is very verbose output.
-t shows a tree-like structure of PCI bus/devices.

man Displays the
online manual for
the specified
command

-d prints information for debugging.
-f gives a short description of the command (same as
using the whatis command).
-K finds a certain string by searching through all of
the man information.
-t formats the output for printing using ghostscript.

mkdir Makes a new
directory

-v verifies the file is made.

more Displays a long
file one screen at
a time

Pressing the spacebar advances one screen at a time;
pressing Enter advances one line at a time.

mount Connects the file
system to the
directory tree in
the specified
location

-r indicates that the mounted partition’s device is
read-only.
-a mounts all possible file systems from /etc/fstab.
-t specifies the type of file system to mount.

mv Moves or
renames files

-f never prompts before overwriting existing files and
directories.
-i displays a warning prompt before overwriting a file
with the same name.
-u overwrites a destination file with the same name, if
the source file is newer than the one in the
destination.

passwd Changes your
UNIX/Linux
password

Users can change only their own password; the root
user can change others’ passwords.
-e expires a password causing the user to have to
recreate it.
-l locks an account.
-S displays the password status of an account.

paste Combines the
contents of one
or more files to
output to the
screen or to
another file (by
default, the
pasted results
appear in
columns sepa-
rated by tabs)

-d enables you to specify a different separator (other
than a tab) between columns.
-s causes files to be pasted one after the other
instead of in parallel.

630 Appendix B Syntax Guide to UNIX/Linux Commands

Table B-1 Common UNIX/Linux commands (continued)

Command Purpose Useful Options and Examples
pr Formats a

specified file
before printing
or viewing

-a displays output in columns across the page, one
line per column.
-d double-spaces the output.
-h customizes the header line.
-ln sets the number of lines per page.

printenv Prints a list of
environment
variables

printf Tells the Awk
program what
action to take
for formatting
and printing
information

ps Shows processes
on a system

-a shows all running processes.
-u shows the user associated with a process.
-x shows background system processes.

pwd Displays your
current path

rm Removes a file -i requests confirmation before deleting a file.
-r deletes a specified directory and its contents.

rmdir Removes a
directory

-v provides a message to verify the directory is
removed.

sed Specifies an
editing command
or a script file
containing sed
commands

-a \ appends text after a line or a script file containing
sed commands.
-d deletes specified text.
-e specifies multiple commands on one line.
-n indicates line numbers on which to work.
-p displays lines.
-s substitutes specified text.

set Establishes
specific
operational
conditions in
the Bash shell

-a exports all shell variables after they are assigned.
-n takes commands without executing them, so you
can debug errors.
-o sets a particular shell mode—when used with
noclobber as the argument, it prevents files from
being overwritten by use of the > operator.
-u yields an error message when there is an attempt
to use an undefined variable.
-v displays command lines as they are executed.

sh Executes a shell
script

Makes using ./ or #!/bin/sh unnecessary.
-n reads commands without executing them.
-v displays lines of code as executed.
-x displays commands and arguments as executed.

Syntax Guide to UNIX/Linux Commands 631

B

Table B-1 Common UNIX/Linux commands (continued)

Command Purpose Useful Options and Examples
sort Sorts and merges

multiple files
+ designates the position that follows an offset (+) as
a character position, not a field position.
-b ignores leading blank characters.
-d sorts in dictionary order.
-f ignores differences based on uppercase and
lowercase.
-g sorts by numeric (general) order.
-k n sorts on the key field specified by n.
-m merges input files that have been previously
sorted (does not perform a sort).
-n sorts numbers arithmetically.
-o redirects output to the specified file.
-r sorts in reverse order.
-t indicates that a specified character separates the
fields.

startx Starts the X
Window System

tail Displays the last
few lines of a file

By default, displays the last 10 lines of a file.
-n n displays the last n lines of the specified file.

test Compares values
and validates file
existence

! tests for logical negation.
-a tests for a logical AND relationship.
-b tests if a file exists and is a block special file (which
is a block-oriented device, such as a disk or tape
drive).
-c tests if a file exists and is a character special file
(that is, a character-oriented device, such as a termi-
nal or printer).
-d tests if a file exists and is a directory.
-e tests if a file exists.
-eq tests if equal to.
-f tests if a file exists and is a regular file.
-ge tests if greater than or equal to.
-gt tests if greater than.
-le tests if less than or equal to.
-lt tests if less than.
-n tests for a nonzero string length.
-ne tests if not equal to.
-o tests for a logical OR relationship.
-r tests if a file exists and is readable.
-s tests if a file exists and its size is greater than zero.
string tests for a nonzero string length.
string1 = string2 tests two strings for equality.
string1 != string2 tests two strings for inequality.
-w tests if a file exists and is writable.
-x tests if a file exists and is executable.
-z tests for a zero-length string.

632 Appendix B Syntax Guide to UNIX/Linux Commands

Table B-1 Common UNIX/Linux commands (continued)

Command Purpose Useful Options and Examples
top Displays a list

of the most
CPU-intensive
tasks

-c displays the command that initiated each process.
-i ignores any idle processes.
-q displays output continually, with no delay between
outputs. (Use with caution! Try the spacebar for peri-
odic updates.)
-s causes the top command to run in secure mode,
disabling its interactive commands.
-S runs top in cumulative mode, which displays the
cumulative CPU time used by a process.

touch Changes a file’s
time and date
stamp

-a specifies that only the access date and time are to
be updated.
-m specifies that only the modification date and time
are to be updated.
-c specifies that no files are to be created.

tput Formats screen
text

clear clears the screen.
cols prints the number of columns on the current
terminal.
cup moves the screen cursor to a specified row and
column.
rmso disables boldface output.
smso enables boldface output.

tr Translates
characters

-d deletes input characters found in string1 from the
output.
-s checks for sequences of string1 repeated consecu-
tive times.

trap Executes a com-
mand when a
specified signal is
received from the
operating system

-l displays a listing of signal numbers and their signal
designations.

tty Displays terminal
pathname

umask Sets file permis-
sions for multiple
files

umount Disconnects the
file system parti-
tions from the
directory tree

If mounted or being accessed by another user, see the
fuser command to force unmounting of the resource.

uniq Removes con-
secutive duplicate
lines from one
file and writes
the result to
another file

-u outputs only the lines of the source file that are
not duplicated.
-d outputs one copy of each line that has a duplicate,
and does not show unique lines.
-i ignores case.
-c starts each line by showing the number of each
instance.

Syntax Guide to UNIX/Linux Commands 633

B

Table B-1 Common UNIX/Linux commands (continued)

Command Purpose Useful Options and Examples
wc Counts the num-

ber of lines,
bytes, or words
in a file

-c counts the number of bytes or characters.
-l counts the number of lines.
-w counts the number of words.

whatis Displays a brief
description of a
command

whereis Locates source,
binary, and
manual entries
for the specified
string or
command

-b searches for binary entries only.
-m searches for manual entries only.
-s searches for source entries only.

w Displays users
currently on the
system

Shows user’s originating host, idle time, her current
command, CPU utilization, and login time.

who Shows who is
currently logged
in to a system

-b verifies when the system was last booted.
-H displays column headings.
-q displays a quick list of users.
-u displays session idle times.

Table B-2 UNIX/Linux utilities by category
Command Brief Description of Function
File-Processing Utilities
awk Processes files
cat Displays files (and is used with other tools to concatenate files)
cmp Compares two files
comm Compares sorted files, and shows differences
cp Copies files
cpio Copies and backs up files to an archive
cut Selects characters or fields from input lines
dd Copies and converts input records
diff Compares two text files, and shows differences
dump Backs up files
fdformat Formats a floppy disk at a low level
file Displays the file type
find Finds files within file tree
fmt Formats text very simply
grep Matches patterns in a file
groff Processes embedded text formatting codes
gzip Compresses or decompresses files
head Displays the first part of a file (first 10 lines by default)
ispell Checks one or more files for spelling errors (on some systems, this com-

mand might not be documented via the man command)

634 Appendix B Syntax Guide to UNIX/Linux Commands

Table B-2 UNIX/Linux utilities by category (continued)

Command Brief Description of Function
less Displays files allowing for scrolling forward and backward (pauses when

screen is full)
ln Creates a link to a file
lpr Sends a file to a printer or printer device
ls Lists file and directory names and attributes
man Displays documentation for commands
mkbootdisk Creates a CD (or floppy disk on older distributions) from which to boot a

system
mkdir Creates a new directory
mkfs Builds a UNIX/Linux file system
more Displays the contents of a file allowing for scrolling forward (pauses when

screen is full)
mount Mounts file systems and devices
mv Renames and moves files and directories
newfs Creates a new file system (used in UNIX systems in particular)
od Formats and displays data from a file in octal, hexadecimal, and ASCII

formats
paste Combines the contents of one or more files to output to the screen or to

another file (by default, the pasted results appear in columns separated
by tabs)

pr Formats text files for printing and displays them
pwd Shows the directory you are in
rdev Queries or sets the root image device
restore Restores files (from a dump)
rm Removes files
rmdir Removes directories
sed Edits streams (noninteractive)
sort Sorts or merges files
tail Displays the last lines of files (last 10 lines by default)
tar Copies and backs up files to a tape archive
touch Changes file modification dates and times (and can be used to create a

new file)
uniq Displays unique lines of a sorted file
wc Counts lines, words, and bytes
whereis Locates information about a specific file
System Status Utilities
date Sets and displays date and time
df Displays the amount of free space remaining on disk
du Summarizes file space usage
file Determines file type (for example, shell script, executable, ASCII text, and

others)
finger Displays detailed information about users who are logged in
free Displays amount of free and used memory in the system

Syntax Guide to UNIX/Linux Commands 635

B

Table B-2 UNIX/Linux utilities by category (continued)

Command Brief Description of Function
edquota Displays user disk quotas and enables them to be changed
kill Terminates a running process
ps Displays process status by process identification number and name
sleep Suspends execution for a specified time
top Dynamically displays the status of processes in real time, focusing on

those processes that are using the most CPU resources
uname Shows information about the operating system (use the -r option to

determine your kernel version)
vmstat Shows information about virtual memory use
w Displays detailed information about the users who are logged in
who Displays brief information about the users who are logged in
Network Utilities
ftp Transfers files over a network
ifconfig Sets up a network interface
netstat Shows network connection information
nfsstat Shows statistics for Network File System (NFS; file upload and download)

activity
ping Polls another network station (using TCP/IP); great for a fast determina-

tion about whether your network connection is working
rcp Remotely copies a file from a network computer
rlogin Logs in to a remote computer
route Displays routing table information, and can be used to configure routing
rsh Executes commands on a remote computer
showmount Lists clients that have mounted volumes on a server
telnet Connects to a remote computer on a network
traceroute Shows the route along a network between the source device and the des-

tination, such as from a computer to a server
wvdial Controls a modem dialer for dial-up connections over a phone line
Communications Utilities
mail Sends electronic mail messages
mesg Denies (mesg n) or accepts (mesg y) messages
talk Lets users simultaneously type messages to each other
wall Sends a message to all logged in users (who have permissions set to

receive messages)
write Sends a message to another user
Security Utilities
chgrp Changes the group associated with a file or the file’s group ownership
chmod Changes the access permissions of a file or directory
chown Changes the owner of a file
ipchains Manages a firewall and packet filtering (do not use if you are using

iptables instead)
iptables Manages a firewall and packet filtering (do not use if you are using

ipchains instead)

636 Appendix B Syntax Guide to UNIX/Linux Commands

Table B-2 UNIX/Linux utilities by category (continued)

Command Brief Description of Function
passwd Changes a password
Programming Utilities
configure Configures program source code automatically
g++ Compiles a C++ program
gcc Compiles a C program
make Maintains program source code
patch Updates source code
Source Code Management Utilities
ci Creates changes in Revision Control Systems (RCS)
co Retrieves an unencoded revision of an RCS file
cvs Manages concurrent access to files in a hierarchy
rcs Creates or changes the attributes of an RCS file
rlog Prints a summary of the history of an RCS file
Miscellaneous Utilities
at Executes a command or script at a specified time
atq Shows the jobs (commands or scripts) already scheduled to run
atrm Enables you to remove a job (command or script) that is scheduled to run
batch Runs a command or script, and is really a subset of the at command that

takes you to the at> prompt, if you type only batch (in Fedora, Red Hat
Enterprise Linux, and SUSE, a command or script is run when the system
load is at an acceptable level)

cal Displays a calendar for a month or year
cd Changes to a directory
crontab Schedules a command to run at a preset time
expr Evaluates expressions (used for arithmetic and string manipulations)
fsck Checks and fixes problems on a file system (repairs damage)
printenv Prints environment variables
tee Clones output stream to one or more files
tr Replaces specified characters (a translation filter)
tty Displays terminal pathname
xargs Converts standard output of one command into arguments for another

Table B-3 vi editor commands
Command Purpose
:! Leaves vi temporarily
$ Goes to the end of the line
. (repeat) Repeats your most recent change
/ Searches forward for a pattern of characters
0 (zero) Goes to the beginning of the line
d$ or D Deletes from the cursor to the end of the line
d0 Deletes from the cursor to the start of the line
dd Deletes the current line

Syntax Guide to UNIX/Linux Commands 637

B

Table B-3 vi editor commands (continued)

Command Purpose
dw Deletes the word starting at the cursor; if the cursor is in the middle of the

word, deletes from the cursor to the end of the word
H Goes to the upper-left corner of the screen
i Switches to insert mode
L Goes to the last line on the screen
p Pastes text from the clipboard
:q Cancels an editing session
:q! Cancels an editing session and exits
:r Reads text from one file and adds it to another
:set Turns on certain options, such as line numbering
u Undoes your most recent change
:w Saves a file and continues working
:wq Writes changes to disk and exits vi
:x Saves changes and exits vi
x Deletes the character at the cursor location
yy Copies (yanks) text to the clipboard
ZZ In command mode, saves changes and exits vi

Table B-4 Emacs editor commands
Command Purpose
Alt Commands
Alt+< Moves the cursor to the beginning of the file
Alt+> Moves the cursor to the end of the file
Alt+b Moves the cursor back one word
Alt+d Deletes the current word
Alt+f Moves the cursor forward one word (moving space to space between

words)
Alt+q Reformats current paragraph using word wrap so that lines are full
Alt+t If the cursor is under the first character of the word, transposes the

word with the preceding word; if the cursor is not under the first char-
acter, transposes the word with the following word

Alt+u Capitalizes all letters from the cursor position in a word to the end of
that word

Alt+w Marks the end of a text block to copy (after you have marked the start
of text with Ctrl+spacebar) and briefly scrolls up to where you set the
beginning mark

Alt+x doctor Enters doctor mode to play a game in which Emacs responds to your
statements with questions (Save your work first. Not all versions sup-
port this mode)

Ctrl Commands
Ctrl+@ Marks the cursor location; after moving the cursor, you can move or

copy text to the mark
Ctrl+a Moves the cursor to the beginning of the line

638 Appendix B Syntax Guide to UNIX/Linux Commands

Table B-4 Emacs editor commands (continued)

Command Purpose
Ctrl+b Moves the cursor back one character
Ctrl+d Deletes the character under the cursor
Ctrl+e Moves the cursor to the end of the line
Ctrl+f Moves the cursor forward one character
Ctrl+g Cancels the current command
Ctrl+h Runs online help
Ctrl+k Deletes text to the end of the line
Ctrl+n Moves the cursor to the next line
Ctrl+p Moves the cursor to the preceding line
Ctrl+t Transposes the character before the cursor and the character under the

cursor
Ctrl+v Scrolls down one screen
Ctrl+w Deletes the marked text; press Ctrl+y to restore deleted text
Ctrl+y Inserts text from the file buffer, and places it after the cursor
Ctrl+h, t Runs a tutorial about Emacs
Ctrl+x,
Ctrl+c

Exits Emacs

Ctrl+x,
Ctrl+s

Saves the file

Ctrl+x, u Undoes the last change
Ctrl+Del Deletes text from the current cursor location to the end of the

current word
Ctrl+spacebar Marks the beginning of text, such as to copy the text (use Alt+w to

mark the end of the text)

Syntax Guide to UNIX/Linux Commands 639

B

This page intentionally left blank

HOW TO INSTALL FEDORA AND

HOW TO USE THE KNOPPIX CD

This book comes bundled with the Fedora and Knoppix software needed to
complete the Hands-On Projects at the end of each chapter. Fedora can be

installed from the DVD included with the book, and Knoppix can be run from
the included CD without having to be installed on your computer. Fedora is a
project sponsored by Red Hat to accomplish the following objectives: (1) to
provide a free version of Linux and (2) to create a public testing environment
for the Red Hat Enterprise Linux products. New options, software, and the
latest versions of the GNOME and KDE X Window desktops are typically
included in Fedora. The newly developed Fedora elements that are well-
received through public testing are considered for incorporation into future
releases of Red Hat Enterprise Linux. However, the basic Linux operating
system is retained in Fedora.

Knoppix was developed by Klaus Knopper for educational and professional use.
It is open source software, which means that it is freely distributed. The
Knoppix CD contains the Linux operating system, plus a host of software
including X Window and the KDE desktop (see Chapter 11,“The X Window
System”), the Konqueror file manager andWeb browser,OpenOffice.org office
suite, and many other open source applications.

APPENDIX

C

641

For readers of this book, Fedora and Knoppix offer a way to learn UNIX/Linux and use
some of the most current UNIX/Linux applications—all for free. Also, through using these
free distributions, you learn the basic Linux skills that can be applied to Red Hat Enterprise
Linux and other UNIX/Linux versions. For example, when you use Fedora for the
command-line Hands-On Projects in this book, typically the same steps apply to Red Hat
Enterprise Linux and other UNIX/Linux versions. For instance, the commands that you
execute in the terminal window, such as ls or cat,work the same way in Fedora as in Red Hat
Enterprise Linux (and virtually all other versions of UNIX/Linux).For the GNOME-based
Hands-On Projects in Chapter 11,“The X Window System,” typically the same or similar
steps also apply in Fedora as in other UNIX/Linux systems that use the GNOME desktop.
However, the appearance of some GUI screens might be a little different, depending on
which version of GNOME is used in an operating system.

HOW TO INSTALL FEDORA

The Fedora installation DVD accompanies this book. Because Fedora is on a rapid
development track, you can also download the latest version of Fedora at fedoraproject.org. In
this appendix, you learn how to install Fedora for workstation functions, using GNOME as
the primary desktop.

Some new users have the option to install Fedora on a computer already running another
operating system, such as another version of UNIX, Linux, or Microsoft Windows. If you
have 5 to 6 GB or more of unused disk space or a second hard drive, you can install Fedora
in that space so that your computer can be booted either into your existing operating system
or Fedora. Another option, of course, is to let the Fedora installation completely overwrite
the operating system you are currently using, so that the computer can only boot into
Fedora. Consider all of the ramifications of these two choices before you start the Fedora
installation.

Preparing for Installation
You should perform several steps prior to the Fedora installation:

1. Back up your present system before you start. If you perform a dual-boot
installation and there is a problem, you’ll still have a way to restore your
system. If you plan to have a computer only with Fedora, backing up before
you start enables you to restore your present files and applications, either later
on the same computer or on a different computer.

2. Gather information about your computer (see the following, complete list).

3. Configure the BIOS setup to boot from the DVD drive (and change the con-
figuration back to what it was after you complete the installation).

Fedora will do its best to identify your system’s components, but if you have very new
components or ones that are proprietary, Fedora might need your help in identifying certain

642 Appendix C How to Install Fedora and How to Use the Knoppix CD

components (particularly the display card). A list of information you should obtain before
you install Fedora follows:

■ The type and size of your hard drive(s).

■ The amount of memory in your system.

■ The type of DVD drive in your system (especially if it has an IDE, SCSI, or other
interface).

■ The brand and model of your video card (very important to know).

■ The amount of video memory on your video card.

■ The brand and model of your monitor, as well as the monitor’s vertical and
horizontal sync ranges (you can find this information in the monitor’s manual).

■ The type of mouse you are using (PS/2 or serial, two buttons or three).

■ If your computer has a SCSI adapter, its brand and model.

■ The printer type you will use, if any. You also need to know how the printer
connects to the computer. If you will print through a network, you need all the
correct network connection information for the printer.

Also, if your computer is on a network, you need to know:

■ The type of network card in your computer.

■ Your computer’s IP address configuration information. You need to determine if
your computer has a static IP address or if it uses BOOTP or DHCP. You also need
to know the IP address of your default gateway and primary name server. (If you
have a secondary and tertiary name server, you need those IP addresses as well.)
Your network administrator can provide all this information.

Finally, for the version of Fedora included with this book, it is recommended that your
computer have the following:

■ 500 MHz or higher CPU (the faster the CPU, the faster the response in Fedora)

■ 128 MB or more of RAM

■ 5 GB or more disk space

■ DVD or CD/DVD drive

■ Mouse or pointing device

Installing Fedora
The steps for installing Fedora are as follows:

1. Boot the system from the Fedora installation DVD.

2. Press Enter to use the graphical mode installation.

How to Install Fedora 643

C

3. Select Skip (use the right arrow key), and press Enter. (Choosing Skip bypasses
the test of the DVD from which you are performing the installation. If you
think your DVD may be damaged, however, select to test it instead.)

4. Click Next (or choose OK and press Enter, if you are not in the full graphical
mode because you have less than 256 MB of memory in your computer).

5. Use the up or down arrow key to select the language, such as English. Click
Next (or choose OK and press Enter).

6. Use the arrow keys to select the keyboard configuration, such as U.S. English,
and click Next (or choose OK and press Enter).

7. Whether Fedora automatically detects your mouse at this point depends on
the hardware in your system. If Fedora displays a configuration screen for the
mouse, select the mouse configuration (or use the default selection), such as
Wheel Mouse (PS/2), and click Next (or choose OK and press Enter).

8. Depending on how Fedora detects the hardware in your system, you might see
the Monitor Configuration screen, particularly if the installation software can-
not detect your monitor. If you see this screen, select your monitor from the
list, and click Next (or choose OK and press Enter).

9. If you have an earlier version of Fedora installed on your computer, you see an
Upgrade Examine screen, on which you click Upgrade an existing installation
or Install Fedora Core. For the sake of learning all of the options for an instal-
lation, select Install Fedora Core (if you see this screen) and click Next (or
choose OK and press Enter).

10. If you see different installation types available, select Workstation and click
Next (or choose OK and press Enter).

11. If you have more than one hard drive, such as hda and hdb, select the drive on
which to create the operating system. On the same screen, choose the method
of partitioning from the following:

- Remove all partitions on selected drive and create default layout.

- Remove linux partitions on selected drive and create default layout.

- Use free space on selected drives and create default layout.

- Create custom layout.

(If you want to keep an existing Windows system intact on your computer and
have determined in advance that you have enough disk space for Fedora, select
Use free space on selected drives and create default layout.) After you make your
selection, click Next (or choose OK and press Enter). SelectYes to proceed.

12. When asked if you want to review the partition layout selectYes. Notice the
partition scheme, including for partitions containing the ext file system, swap,
and others (if you are creating a dual boot system you’ll see a partition for ntfs,
also). Select Next (or choose OK and press Enter). (However, note that you

644 Appendix C How to Install Fedora and How to Use the Knoppix CD

can edit the partition scheme by selecting Edit—but if this is your first installa-
tion it is best to use the default scheme and click Next or select OK and press
Enter.)

13. If your computer has under 256 MB of memory, you’ll see a Low Memory
box to create swap space immediately. If you see this screen, selectYes.

14. If your computer has 256 MB of RAM or more, one screen is displayed from
which to choose whether or not to use the GRUB boot loader. Select to use
the GRUB boot loader, but do not choose to use a boot loader password and
click Next (or select OK and press Enter). If your computer has under
256 MB of memory, you’ll see several screens relating to the the GRUB boot
loader. On the first screen select to use the boot loader and click Next (or
select OK and press Enter). On the next screen to configure the boot loader,
click Next (or select OK and press Enter). On the screen to enable you to use
a boot loader password, do not select to use a password and click Next (or
select OK and press Enter).

15. If you see a screen allowing you to choose the partition from which to boot
from GRUB, click Next (or select OK and press Enter). (When the computer
is turned on you can select which system partition to boot on a dual boot
computer, such a Fedora and Windows.) Also, if you see a screen from which
to select the location for the boot loader, use the default and click Next (or
select OK and press Enter).

16. Use the defaults for the Network Configuration.Also, for configuring the
hostname, select automatically via DHCP if your computer is on a network in
which host names are automatically assigned. If your computer is not on a
larger network, such as a home computer, select manually and provide a host
name for your computer. Click Next (or choose OK and press Enter). (Note
that if your computer has less than 256 MB of RAM, the network configura-
tion and the hostname configuration options will appear on two screens.)

17. Select the time zone and click Next (or choose OK and press Enter).

18. Enter the root password (use six characters or more). Confirm the password
and click Next (or choose OK and press Enter).

19. Select to install the Office and Productivity and the Software Development
packages (limit your choices to only these for this installation). Click Next (or
select OK and press Enter).

20. Click Next to start the installation process.The Required Install Media win-
dow may be displayed to tell you which installation media (the DVD) you
need to have ready. Click or select Continue.

21. The installer checks software package dependencies.

22. You’ll see a message that a log of the installation will be written to /root/
install.log. Click Next (or select OK and press Enter).

How to Install Fedora 645

C

23. You may see a screen that displays the installation media to have ready, which
is the Fedora Core 6 installation DVD (if you were using multiple CDs, the
screen would list the CDs needed, which would be the Fedora Core 6 CDs
#1, #2, and #3). Select Continue.

24. The installer formats the disk(s) and begins installing packages.

25. (If you were using multiple CDs instead of one DVD, the installer at this point
would show a request for each CD.After inserting the CD you would select OK.)

26. Remove the disc in the CD/DVD drive and click Reboot.

27. If you have configured a dual-boot system, select the Fedora Core option.

28. On the Welcome screen, click Forward.

29. Read the License Agreement. If you agree, clickYes, I agree to the License
Agreement, and then click Forward.

30. Use the defaults for the Firewall and click Forward.

31. Use the defaults for the SELinux screen and click Forward.

32. Reconfigure the date and time, if necessary. Click Forward.

33. Depending on your hardware configuration, you might see a screen to adjust
the display settings. If you see this screen, configure the display settings, and
then click Forward.

34. Complete the Username, Full Name, Password, and Password Confirmation
text boxes to create an account that you can use in addition to the root
account. Click Forward.

35. If a sound card is installed, you may be asked if you want to test it. Click Fin-
ish and go to Step 37.

36. If no sound card is installed on your system click Finish.

37. Log in to your new system using the root account or the additional account
you created, and proceed to use the system.

USING THE KNOPPIX CD
Knoppix is included on a CD with this book to make it easy for you to access and
experiment with a Linux distribution that is based on Debian GNU/Linux.The UNIX/
Linux commands you learn in this book can be used in Knoppix.There is nothing to install;
just boot your computer from the CD.

646 Appendix C How to Install Fedora and How to Use the Knoppix CD

System Requirements for the Knoppix CD
Knoppix is designed to run on most common PCs with Intel/AMD-based processors.The
requirements are the following (hard disk space is not mentioned because you don’t use the
hard disk):

■ An i486 Pentium type of processor or faster

■ A bootable CD or CD/DVD drive

■ 32 MB of RAM for the command-line mode or 96 MB of RAM for the GUI
mode to use the KDE desktop

■ Standard keyboard and graphics card (Knoppix recognizes most hardware systems)

■ Mouse or pointing device

Loading the Knoppix CD
Before you insert the Knoppix CD, find out how to enable your computer to boot from the
CD or CD/DVD drive. Many computers have a function key that you can press when you
first turn on the PC. For example, if you have a Dell computer press F12 several times right
after you turn on the PC to see a menu list of boot options. On other computers press F1,
Del, or another key combination. Check your computer’s documentation for the exact key
combination.Another way to set your computer to boot from the CD or CD/DVD drive
is to configure the boot drive sequence in your computer’s BIOS. On many computers
when first started, you see on the screen a key combination that you can use to enter the
BIOS setup menu.For other computers you’ll have to check the computer’s documentation
about how to start the BIOS setup menu.When you set up the BIOS, configure the boot
sequence so that the computer tries first to boot from the CD or CD/DVD drive. Have the
hard disk as the second boot device in the boot sequence.

If you changed the boot sequence in the BIOS you can leave it in this order even
after you are done using Knoppix—unless you want your computer to boot
faster without first checking to see if there is a bootable CD or DVD in its
CD/DVD drive. For fastest booting when you are done with Knoppix, change
the BIOS so that the hard disk is first in the boot sequence.

After your computer is set up to boot from the CD or CD/DVD drive, follow these steps:

1. Turn on the computer and boot into your regular operating system.

2. Insert the Knoppix CD.

3. Shut down the computer.

4. Turn on the computer (press the appropriate key, if necessary, to boot from the
CD or CD/DVD drive) and boot from the Knoppix CD.

5. Press Enter when you see the initial Knoppix screen.

Using the Knoppix CD 647

C

6. Your system will progress through the boot sequence from the CD. If you
have speakers, during bootup you’ll hear the computer say,“Initiating startup
sequence.”

7. The KNOPPIX INFO window enables you to select which language to use,
such as clicking EN for English. Note that English is the default on the CD
included with this book, so you can close the window without making a
selection if you want to use English.

8. Close the KNOPPIX INFO window, if you haven’t already.

9. Start using Knoppix and the KDE desktop.

To open a terminal window in Knoppix:

1. Find the Kicker (Panel) at the bottom of the screen, which contains a number
of icons and a clock.

2. In the Kicker, click the Konsole Terminal Program icon (it looks like a com-
puter monitor).

To shut down Knoppix:

1. Click the K Menu in the Kicker at the bottom of the screen.

2. Click Log Out.

3. Click Turn Off Computer.

4. Remove the Knoppix CD when your CD or CD/DVD tray opens.

5. Close the tray and press Enter to complete the shutdown.

Saving Your Files on Removable Media
Because Knoppix runs from your CD/DVD drive, you cannot save files you have created on
that drive. Also, it is not recommended that you save your files on the hard drive on your
computer, which is why Knoppix by default is configured to prevent you from writing to a
hard drive. However, to save your files created for the Hands-On Projects in this book, you
can write them to a USB flash drive, a floppy drive (on an older computer), or a second
CD/DVD drive.Of these options,using a USB drive is likely to be the most versatile choice.

When you save files to another medium,keep in mind that your home directory in Knoppix
is /home/knoppix.You can access your home directory using the following steps:

1. Click the K Menu in the KDE desktop. (The K Menu is on the left side of
the Kicker or Panel at the bottom of the screen.)

2. Click Home Personal Files. (Another method to access your home directory is
to omit Step 1 and click the Home icon in the Kicker.)

3. The Konqueror file browser opens from which you can drag and drop files to
copy them.

648 Appendix C How to Install Fedora and How to Use the Knoppix CD

To copy files to a USB flash-type drive:

By default a USB drive is set as read-only. Step 3 below shows you how to
configure the drive to be writable.

1. The easiest way to ensure your USB drive is detected is to insert it before you
boot the computer, because it will be automatically mounted. However, if you
need to insert it after you boot the computer, you’ll see a configuration win-
dow open. Ensure that Open in New Window is selected and click OK.This
should mount your USB drive and you’ll see its icon on the desktop. Right-
click the new icon and check the menu for the option, Unmount, which
means your drive is mounted. If instead you see Mount, click this menu
option to mount your drive.

2. If necessary, right-click the USB drive’s icon on the desktop to see the menu
of options.

3. Click Change read/write mode and clickYes in the Window that says Do you
want to change partition /dev/sdb1 (vfat) to be writable? (If you previously
enabled the write mode during your work session the message will say, Do
you want to change partition /dev/sdb1 (vfat) to be read-only? In this case
you should select No.)

4. To copy a file to the USB drive, click its icon on the desktop to view the
drive’s contents.Also, open your home folder using the steps described earlier.
Drag the files you want to copy from your home folder’s window to the USB
drive’s window.

5. If you want to remove the USB drive while the computer is still on, right-
click the drive’s icon and click Unmount.

Do not attempt to run script, perl, CGI, C, and C++ programs you have created
in Knoppix on a Windows computer. However, you can use Wordpad in
Windows to open text files and view their contents. (Windows Notepad does
not correctly format text files created in Linux.)

To copy files to a floppy disk:

1. Insert the disk.

2. Click the Floppy icon on the desktop to view the disk’s contents.

3. Drag the files you want to copy from your home directory’s window to the
floppy disk’s window.

4. Ensure the floppy disk’s drive light has gone out before your remove the disk.

Using the Knoppix CD 649

C

In some cases you may need to manually mount and unmount the floppy disk.
To mount the disk, first insert it, right-click the floppy disk’s icon and click
Mount. To unmount the disk before removing it, right-click the disk’s icon and
click Unmount—then remove the disk.

In some cases your system may not recognize the filesystem of the floppy disk
you insert. If this is the case, try inserting the disk before you start the computer.
Another option is to manually specify the file system and mount the disk via the
command line by entering mount -t vfat /dev/fd0 /mnt/floppy. You can
unmount a floppy disk by entering umount /mnt/floppy.

To copy files to a CD or DVD drive (using a CD-R, CD-RW, DVD-R, or DVD+R disc):

1. Open Konqueror to your home directory and select the files and folders to be
written to CD/DVD.You can select multiple files and folders by holding
down the Ctrl key as you click each selection.

2. Right-click the highlighted selections.

3. Click Actions.

4. Click Create Data CD with K3b. (You may see a window to verify or config-
ure the speed of your drive. Select the appropriate speed and click OK.)

5. Wait for a moment while the K3b program starts.

6. The Current Projects pane shows the files and folders you have selected to
copy.You can add more files or folders by dragging them into the Current
Projects pane.

7. Click the Burn button in the Current Projects pane.

8. Notice on the Writing tab that you can manually set the speed of the drive or
leave it for the system to automatically detect the speed. In most cases it is best
to leave the Speed: setting at Auto.

9. Click the Filesystem tab. If you want to make the CD/DVD readable in Win-
dows, ensure that Generate Joliet extensions is selected. If you only plan to use
your CD/DVD in UNIX/Linux, then you do not need to make this selection.
Further, ensure that Generate Rock Ridge extensions is selected (a default
selection). Rock Ridge extensions add POSIX compliancy to files so they are
constructed to be compatible with all types of UNIX/Linux systems.

10. Click Burn.

11. You’ll see a screen that enables you to follow the progress of the copy.When
the copying is done, the CD/DVD is ejected.

12. Click Close to return to the K3b window. Close all open windows.

650 Appendix C How to Install Fedora and How to Use the Knoppix CD

Useful Knoppix Tips
Like any operating system,Knoppix has some features that are good to know.Here are some
tips to help as you use Knoppix:

■ There is no password for the root account in Knoppix.When you log into the root
account leave the password box empty.

■ The KDE desktop in Knoppix contains icons for each of your computer’s hard
drives.You can view their contents, but by default you cannot write to the hard
drives. It is possible to configure Knoppix to write to a hard drive,but it is safer not
to because your hard drive’s operating system, such as Windows, is not compatible
with the Knoppix file system.

■ If you have a second CD or CD/DVD drive there is an icon on the desktop that
enables you to write to it.The same is true if you have a floppy drive.

■ Every file you save in Knoppix is saved to a special memory space in RAM and not
to the Knoppix CD. This means each time you shut down Knoppix,YOU’LL
LOSE ALL FILESYOU HAVE SAVED.You can, however, write files to a second
CD/DVD drive, to a floppy drive, or to another computer in your network. If you
want to save files to a Windows computer on your network (such as to your
instructor’s computer or a server), click the Knoppix icon in the Kicker, point to
Utilities, click Samba Network Neighborhood, and locate the computer on which
to save files.You can use Konqueror to copy a file from Knoppix to a Windows
computer available through Samba.To start Konqueror, click the K menu in the
Kicker and click Home Personal Files (to open your home folder).

■ The Knoppix CD comes with the OpenOffice.org office software. Consider
giving it a try. In fact, you’ll find many other open-source applications to try on the
Knoppix CD. Visit www.knoppix.org and www.knoppix.net to learn more about
Knoppix.

■ The Knoppix CD does not come with the Emacs editor described in Chapter 3,
“Mastering Editors.” However, one way to use the Emacs editor is to download it
from the Internet and put it on a USB flash-type of drive and run it from the USB
flash drive.To obtain a copy of Emacs, visit www.gnu.org/software/emacs and down-
load a version that runs in Linux. (Another option is to download a version of
Emacs that runs in Windows and practice using Emacs from a Windows-based
computer.)

Using the Knoppix CD 651

C

www.knoppix.org
www.knoppix.net
www.gnu.org/software/emacs

This page intentionally left blank

UNIX/LINUX VARIANTS

AUNIX/Linux variant is simply one of the many different versions or
distributions of UNIX/Linux. There are well over 100 UNIX/Linux

variants that run on different kinds of computers. This appendix does not
attempt to list all of the variants, but instead focuses on providing an overview
of some of the most popular.

One reason why UNIX/Linux has proliferated into so many variants is because
much of the operating system kernel and UNIX/Linux software are written in
portable languages, such as C and C++. Another reason for the popularity of
UNIX/Linux is that TCP/IP (Transmission Control Protocol/Internet Proto-
col), the main protocol of the Internet and of general networking, was built in
to UNIX/Linux systems in the early 1980s—at the same time TCP/IP was
adopted for the international network that has become the Internet.Most other
operating systems did not implement fullTCP/IP capabilities until much later.
A third reason why UNIX/Linux has evolved into so many variants is that the
basic kernel source code is publicly available, instead of being a trade secret, as
is true of proprietary operating systems such as Windows. This characteristic
makes it easier for vendors to adapt hardware to UNIX/Linux systems and for
software creators to offer a huge range of applications, many of which are free.

APPENDIX

D

653

POPULAR VERSIONS OF UNIX/LINUX

Most versions of UNIX/Linux follow one (or a combination) of two standards: the
Berkeley System Distribution (BSD) standard and the SystemV release 4 (SVR4) standard.

The BSD standard grew out of the efforts of several professors and students at the University
of California at Berkeley. This group of professors and students developed the BSD 3 version
of UNIX/Linux and then the BSD 4 version. In the early 1990s, their work evolved into a
commercial enterprise through the newly formed company,Berkeley Software Design. Two
popular features of UNIX/Linux that you have learned about in this book, the vi editor and
the C shell, grew out of the BSD version of UNIX/Linux.Visit www.bsd.org for links to BSD
UNIX resources.

The System V version has roots in the work done by Bell Labs at AT&T. From the
mid-1970s through the late 1980s, Bell Labs developed SystemV. Eventually, this version of
UNIX/Linux was taken over by anAT&T subsidiary company called UNIX/Linux Systems
Laboratories. In the early 1990s, UNIX/Linux Systems Laboratories joined with Novell to
port a version of UNIX/Linux to Intel processors. Not only was UNIX/Linux ported to
popular PCs through their work, but also this version of UNIX/Linux initiated a GUI
interface for UNIX/Linux, called UNIX/Linux Desktop. Before long, UNIX/Linux Sys-
tems Laboratories was taken over by Novell. In the mid-1990s, Novell decided to de-
emphasize its UNIX/Linux operations and sold them to a company called Santa Cruz
Operation (SCO), which today as The SCO Group offers a SystemV commercial product
called UnixWare.You can learn more about UnixWare at www.sco.com.

Today, many computer and operating system vendors provide commercial UNIX/Linux
distributions. In addition, independent groups provide free UNIX/Linux systems. Table
D-1 lists a sampling of the popular commercial systems; Table D-2 lists some of the free
systems.

Table D-1 Popular commercial UNIX/Linux variants
Version Manufacturer Origin Information on the Web
AIX and AIX 5L IBM A combination

of SVR4 and
BSD

www.ibm.com or
www.03.ibm.com/
servers/aix

Darwin
(MAC OS X)

Apple Computers BSD www.apple.com

Hewlett Packard
UNIX (HP-UX)

Hewlett Packard SVR4 www.hp.com

IRIX Silicon Graphics SVR4 www.sgi.com or www.
sgi.com/products/
software/irix

LynxOS LynuxWorks SVR4 www.lynuxworks.com
Mandriva Linux Mandriva A combination

of SVR4 and
BSD

www.mandriva.com

654 Appendix D UNIX/Linux Variants

www.bsd.org
www.sco.com
www.ibm.com
www.03.ibm.com/servers/aix
www.03.ibm.com/servers/aix
www.apple.com
www.hp.com
www.sgi.com
www.sgi.com/products/software/irix
www.sgi.com/products/software/irix
www.sgi.com/products/software/irix
www.lynuxworks.com
www.mandriva.com

Table D-1 Popular commercial UNIX/Linux variants (continued)

Version Manufacturer Origin Information on the Web
Red Hat Enterprise
Linux

Red Hat SVR4 www.redhat.com

OpenServer The SCO Group,
Inc.

SVR4 www.sco.com

Solaris Sun Microsystems SVR4 www.sun.com
SUSE Linux Enter-
prise

Novell SVR4 www.novell.com/linux

Tru64 UNIX Hewlett Packard SVR4 h30097.www3.hp.com
Turbolinux Turbolinux, Inc. SVR4 www.turbolinux.com
UnixWare The SCO Group,

Inc.
SVR4 www.sco.com

VxWorks Wind River Sys-
tems

BSD www.windriver.com

Table D-2 Popular free UNIX/Linux variants
Version Source Origin Information on the Web
Fedora
Linux

Sponsored by Red Hat SVR4 fedoraproject.org/index.html

Debian
GNU/Linux

Debian BSD www.debian.org

FreeBSD The FreeBSD Project BSD www.freebsd.org
Gentoo Gentoo Linux SVR4 www.gentoo.org
Linux Available from many

sources
SVR4 www.linux.org

HURD GNU BSD www.gnu.org/software/hurd/
hurd.html

Knoppix Klaus Knopper BSD www.knoppix.org
NetBSD NetBSD Project BSD www.netbsd.org
OpenBSD The OpenBSD Project BSD www.openbsd.org
openSUSE openSUSE.org BSD www.opensuse.org
Ubuntu Ubuntu BSD www.ubuntu.com

There are many, many Linux distributions, both free and commercial. To see a
list of Linux distributions visit www.en.wikipedia.org/wiki/List_of_Linux_
distributions. After you visit this Web site you’ll very likely be impressed with
the world-wide efforts devoted to Linux development.

Many similarities exist between versions of UNIX/Linux. For example, they all offer full
TCP/IP network compatibility. All versions of UNIX/Linux have layered components that
make up the operating system (see Chapter 1,“The Essence of UNIX and Linux”), and they
all use shells as command-line interpreters. In fact, virtually every version of UNIX/Linux
supports the Bourne shell, and many support the C and Bash shells.

Popular Versions of UNIX/Linux 655

D

www.redhat.com
www.sco.com
www.sun.com
www.novell.com/linux
www3.hp.com
www.turbolinux.com
www.sco.com
www.windriver.com
www.debian.org
www.freebsd.org
www.gentoo.org
www.linux.org
www.gnu.org/software/hurd/hurd.html
www.gnu.org/software/hurd/hurd.html
www.knoppix.org
www.netbsd.org
www.openbsd.org
www.opensuse.org
www.ubuntu.com
www.en.wikipedia.org/wiki/List_of_Linux_distributions
www.en.wikipedia.org/wiki/List_of_Linux_distributions

All UNIX/Linux versions come with at least one text editor, such as vi, Emacs, or both, and
they use similar file and text manipulation utilities. UNIX/Linux variants use a similar
hierarchical file system that employs permissions for file security. In addition, UNIX/Linux
systems support a variety of software compilers, particularly C, C++, LISP, and Pascal. They
also permit shell scripting and enable Perl and CGI scripts.

The differences between versions of UNIX/Linux are generally evident in some differences
in commands and in the hardware platforms they use. These differences are explored in the
next two sections.

UNIX/Linux Command Differences
Many of the UNIX/Linux command differences stem from whether a system is based on
BSD or System V. However, command differences are also related to enhancements or
changes that particular vendors have made to commands. For example, in IBM’s AIX, the
command to create a new user is mkuser; in FreeBSD, the command is adduser, and in Linux,
the command is useradd. To delete a user in these systems, you use rmuser in AIX, rmuser in
FreeBSD, and userdel in Linux.

Sometimes, the command-line differences are not in the commands that are supported, but
in the options associated with a command. For example, in BSD-based systems, the ls -s
command usually shows the file size in kilobytes, whereas the same command shows the file
size in 512 blocks in SVR4 systems. To display the processor type in Fedora, Red Hat
Enterprise Linux, or SUSE, you type uname -m, but in Solaris, you type uname -imp.

Table D-3 provides information on how commands can be similar or different among these
systems: AIX (based on BSD and SVR4), Linux (based on SVR4 and BSD), and Solaris
(based on SVR4).

In some instances in Table D-3, several commands accomplish the same purpose
in a single operating system. In these cases, the commands are separated by
commas. For example, four commands can be used to print a file in AIX: lp, lpr,
enq, and qprt.

Table D-3 UNIX/Linux commands of AIX, Linux, and Solaris
Activity Command

in AIX
Command
in Linux

Command
in Solaris

Print a file lp, lpr, enq,
qprt

lpr lp, lpr

Show the size of the swap file lsps -a, vmstat free, vmstat swap -l, vmstat
Show processes ps ps ps
Configure a network interface
card

ifconfig ifconfig ifconfig

Change information associ-
ated with a user’s account

chuser -a usermod usermod

656 Appendix D UNIX/Linux Variants

Table D-3 UNIX/Linux commands of AIX, Linux, and Solaris (continued)

Activity Command
in AIX

Command
in Linux

Command
in Solaris

View information in a print
queue

lpq, lpstat,
qchk,
enq -A

lpq lpstat

List all of the software
packages installed

lslpp -L all rpm -qa pkginfo

Initiate paging (virtual
memory)

swapon -a swapon -a swap -a

UNIX/Linux Hardware Platforms
Some of the UNIX/Linux variants, such as Hewlett Packard’s HP-UX, are particularly
targeted for high-end, powerful RISC (Reduced Instruction Set Computer) processors or
the supercharged Intel Itanium processors.

A RISC processor is fast and powerful because it requires fewer instructions for common
operations and it has portions of the CPU that are dedicated to specific functions. The
Itanium processor is built from the basic RISC architecture, but it includes EPIC (Explicitly
Parallel Instruction Computing), which is the capability to predict upcoming processor
operations on the basis of tracking previous operations. The Itanium processor also has
larger processor work areas than non-EPIC RISC processors.

Both the RISC and Itanium processors have a 64-bit architecture instead of the
slower, 32-bit architecture of non-Itanium, Intel-class processors. However,
Intel and AMD have introduced a family of new 64-bit processors suitable for
UNIX, Linux, and Windows systems. In fact, Microsoft has announced that the
Windows systems developed after Windows Vista will only run on 64-bit
processors.

Other UNIX/Linux variants, such as Fedora, Red Hat Enterprise Linux, and SUSE Linux
function well on 32- or 64-bit Intel-class servers and workstations. Also, Darwin UNIX is
well-tailored for Macintosh computers.

Of the UNIX/Linux variants, distributions of Linux have proven to be especially versatile
in terms of hardware compatibility. Besides Intel-class processors, Linux has been adapted to
run on IBM mainframe and minicomputers, Hewlett Packard RISC-based computers, Sun
workstations, HP/Compaq/DEC alpha computers, Silicon Graphics workstations, and
many others.

Table D-4 is a list of some typical hardware configurations that can be used with UNIX/
Linux operating systems. Note that as each UNIX/Linux distribution evolves, more
scalability is built in so that different processors can be used.When you obtain a UNIX/

Popular Versions of UNIX/Linux 657

D

Linux distribution,ensure that you match the distribution version with the type of processor
you use, 32-bit or 64-bit.

Table D-4 A sampling of UNIX/Linux systems and typical hardware compatibility
UNIX/Linux
Version

Typical Hardware

AIX and AIX 5L IBM RISC-based pSeries, iSeries, zSeries, and eSeries servers and
the older RISC-based RS/6000 workstations and servers

Fedora Intel-class and AMD 32- and 64-bit processors
HP-UX RISC-based and Itanium processors in HP workstations and servers
IRIX Silicon Graphics RISC-based computers, including the Silicon

Graphics Fuel, O2, Octane2, and Origin workstations, servers, and
supercomputers

Linux from Silicon
Graphics

Intel Itanium processor in the Silicon Graphics 750 and the Altrix
computers

Mac OS X and
Darwin

Apple RISC-based PowerPC, G3, G4, and G5 computers, plus Intel
32- and 64-bit Core 2 Duo processors

Red Hat Enter-
prise Linux

Intel-class and AMD 32- and 64-bit processors

Sun Solaris RISC-based UltraSPARC processor in Sun UltraSPARC workstations
and servers, Sun Fire servers, Sun Ray workstations, and Intel-class
and AMD 32- and 64-bit processors

SUSE Linux Intel-class and AMD 32- and 64-bit processors
Turbolinux Intel-class and AMD 32- and 64-bit processors
UnixWare and
OpenServer

Intel-class and AMD 32- and 64-bit processors

CHOOSING A UNIX/LINUX VARIANT

When it comes to selecting any operating system, the best advice is to:

1. Understand the requirements of what you want to accomplish and what appli-
cation software is needed to meet those requirements.

2. Select the operating system on which the software can run.

3. Select the hardware that is appropriate to the operating system and soft-
ware needs.

For example, if you need to perform professional computing that requires using lots of
graphics for publishing, one good choice is a Mac OS X system. If you are engaging in
personal computing and want to use an Intel-based or AMD computer, a free or commercial
distribution of Linux is often an appropriate selection. If the application requirement is to
have a powerful server for a complex accounting system, AIX, HP-UX, or Sun Solaris on
a RISC or Itanium computer might be needed; or Red Hat Enterprise Linux or SUSE may
be options on a 64-bit Intel/AMD processor. In fact, as new Intel and AMD 64-bit

658 Appendix D UNIX/Linux Variants

processors have come out, some companies are migrating from traditional large-scale UNIX
systems to Red Hat Enterprise Linux and SUSE Linux Enterprise.

One significant advantage to selecting any UNIX/Linux variant is the element of
portability. If you start with one UNIX/Linux variant and its associated hardware platform,
but later find you need to scale up to a different UNIX/Linux variant and platform, the
chances are very good that you can port most or all of your initial investment in application
software. Another advantage is that users trained in one UNIX/Linux variant can quickly
adapt to a different variant, so you do not lose your training investment either.

As you can see, there is a variant of UNIX/Linux to help you accomplish nearly any type
of computing task and on a wide range of computers—which is the single, most impressive
advantage of UNIX/Linux.

Choosing a UNIX/Linux Variant 659

D

This page intentionally left blank

UNIX/LINUX SECURITY: NETWORK

AND INTERNET CONNECTIVITY

With the use of a powerful and flexible system comes the responsibility to
ensure that the system is not easily broken into and misused. This

appendix focuses on the security needs of running a standard UNIX/Linux
installation and the steps you can take to make your computer secure.

APPENDIX

E

661

SECURITY HARDENING

Security hardening is the process of taking a default system installation and making that
system more secure, harder to break into, and, therefore, less likely to be exploited. You
should understand the different levels of security hardening available. This appendix focuses
on security at the workstation or server as the most likely and efficient way for you to protect
the systems for which you are responsible. The other types of security—network and
organizational—are beyond the scope of this book.

The steps to secure your systems include the following:

1. Implementing physical system security

2. Defining and publishing the security policy

3. Ensuring password security

4. Managing unnecessary services

5. Viewing log files on a regular basis

6. Keeping up with security fixes and patches

7. Monitoring your system automatically

8. Securing your folders and files

Implementing Physical System Security
Can a person who is not a system administrator walk up to your server and physically touch
it? If yes,why? If a computer is important and you want it to be as secure as possible, it should
be secured in a cabinet or other enclosure such as a locked room. Setting a BIOS password,
locking the case, putting up a security camera that is above and pointing down at the
computer, disabling the CD/DVD drive access internally, and keeping the cleaning staff out
of the server room are great ways to increase your physical system security.

Physical security is just as important for desktop users as it is for server operators. Although
you normally would not turn off a server computer at night due to its role, you can shut
down a desktop computer, log out of your session,or use a locking screensaver to secure your
desktop at night or when you are away for more than a moment. For example, Chapter 11,
“The X Window System,” explains how to set up a locking screensaver.

Defining and Publishing the Security Policy
If an action is not allowed, it’s denied. This should be your standard security policy. Many
examples of well-designed security policies are available on the Internet and in security
manuals. Use them as a reference as you build your own.

662 Appendix E Unix/Linux Security: Network and Internet Connectivity

Building your own security policy is easy when you take it task by task. The sections that
follow are examples of tasks that might be included in a security policy. Also, one of the best
resources for security information and policy templates is the SANS Institute, which can be
found at www.sans.org.

Your policy should be reasonable and regularly seen by the subjects who are governed by it.
Post a copy in your company’s break room or on a bulletin board. Also, e-mail the security
policy to company members or make it available over the network, such as in an Acrobat
PDF file. Also, send reminders about the location of the policy and notify users about
updates to the policy.

Ensuring Password Security
One of the most important keys to system security is having hard-to-guess passwords. This
is called using a “strong” password that employs the following guidelines:

■ Is six or more characters in length

■ Does not contain a regular word, such as one found in the dictionary, or a name of
a person or place

■ Does not contain more than two or three letters already employed in the user
account name

■ Uses a hard-to-guess combination of uppercase and lowercase letters,numbers, and
nonalphanumeric characters (nonalphanumeric characters include characters such
as *, &, ^, !, #, +, =, %, and $)

Also, if you are the system administrator, it is important to understand how user account and
password information is stored in your system. When the user logs in to access resources, the
password file is checked to permit login authorization. The password file (/etc/passwd)
contains the following kinds of information:

■ The user name

■ An encrypted password or a reference to a shadow file, a file associated with the
password file that makes it difficult for intruders to determine the passwords of
others (if the shadow file capability is turned on)

■ The user identification number (UID), which can be a number as large as 60000

■ A group identification number (GID) with which the user name is associated

■ Information about the user, such as a description or the user’s job

■ The location of the user’s home directory

■ A command that is executed as the user logs in, which is usually the shell to start

Typically, the /etc/passwd file must be readable to all users to permit them to log in.
Fortunately, many UNIX/Linux systems enable you to place the encrypted password in the
shadow (/etc/shadow) file instead of in the /etc/passwd file, so that the /etc/passwd file only

Security Hardening 663

E

www.sans.org

contains a pointer to the /etc/shadow file. The /etc/shadow file is normally available only
to the system administrator for better security. Besides passwords for accounts, the shadow
file contains password restriction information that includes the following:

■ The minimum and the maximum number of days between password changes

■ Information on when the password was last changed

■ Warning information about when a password will expire

■ Amount of time that the account can be inactive before access is prohibited

When you set up your system, plan to use the /etc/shadow file capabilities. In Fedora and
Red Hat Enterprise Linux, for example, you can do this in the GNOME desktop by using
the following general steps:

1. Log in as root.

2. Click the System menu, point to Administration, and click Authentication.

3. Click the Options tab, if it is not already displayed.

4. Check the Use Shadow Passwords check box, if it is not already selected.

5. Click OK.

In SUSE, the /etc/shadow file is automatically configured for use by the user authentication
module called pam_unix2.so.

In conjunction with the use of the /etc/shadow file,plan to use password restriction options,
such as requiring that users change their passwords at specific intervals. You can use these
options either with the command-line utility to create the user account, such as Linux’s
useradd command (check your man pages for information), or with the desktop tool used to
create user accounts, such as the User Manager in Fedora and Red Hat Enterprise Linux and
the User Management option in SUSE’s YaST system management tool. Also, encourage
users to regularly change their own passwords using the appropriate command-line utility,
such as passwd in Linux.

Managing Unnecessary Services
When your system is connected to a network, one way an intruder can access or compro-
mise your system is through using a service that you do not typically use. You can increase
the security on your system by stopping services that are not in use. For example, if you use
SSH instead of Telnet for remote communications, consider stopping the Telnet service.
When you use the GNOME desktop, you can access the Services Configuration tool in
Fedora and Red Hat Enterprise Linux for starting or stopping a service. You can also use the
tool to completely delete a service, add a new service, or configure the run level of a service.
In SUSE you use the System Services (Runlevel) tool to enable or disable services.

664 Appendix E Unix/Linux Security: Network and Internet Connectivity

The steps for accessing the Services Configuration tool in Fedora and Red Hat Enterprise
Linux with GNOME are as follows:

1. Log in as root.

2. Click the System menu, point to Administration, and click Services.

3. Ensure that the Background Services tab is selected. Click any service in the
left pane to see a description of the service and determine if the service is
running (the service’s status).

4. Use the Start or Stop buttons to start or stop a particular service that you’ve
selected in the left pane.

To use the System Services (Runlevel) tool in SUSE:

1. Log in as root.

2. Click the Computer menu.

3. Click Control Center.

4. Click System in the left pane.

5. ClickYaST in the right pane.

6. Click System in the left pane of theYaST window.

7. Click System Services (Runlevel) in the right pane ofYaST (you may need to
scroll to find this selection).

8. Notice that the Enabled column shows whether a service is enabled or
disabled.Also, you can click a particular service to view a more complete
description in the bottom of the window.

9. To enable or disable a service, click the service and then click the Enable or
Disable button.

10. Click Finish when you are done and close any remaining windows.

Viewing Log Files on a Regular Basis
Linux has many useful log files that provide all kinds of information about your system and
about security. Some show only boot messages, some warn of security issues, and many
simply write to the log file when a given action, error, or event occurs. All are valuable
sources of system information and should be examined regularly.

The default location for log files in Linux is the /var/log/ directory. Because our focus is on
security, let’s look at some of the most useful logs your system keeps by default:

■ boot.log—Lists messages from the boot process

Security Hardening 665

E

■ cron—Shows information about cron tasks (cron refers to the crond daemon that
runs many ordinary tasks and applications in UNIX/Linux)

■ error_log—Lists information about system and application errors and is typically
found in the directory /var/log/cups

■ maillog—Contains mail server activities

■ messages—Lists messages from the system, such as indications of problems, changes
to run levels, I/O activities, networking activities, and when services are started or
stopped

■ secure—Provides messages relating to security

■ Xorg.O.log—Provides messages relating to the X Window interface

In Fedora and Red Hat Enterprise Linux with the GNOME desktop, you can view several
of these logs using the following steps:

1. Log into root.

2. Click the System menu, point to Administration, and click System Log.

3. The individual logs are listed in the left pane.

4. Click any log, such as messages, to view its contents in the right pane.

5. Close the window when you are finished.

To view the logs in SUSE:

1. Log in as root.

2. Click the Computer menu.

3. Click Control Center.

4. Click System in the left pane.

5. ClickYaST in the right pane.

6. Click Miscellaneous in the left pane of theYaST window.

7. ClickView System Log (to see the messages log by default).

8. Close the window when you are finished.

Keeping Up with Security Fixes and Patches
For many operating systems, the operating system provider offers updates for security and
other fixes or enhancements.Keeping current on security updates is one of the best methods
for ensuring the security of your system. Often, updates are provided to close security holes
recently discovered or to foil a new virus or other malicious software.

666 Appendix E Unix/Linux Security: Network and Internet Connectivity

Fedora, Red Hat Enterprise Linux, and SUSE all have tools to enable you to obtain
operating system updates and patches.To obtain the updates, you need an Internet connec-
tion and you should have already registered your operating system. The general steps for
starting the update process in Fedora and Red Hat Enterprise Linux are as follows:

1. Log on as root.

2. Click the Applications menu, point to System Tools, and click Software
Updater.

3. Select the updates to install and click Apply Updates.

Fedora and Red Hat Enterprise Linux also come with an update alert feature.
When a new security update is available, you see an icon near the clock in the
top Panel. Click the icon or wait for a warning notice box from the icon to
appear from which you can click the Apply Updates button.

The general steps for accessing updates and patches in SUSE are:

1. Log in as root.

2. Click the Computer menu.

3. Click Control Center.

4. Click System in the left pane.

5. ClickYaST in the right pane.

6. Click Software in the left pane in theYaST window.

7. Click Online Update.

8. Select the updates to install and click Accept.

Monitoring Your System Automatically
Plan to regularly monitor your system for possible security problems. You can automate
many of the functions of monitoring by using the tools already installed on your system. To
illustrate, this section walks you through automating system monitoring by regularly
capturing information from the top command (see Chapter 8,“Exploring the UNIX/Linux
Utilities”).

To get a system snapshot on an hourly basis using the crontab utility, the top utility, and the
mail command:

1. Log in as the root user.

2. Access the command line, such as by opening a terminal window.

3. Edit the crontab file by typing crontab -e.

4. When the file opens in vi, press the i on your keyboard to begin inserting text.

Security Hardening 667

E

5. On a single line, type the following (the period is not part of the command):
* 0-23 * * 1-5 top -nl | mail root.

This causes the system to run the top command one time every hour, Monday
through Friday, for every week in the month and year. The system e-mails the
output of this command to you, the root user. Be certain to check your inbox
using the mail command (see Chapter 8).

6. Press the Esc key, type :wq and then press Enter to exit the file.

7. Your system should return a text message similar to the following:

no contab for root – using an empty one
crontab: installing new crontab

You can also use many other commands in addition to the top command. Here is a list of
several useful commands:

■ vmstat—This command shows the current state of the processor, the memory, the
swap space, the I/O system, the system, and the CPU.

■ netstat—The netstat command can show you many things about the network
connections to your computer. In particular, use netstat -s for statistics on all loaded
protocols. Also, without the -s option, netstat shows the users connecting, their
originating addresses, and the ports and protocols they are using to connect. See
Chapter 8 for more about netstat.

■ ps—Consider regularly using ps -aux. This shows the current state of all system
processes, including all background processes that are being run by daemons.

■ pstree—This command is used with various options. It can show all processes in a
tree-like format that helps you visualize what’s responsible for what processes. It
also assists in eliminating some security risks associated with giving too many
permissions to users.

Use the man pages to find out more about these commands.

Securing Your Folders and Files
When you set up a system or create a new folder or file, be certain that you use the proper
security. Good folder and file security ensures that only authorized users access information
or run specific programs. Use the chmod command, as you learned in Chapter 2,“Exploring
the UNIX/Linux File Systems and File Security,” to configure security on folders and files.
Typically, if specific users do not need access to a folder or file, you should ensure that they
have no permissions on that folder or file. Also, for those who need access, give them only
the appropriate permissions to match the type of access they require. This step protects both
those who should have access and those who should not.

668 Appendix E Unix/Linux Security: Network and Internet Connectivity

USING KERBEROS AUTHENTICATION

One way to harden security on a network is to use Kerberos authentication. Kerberos is a
security system developed by the Massachusetts Institute of Technology to enable two
parties on an open network to communicate without interception from an intruder, by
creating a unique encryption key for each communication session.Note however, that other
computers with which you communicate on the network must also be configured for
Kerberos.

The general steps to enable Kerberos in Fedora or Red Hat Enterprise Linux are as follows:

1. Log into root.

2. Click the System menu.

3. Point to Administration and click Authentication.

4. Access the Authentication tab and check the Enable Kerberos Support check
box.Also click the Configure Kerberos button to configure the authentication
for your particular site and click OK.

5. Close the Authentication Configuration window.

The general steps for enabling Kerberos in SUSE are:

1. Log into root.

2. Click the Computer menu.

3. Click Control Center.

4. Click System in the left pane.

5. ClickYaST in the right pane.

6. Click Security and Users in the left pane of theYaST window.

7. Click User Management in the right pane.

8. Click the Expert Options button.

9. Click Authentication and User Sources.

10. Click the Configure button.

11. Click Kerberos (you may need to click Continue, insert one or more of the
SUSE CDs/DVDs, and click OK for each CD/DVD to install the software
packages for Kerberos).

12. Click Use Kerberos.

13. Complete the Basic Kerberos Setting parameters to match your site.

14. Click Finish.

15. Close all windows when you are finished configuring Kerberos.

Using Kerberos Authentication 669

E

This page intentionally left blank

Glossary
.bashrc file — A file in your home directory that you

can use to customize your work environment and
specify what occurs each time you log in. Each time
you start a shell, that shell executes the commands in
.bashrc.

/boot partition — A partition that is used to store the
operating system files that compose the kernel.

/home partition — A partition that is on the home
directory and provides storage space for all users’
directories. A separate section of the hard disk, it
protects and insulates users’ personal files from the
UNIX/Linux operating system software.

/usr partition — A partition in which to store some
or all of the nonkernel operating system programs
that will be accessed by users.

/var partition — A partition that holds temporarily
created files, such as files used for printing documents
and log files used to record monitoring and adminis-
tration data.

absolute path — A pathname that begins at the root
file system directory and lists all subdirectories to the
destination file.

algorithm — A sequence of instructions, programming
code, or commands that results in a program or that
can be used as part of a program.

alias — A name that represents a command. Aliases are
helpful in simplifying and automating frequently used
commands.

applet — Usually a program or small software applica-
tion that is represented by an icon. In the X Window
GNOME and KDE desktops, an applet can be
placed on the Panel or the Kicker for fast access.

argument — Text that provides UNIX/Linux with
additional information for executing a command. On
the command line, an argument name follows an

option name, and a space separates the two. Examples
of arguments are file and directory names.

arithmetic operator — A character that represents a
mathematical activity. Arithmetic operators include
+ (addition), - (subtraction), * (multiplication), and
/ (division).

array — A variable that stores an ordered list of scalar
values that is accessed with numeric subscripts, start-
ing at zero.

ASCII — An acronym for American Standard Code for
Information Interchange, a standard set of bit pat-
terns organized and interpreted as alphabetic charac-
ters, decimal numbers, punctuation marks, and special
characters. The code is used to translate binary num-
bers into ordinary language, and, therefore, makes
information stored in files accessible. ASCII can rep-
resent up to 256 characters (bit patterns).

assembler — The program that is called by a compiler
to translate assembly code into object code.

assembly language — A low-level language that pro-
vides maximum access to all the computer’s devices,
both internal and external. Writing an assembly lan-
guage program requires a great deal of coding and time.

authentication — The process of verifying that a user
is authorized to access a particular computer, server,
network, or network resource, such as Telnet or FTP.

automatic variable — A variable declared inside a
function and local to the function in which it is
declared.

Bash shell — A UNIX/Linux command interpreter
(and the default Linux shell). Incorporates the best
features of the Bourne shell and the Korn shell. Its
name is an acronym for “Bourne Again Shell.”

671

Berkeley Software Distribution (BSD) — A distribu-
tion of UNIX developed through the University of
California at Berkeley, which first distributed the BSD
UNIX version in 1975.

binaries — The programs residing in the /bin directory
and elsewhere that are needed to start the system and
perform other essential tasks. See also executables.

binary file — A file containing non-ASCII characters
(such as machine instructions).

bit — The abbreviation for binary digit, a number com-
posed of one of two numbers, 0 and 1. UNIX/Linux
store all data in the form of binary digits. Because the
computer consists of electronic circuits in either an on
or off state, binary digits are perfect for representing
these states.

bitmap — The rows and columns of dots or bit patterns
that graphics software transforms into an infinite vari-
ety of images.

block special file — In UNIX/Linux, a file used to
manage random access devices that involve handling
blocks of data, including CD/DVD drives, hard disk
drives, tape drives, and other storage devices. Also
called a block device file.

body — One of two parts of HTML code. (The other
part is the head.) The body defines what appears
within the browser window.

Boolean operator — A logical operator that symbolizes
AND, OR, or NOT to evaluate a relationship, such as
a comparison of two expressions—and the result of the
evaluation is either true or false.

bootstrap loader — A utility residing in the /boot
directory that starts the operating system.

Bourne shell — The first UNIX/Linux command inter-
preter, developed at AT&T Bell Labs by Stephen
Bourne.

branch instruction — An instruction that tells a pro-
gram to go to a different section of code.

byte — The abbreviation for binary term; a string of
eight binary digits or bits. These digits can be config-
ured into patterns of bits, which, in turn, can be inter-
preted as alphabetic characters, decimal numbers,

punctuation marks, and special characters. This is the
basis for ASCII code.

C — A programming language developed in part to over-
come the disadvantages of assembly language program-
ming, which requires a great deal of coding and time.
The result is a high-level set of easy-to-understand
instructions. UNIX was originally written in assembly
language but further developed and refined in C,
largely due to the efforts of Dennis Ritchie and Brian
Kernighan of AT&T Bell Labs.

C library — A collection of functions that perform file,
screen, and keyboard operations, and many other tasks.
To perform or include one of these functions in your
program, you insert a function call at the appropriate
location in your file.

C shell — A UNIX/Linux command interpreter
designed for C programmers.

C++ — A programming language developed by Bjarne
Stroustrup of AT&T Bell Labs. Stroustrup added
object-oriented capabilities and other features to the
C language.

case logic — One of the four basic shell logic structures
employed in program development. Using case logic, a
program can perform one of many actions, depending
on the value of a variable and matching results to a
test. It is often used when there is a list of several
choices.

case sensitive — A property that distinguishes uppercase
letters from lowercase letters—for example, John differs
from john. UNIX is case sensitive.

character special file — A UNIX/Linux I/O manage-
ment file used to handle byte-by-byte streams of data,
such as through serial or USB connections, including
terminals, printers, and network communications. Also
called a character device file.

child — A subdirectory created and stored within a (par-
ent) directory.

class — A data structure in the C++ programming
language that enables the programmer to create
abstract data types. In this context, an abstract data type
is one defined by the programmer for a specific pro-
gramming task.

672 Glossary

client — A computer on a network running programs or
accessing files from a mainframe, network server, or
host computer.

command — Text typed after the command-line prompt
that requests that the computer take a specific action.

command line — The onscreen location for typing
commands.

command mode — A feature of a modal editor that lets
you enter commands to perform editing tasks, such as
moving through the file and deleting text. The
UNIX/Linux vi editor is a modal editor.

Common Gateway Interface (CGI) — A protocol or
set of rules governing how browsers and servers
communicate. Any script that sends information to
or receives information from a server must follow
these rules.

compiler — A program that reads the lines of code in a
source file, converts them to machine-language
instructions or calls the assembler to convert them into
object code, and creates a machine-language file.

compiling — A process of translating a program file into
machine-readable language.

configuration variable — A variable that stores infor-
mation about the operating system and does not
change the value.

constant — A value in program code that does not
change when the program runs.

control string — An argument that specifies how for-
matting should occur when using the screen output
library function printf().

control structures — See logic structures.

core file — A type of garbage file created when an
executing program attempts to do something illegal,
such as accessing another user’s memory.

daemon — A specialized system process that runs in the
background. A daemon accesses UNIX/Linux system
code like any other part of the operating system.

debugging — The process of going through program
code to locate errors and then fixing them.

decision logic — One of the four basic shell logic struc-
tures used in program development. In decision logic,
commands execute only if a certain condition exists.
The if statement is an example of a coded statement
that sets the condition(s) for execution.

decrement operator (--) — A C/C++ arithmetic
operator that decreases the value of a variable by a
specified amount.

defining operator — Used to assign a value to a
variable.

desktop — The overall screen display and software that
provides the specific GUI appearance and includes
software applications and other resources for a UNIX/
Linux system that has X Window installed—and works
hand in hand with a Window Manager.

device special file — A file used in UNIX/Linux for
managing I/O devices. It can be one of two types:
block special file or character special file.

diamond operator (<>) — The operator used in Perl
to access data from an open file. Each time the dia-
mond operator is used, it returns the next line from
the file.

directory — A special type of file that can contain other
files and directories. Directory files store the names of
regular files and other directories, called subdirectories.

domain name — A name that identifies a grouping of
computer resources on a network. Internet-based
domain names consist of three parts: a top-level
domain (such as a country or organization type), a
subdomain name (such as a business or college name),
and a host name (such as the name of a host
computer).

editor — A program for creating and modifying com-
puter documents, such as program and data files.

Enhanced IDE (EIDE) — An improved version of IDE
that offers faster data transfer speeds and is commonly
used in modern computers. See also Integrated Drive
Electronics.

Glossary 673

environment variable — A value in a storage area that
is read by UNIX/Linux when you log in. Environ-
ment variables can be used to create and store default
settings, such as the shell that you use or the command
prompt format you prefer.

evaluating operator — Enables you to evaluate the
contents of a variable, such as by displaying the
contents.

ex mode — A text-editing command mode, currently
used in the vi editor, that employs an extended set of
commands initially used in an early UNIX editor
called ex.

executable file — A usable program, the result of the
program development cycle.

executable program file — Also called an executable; a
compiled file (from a programming language) or an
interpreted file (from a script) that can be run on the
computer.

executables — The programs residing in the /bin direc-
tory that are needed to start the system and perform
other essential tasks. See also binaries.

exit status — A numeric value that the test command
returns to the operating system when test finishes per-
forming an evaluation of an expression, string, integer,
or other information. If the exit status is 0 (zero), the
test result is true. An exit status of 1 indicates the test
result is false.

extended file system (ext or ext fs) — The file system
designed for Linux that is installed, by default, in Linux
operating systems. It enables the use of the full range
of built-in Linux commands, file manipulation, and
security. Released in 1992, ext had some bugs and sup-
ported only files of up to 2 GB. In 1993, the second
extended file system (ext2 or ext2 fs) was designed to
fix the bugs in ext, and supported files up to 4 TB. In
2001, ext3 (or ext3 fs) was introduced to enable jour-
naling for file and data recovery. ext4 was introduced
in 2006, enabling a single volume to hold up to
1 exabyte of data and supporting the use of extents.
ext, ext2, ext3, and ext4 support file names up to
255 characters.

extent — A portion of a disk, such as a block or series of
blocks, that is reserved for a file and that represents

contiguous space, so that as the file grows, all of it
remains in the same location on disk. The use of
extents reduces file fragmentation on a disk, which
reduces disk wear and the time it takes to retrieve
information.

file — The basic component for data storage.

file system — An operating system’s way of organizing
files on mass storage devices, such as hard and floppy
disks. The organization is hierarchical and resembles an
inverted tree. In the branching structure, top-level files
(or folders or directories) contain other files, which in
turn contain other files.

File Transfer Protocol (FTP) — An Internet protocol
for sending and receiving files.

filehandle — An input/output connection between a
Perl program and the operating system. It can be used
inside a program to open, read, write, and close
the file.

fixed-length record — A record structure in a file in
which each record has a specified length, as does each
field in a record.

flat ASCII file — A file that you can create, manipulate,
and use to store data, such as letters, product reports, or
vendor records. Its organization as an unstructured
sequence of bytes is typical of a text file and lends
flexibility in data entry, because it can store any kind of
data in any order. Any operating system can read this
file type. However, because you can retrieve data only
in the order you entered it, this file type’s usefulness is
limited. Also called an ordinary file or regular file.

flowchart — A logic diagram that uses a set of standard
symbols to explain the logic in a program’s sequence
and each action performed in the sequence.

function — A separate body of code designed to con-
tribute to the execution of a single task. You can put
together a number of functions to create a program. In
some languages, functions are called subroutines or
procedures.

function call — A feature that you insert in the appro-
priate location of a program file to specify and use one
of the functions in the C/C++ library or a user-
defined function.

674 Glossary

function overloading — A feature of the C++ pro-
gramming language that lets functions respond to
more than one set of criteria and conditions.

function prototype — A C program statement line that
tells the C compiler about a function before the code
for the function is fully defined.

garbage file — A temporary file, such as a core file, that
loses its usefulness after several days.

glob — A character used to find or match file names;
similar to a wildcard. Glob characters are part of glob
patterns.

glob pattern — A combination of glob characters used
to find or match multiple file names.

GNU Network Object Model Environment
(GNOME) — A desktop environment produced by
the GNU Project and that must be used with a
Window Manager.

GNU Project — An organization created to develop a
free, UNIX-like operating system named GNU.

graphical user interface (GUI) — Software that trans-
forms bitmaps into an infinite variety of images, so that
when you use an operating system you see graphical
images.

group id (GID) — A number used to identify a group
of users.

hash — A variable representing a set of key/value pairs. A
percent sign (%) precedes a hash variable.

head — One of two parts of HTML code. (The other
part is the body.) The head contains the title, which
appears on the title bar of your browser window.

header file — A file containing the information the
compiler needs to process standard input or output
statements.

hidden file — A file that the operating system uses to
keep configuration information, among other
purposes. The name of a hidden file begins with a dot.

high-level language — A computer language that uses
English-like expressions. COBOL,Visual Basic (VB),
C, and C++ are high-level languages.

host — See server.

hot fixes — The ability to automatically move data on
damaged portions of disks to areas that are not
damaged.

hyperlink — The text or object in a Web document that,
when clicked, loads another document and displays it
in the browser window.

Hypertext Markup Language (HTML) — A format
for creating documents and Web pages with embedded
codes known as tags.

icon — A small graphic symbol in a GUI that represents
a program or an action that can be started by clicking
or double-clicking the symbol.

identifiers — The names given to variables and
functions.

increment operator (++) — A C/C++ arithmetic
operator that increases the value of a variable by a
specified amount.

information node or inode — A system for storing
essential information about directories and files. Inode
information includes (1) the name of a directory or
file, (2) general information about that directory/file,
and (3) information (a pointer) about how to locate
the directory/file on a disk partition.

inline sort block — A compact Perl notation that
replaces an if-else statement and eliminates the need for
a separate subroutine.

input validation — A process a program performs to
ensure that the user has entered acceptable informa-
tion, such as preventing a user from entering a dupli-
cate record in a data file.

insert mode — A feature of a modal editor that lets you
enter text. The UNIX/Linux vi editor is a modal
editor.

Integrated Drive Electronics (IDE) — Sometimes
called Integrated Device Electronics, the most popular
electronic hard disk interface for personal computers.
This is the same as the ANSI Advanced Technology
Attachment (ATA) standard.

Internet Protocol (IP) — A network protocol or com-
munications language that handles addressing and rout-
ing of information over a network so that it reaches
the correct destination.

Glossary 675

Internet Protocol (IP) address — A set of four num-
bers (for the commonly used IP version 4) separated
by periods—for example, 172.16.1.61—and used to
identify and access remote computers on a network or
over the Internet.

interpreter — A UNIX/Linux shell feature that reads
statements in a program file, immediately translates
them into executable instructions, and then runs the
instructions. Unlike a compiler, an interpreter does not
produce a binary (an executable file) because it trans-
lates the instructions and runs them in a single step.

journaling — The process of keeping chronological
records of data or transactions so that if a system
crashes without warning, the data or transactions can
be reconstructed or backed up to avoid data loss or
information that is not properly synchronized.

KDE — A popular desktop environment for X Window
that must be used with a Window Manager.

kernel — The basic operating system, which interacts
directly with the hardware and services user programs.

Kernel mode — A means of accessing the kernel. Its use
is limited to the system administrator to prevent unau-
thorized actions from interfering with the hardware
that supports the entire UNIX/Linux structure.

key — A common field in every file record shared by
each of one or more files. The common field, or key,
enables you to link or join information among the
files, such as for creating a report.

keywords — The components of all programming
languages; these words have special meaning and must
not be used as variable or function names.

Kicker — A bar appearing on the KDE desktop that
contains icons, applets, menus, and other elements that
can be used to start programs or display windows in
KDE. Also see Panel.

Konqueror — An application that opens into a window
and enables the user to manage files, browse the net-
work and Internet, and view documents.

Konqueror I/O (KIO) plugin — Programs and utili-
ties that add new functionality to the native capabilities
of the Konqueror browser and file manager.

Korn shell — A UNIX/Linux command interpreter that
offers more features than the original Bourne shell.
Developed by David Korn at AT&T Bell Laboratories.

line editor — An editor that lets you work with only
one line or a group of lines at once. Although you
cannot see the context of your file, you might find a
line editor useful for tasks such as searching, replacing,
and copying blocks of text.

line-oriented command — A command that can per-
form more than one action, such as searching and
replacing, in more than one place in a file. When
using a line-oriented command, you must specify the
exact location where the action is to occur. These
commands differ from screen-oriented commands,
which execute relative to the location of the cursor.

linker — In program development, the tool used after the
compiler to link all object files that belong to the pro-
gram and any library programs the program might use.

localhost — A name given to the computer that is asso-
ciated with the loopback address of 127.0.0.1. See also
loopback.

log in — A process that protects privacy and safeguards a
multiuser system by requiring each user to type a user
name and password before using the system.

logic structures — The techniques for structuring pro-
gram code that affect the order in which the code is
executed or how it is executed, such as looping back
through the code from a particular point or jumping
from one point in the code to another. Also called
control structures or control logic.

logical structure — The organization of information in
files, records, and fields, each of which represents a
logical entity, such as a payroll file, an employee’s pay
record, or an employee’s Social Security number.

login script — A script that runs just after you log in to
your account.

676 Glossary

loopback — A feature that helps you experiment with
and test HTML documents, or Web pages, using a
UNIX or Linux system. To use localhost, you need
not be connected to the Internet. Located on your
PC, localhost also accesses your PC’s internal network.
Use localhost to ensure that networking is properly
configured.

looping logic — One of the four basic shell logic struc-
tures used in program development. In looping logic, a
control structure (or loop) repeats until some specific
condition exists or some action occurs.

machine language — The exclusive use of 0s (which
mean off) and 1s (which mean on) to communicate
with the computer. Years ago, programmers had to
write programs in machine language, a tedious and
time-consuming process.

macro — A set of commands that automates a complex
task. A macro is sometimes called a superinstruction.

main() — A required function in a C or C++ program.
A C/C++ program is made up of one or more
functions. Every function must have a name, and every
C/C++ program must have a function called main().

mainframe — A large computer that has historically
offered extensive processing, mass storage, and client
access for industrial-strength computing. Mainframes
are still in use today, but many have been replaced by
PC-type computers that are designed as servers with
powerful processing and disk storage capabilities.

makefile — A file used with the make utility that con-
tains instructions for a project consisting of multiple
source and executable files.

man pages — The online manual pages for UNIX/
Linux commands and programs that can be accessed
by entering man plus the name of the command or
program.

manipulation and transformation commands — A
group of commands that alter and format extracted
information so that it’s useful and can be presented in
a way that is appealing and easy to understand.

method — A set of operations that manipulate data; a
part of the new data class, objects, used in the C++
programming language.

modal editor — A text editor that enables you to work
in different modes. For example, the vi editor has three
modes: insert, command, and ex.

mount — The process of connecting a file system to the
directory tree structure, making that directory
accessible.

Multipurpose Internet Mail Extensions (MIME) —
A communications standard that supports sending and
receiving binary files in mail messages.

multitasking system — An operating system that
enables a computer to run two or more programs at
the same time.

multiuser system — A system in which many people
can simultaneously access and share a server computer’s
resources. To protect privacy and safeguard the system,
each user must type a user name and password in order
to use, or log in to, the system. UNIX and Linux are
multiuser systems.

Nautilus — An application that opens into a window and
is used to manage files and folders. Also called Nauti-
lus File Manager.

nest — When creating program code, a practice of layer-
ing statements at two or more levels under an original
statement structure.

network — A group of computers connected by net-
work cable or wireless communications to allow many
users to share computer resources and files. It com-
bines the convenience and familiarity of the personal
computer with the processing power of a mainframe.

Network File System (NFS) — Enables file transfer
and other shared services that involve computers run-
ning UNIX/Linux.

null character — A single byte whose bits are all set
to zero.

object code — The binary instructions translated from
program source code by a compiler.

object-oriented programming — A method of pro-
gramming that uses objects for programming and han-
dling data—allowing the data to be described by name
and type anywhere in the program.

Glossary 677

objects — A new data class introduced in the C++
programming language. An object is a collection of
data and a set of operations called methods that
manipulate data.

open source software — Software and accompanying
source code that is available to the general public free
of charge.

operand — The variable name that appears to the left of
an operator or the variable value that appears to the
right of an operator. For example, in NAME=Becky,
NAME is the variable name, = is the operator, and
Becky is the variable value. Note that no spaces sepa-
rate the operator and operands.

operating system (OS) — The most fundamental com-
puter program, it controls all the computer’s resources
and provides the base upon which application pro-
grams can be used or written.

options — The additional capabilities you can use with a
UNIX/Linux command.

ordinary user — Any person who uses the system,
except the system administrator or superuser.

output redirection operator — The greater-than sign
(>) is one example of a redirection operator. Typing >
after a command that produces output creates a new
file or overwrites an existing file and then sends output
to a disk file, rather than to the monitor.

Panel — A bar in the the GNOME desktop that contains
icons and applets for opening menus or applications.
Also see Kicker.

parent — The directory in which a subdirectory (child)
is created and stored.

partition — A separate section of a disk that holds a file
system and that is created so activity and problems
occurring in other partitions do not affect it.

PATH variable — A path identifier that provides a list of
directory locations where UNIX/Linux look for
executable programs.

pathname — A means of specifying a file or directory
that includes the names of directories and subdirecto-
ries on the branches of the tree structure. A forward

slash (/) separates each directory name. For example,
the pathname of the file phones (the destination file)
in the source directory of Jean’s directory within the
/home directory is /home/jean/source/phones.

peer-to-peer network — A networking configuration
in which each computer system on the network is
both a client and a server. Data and programs reside on
individual systems, so users do not depend on a central
server. The advantage of a peer-to-peer network is
that if one computer fails, the others continue to
operate.

peripherals — The equipment connected to a computer
via electronic interfaces. Examples include hard disk
and CD/DVD disc drives, printers, and keyboards.

permission — A specific privilege to access and manipu-
late a directory or file, for example, the privilege to
read a file.

personal computer (PC) — A single, stand-alone
machine, such as a desktop or laptop computer, that
performs all input, output, processing, and storage
operations.

physical file system — A section of the hard disk that
has been formatted to hold files.

pipe operator (|) — The operator that redirects the
output of one command to the input of another
command.

port — The process of adapting software so that it can be
moved from one type of computer or operating system
to another.

portability — A characteristic of an operating system
that allows the system to be used in a number of dif-
ferent environments, particularly on different types of
computers. UNIX and Linux are portable operating
systems.

Portable Operating System Interface for UNIX
(POSIX) — Standards developed by experts from
industry, academia, and government through the Insti-
tute of Electrical and Electronics Engineers (IEEE) for
the portability of applications, including the standard-
ization of UNIX features.

678 Glossary

Practical Extraction and Report Language (Perl) —
A scripting language that has features of C program-
ming, shell scripting, and Awk. Created by Larry Wall
in 1987 as a simple report generator, Perl has evolved
to become a powerful and popular tool for creating
interactive Web pages.

preprocessor — The routine that is used after initial
application development and before the compiler to
make necessary modifications to the program and to
include the contents of other files.

preprocessor directive — A statement that you place in
your program to instruct the preprocessor to modify
your source code in some way. A preprocessor direc-
tive always begins with the # symbol. An example is
#include, which tells the preprocessor to include
another file or library in your program.

process id (PID) — An identification number that the
operating system assigns to a process for managing and
tracking that process.

program development cycle — The process of devel-
oping a program, which includes (1) creating program
specifications, (2) the design process, (3) writing code,
(4) testing, (5) debugging, and (6) correcting errors.

prototype — A running model, which lets programmers
review a program before committing to its design.

pseudocode — The instructions that are similar to actual
programming statements. Used to create a model that
might later become the basis for a program.

record layout — A program and data file design step that
identifies the fields, types of records, and data types to
be used in data files.

redirection operator — An operator or symbol that
changes the input or output data stream from its
default direction, such as using > to redirect output to
a file instead of to the screen.

regular file — A UNIX/Linux reference to ASCII/text
files and binary files. Also called an ordinary file.

relational database — A database that contains files that
UNIX/Linux treat as tables, records that are treated as
rows, and fields that are treated as columns and that
can be joined to create new records. For example,

using the join command, you can extract information
from two files in a relational database that share a com-
mon field.

relational operator — Compares the relationship
between two values or arguments, such as greater than
(>), less than (<), equal to (=), and others.

relative path — A pathname that begins at the current
working directory and lists all subdirectories to the
destination file.

remote procedure calls (RPCs) — Enable services and
software on one computer to use services and software
on a different computer.

root — The system administrator’s unique user name, a
reference to the system administrator’s ownership of
the root account and unlimited system privileges. Also,
root has two other meanings: (1) the basis of the tree-
like structure of the UNIX/Linux file system and the
name of the file (root directory) located at this level
and (2) the home directory for the root account.

root file system directory — The main or parent
directory (/) for all other directories (the highest level
of the file system); also can refer to the directory in
which the system administrator’s files are stored
(/root).

runlevel — The level of function at which a UNIX/
Linux system is running. On Linux systems, runlevels
go from 0 to 6. Also called a system state or mode.

Samba — Used by UNIX/Linux and Mac OS X sys-
tems, a utility that employs the Server Message Block
(SMB) protocol, which is also used by Microsoft
Windows systems for sharing folders and printers.
Samba enables UNIX/Linux and Mac OS X systems
to access shared Windows resources.

scalability — The capability for a computer operating
system to be used on smaller computers, such as those
with a single Intel-type processor, and on larger com-
puters, such as those with 64-bit or RISC processors
or even mainframes.

scalar — A simple variable that holds a number or a
string. Scalar variables’ names begin with a dollar
sign ($).

Glossary 679

scope — The part of the program in which a variable is
defined and accessible. The scope can be either inside
or outside a function.

screen editor — An editor supplied by the operating
system that displays text one screen at a time and lets
you move around the screen to add and change text.
UNIX/Linux have two screen editors: vi and Emacs.

screen-oriented command — A command that
executes relative to the position of the cursor. Screen-
oriented commands are easy to type, and you can
readily see their result on the screen. These commands
differ from line-oriented commands, which execute
independently of the location of the cursor.

Secure Shell (SSH) — A form of authentication devel-
oped for UNIX/Linux systems to provide authentica-
tion security for TCP/IP applications, including FTP
and Telnet.

selection commands — The file-processing commands
that are used to extract information.

sequential logic — One of four basic logic structures
used for program development. In sequential logic,
commands execute in the order they appear in the
program, except when a branch instruction changes
the flow of execution.

server — The computer that has a network operating
system and, as a result, can accept and respond to
requests from user programs running on other com-
puters (called clients) in the network. Also called
a host.

server operating system — An operating system that
controls the operations of a server or host computer,
which accepts and responds to requests from user pro-
grams running on other computers (called clients) on
the network.

server-based network — A centralized approach to
networking, in which client computers’ data and pro-
grams reside on the server.

set group ID (SGID) bit — Enables the owner of a
program to keep full ownership, but also gives mem-
bers of a group temporary ownership while executing
that program.

set user ID (SUID) bit — Enables the owner of a pro-
gram to retain full ownership, but also gives an ordi-
nary user temporary ownership while executing that
program.

shared library images — The files residing in the /lib
directory that programmers use to share code, rather
than copying this code into their programs. Doing so
makes their programs smaller and faster.

shell — An interface between the user and the operating
system.

shell function — A group of commands stored in
memory and assigned a name. Shell functions simplify
the program code. For example, you can include a
function’s name within a shell script so the function’s
commands execute as part of the script. You can also
use shell functions to store reusable code sections, so
that you do not need to duplicate them.

shell script — A text file that contains sequences of
UNIX/Linux commands that do not need to be con-
verted into machine language by a compiler.

shell script operator — The symbols used with shell
scripts that define and evaluate information, that per-
form arithmetic actions, and that perform redirection
or piping operations.

shell variable — A variable you create at the command
line or in a shell script. It is valuable for use in shell
scripts for storing information temporarily.

Small Computer System Interface (SCSI) — Pro-
nounced “scuzzy,” a popular and fast electronic hard
disk interface commonly used on network servers.
SCSI is actually a set of standards that defines various
aspects of fast communications with a hard disk.

sorting key — A field position within each line of a file
that is used to sort the lines. For instance, in the com-
mand sort -k 2 myfile, myfile is sorted by the second
field in that file. The sort command sorts the lines
based on the sorting key.

source code — The program code that you create using
an editor and that either is interpreted, if you are using
an interpreted programming language, or is compiled,
if you are using a compiled language.

680 Glossary

source file — A file used for storing a program’s high-
level language statements (code) and created by an edi-
tor such as vi or Emacs.To execute, a source file must
be converted to a low-level machine language file con-
sisting of object code.

spaceship operator (<=>) — A special Perl operator
for numeric sorts that reduces coding requirements.

statement — A reference to a line of code that performs
an action in a program.

stderr — An acronym used by programmers for standard
error. When UNIX/Linux detect errors in programs
and program tasks, the error messages and analyses are
directed to stderr, which is often the screen (part of
the IEEE Std 1003.1 specification).

stdin — An acronym used by programmers for standard
input and used in programming to read input (part of
the IEEE Std 1003.1 specification).

stdio.h — A header file that is part of the C program-
ming language development system. This file contains
information the compiler needs so that it can process
standard input or output statements. Any C program
that performs standard input or output must include
the stdio.h header file.

stdout — An acronym used by programmers for standard
output and used in programming to write output (part
of the IEEE Std 1003.1 specification).

sticky bit — An executable permission that either causes
a program to stay resident in memory (on older
UNIX/Linux systems) or ensures that only root or the
owner can delete or rename a file (on newer systems).

string — A nonnumeric field of information treated sim-
ply as a group of characters. Numbers in a string are
considered characters rather than digits.

subdirectory — A directory under a higher or parent
directory.

subroutine or routine — A segment of code often used
over and over again that can be internal or external to
a program. A subroutine typically is identified by a
beginning control statement, such as the sub statement
in Perl, and a unique name that often reflects its
purpose.

superblock — A special data block on a partition that
contains information about the layout of blocks. This
information is the key to finding anything on the file
system, and it should never change.

superuser — See system administrator.

swap partition — A section of the hard disk separated
from other sections so that it functions as an extension
of memory, which means it supports virtual memory.
A computer system can use the space in this partition
to swap information between disk and RAM so the
computer runs faster and more efficiently.

symbolic link — A name or file name that points to and
lets you access a file using a different name in the same
directory or a file using the same or a different name
in a different directory.

symbolic name — A name used for a variable that con-
sists of letters, numbers, or characters, that is used to
reference the contents of a variable, and that often
reflects the variable’s purpose or contents.

syntax — A command’s format, wording, options, and
arguments.

syntax error — A grammatical mistake in a source file or
script. Such mistakes prevent a compiler or interpreter
from converting the file into an executable file or from
running the commands in the file.

system administrator — A user who has an account
that can manage the system by adding new users, delet-
ing old accounts, and ensuring that the system per-
forms services well and efficiently for all users.

SystemV (SysV) — A version of UNIX originating
from AT&T Bell Labs and first released as System 3 in
the early 1980s as a commercial version of UNIX.
Today, commercial and free versions based on
SystemV are available.

tags — The code embedded in a document or Web page
created with Hypertext Markup Language (HTML).
When the document is viewed with a Web browser,
such as Firefox or Internet Explorer, the tags give the
document special properties, such as foreground and
background colors, font size, and the placement of
graphical elements. You can also use tags to place
hyperlinks in a document.

Glossary 681

Telnet — An Internet terminal emulation program.

terminal — A device that connects to a server or host,
but consists only of a monitor and keyboard and has
no CPU. Sometimes called a dumb terminal.

terminal window — A special window that is opened
from a UNIX or Linux GUI desktop and that enables
you to enter commands using a shell, such as the
Bash shell.

text editor — A simplified word processor used to create
and edit documents but that has no formatting features
to boldface or center text, for example.

text file — A computer file composed entirely of ASCII
characters.

Unicode — A set of bit patterns that supports up to
65,536 characters and was developed to offer more
characters than ASCII for a broader range of lan-
guages, such as Chinese.

UNIX file system (ufs) — A hierarchical (tree struc-
ture) file system supported in most versions of UNIX/
Linux. It is expandable, supports large storage, provides
excellent security, is reliable, and employs information
nodes (inodes).

User mode — A means of accessing the areas of a system
where program software resides.

utility — A program that performs useful operations such
as copying files, listing directories, and communicating
with other users. Unlike other operating system pro-
grams, a utility is an add-on and not part of the
UNIX/Linux shell, nor a component of the kernel.

variable — A symbolic name that represents a value
stored in memory.

variable-length record — A record structure in a data
file in which the records can have variable lengths and
are typically separated by a delimiter, such as a colon.

virtual file system — A system that occupies no disk
space, such as the /proc directory. The virtual file sys-
tem references and lets you obtain information about
which programs and processes are running on a
computer.

virtual memory — A memory resource supported by
the swap partition, in which the system can swap
information between disk and RAM, allowing the
computer to run faster and more efficiently.

virtual storage — The storage that might be allocated
via different disks or file systems (or both), but that is
transparently accessible as storage to the operating sys-
tem and users.

Web server — A system connected to the Internet run-
ning Web server software, such as Apache. The Web
server software lets other users access the HTML
document via the Internet.

wildcard — A special character that can stand for any
other character or, in some cases, a group of characters
and is often used in an argument, such as ls file.*.

Window Manager — The top layer of the X Window
System and the user’s interface to the system’s
components. It controls how windows appear and how
users control them.

workspace — An area on the desktop in which you can
place icons, open windows, and add Panels or Kickers.
Desktops such as GNOME and KDE offer four virtual
workspaces by default and enable you to switch from
one to another using the Workspace Switcher.

X client — In X Window network terminology, the sys-
tem that hosts and executes a program.

X server — In X Window network terminology, the
desktop system from which the user runs a program.

X Window System — A GUI that runs on Linux and
many UNIX operating systems.

X11 — The eleventh version of the X Window System.

XFree86 — A version of X11 that was ported to the PC
and on Linux.

682 Glossary

Index
Symbols
+ (addition) operator, 515
asterisk (*) character,
79–80, 291

caret (^) character, 244–245
: (colon), 119
{} (curly brackets), 509–510
(decrement) operator,
515, 536

/ (division) operator, 515
$ (dollar sign), 24, 284
/ (forward slash), 58, 72
++ (increment) operator,
515, 536

- (minus) character,
385–389, 515

% (modulus) operator, 515
* (multiplication)
operator, 515

. (period), 116
| (pipe) operator, 215–216,
236, 241–242

(pound) symbol, 24,
277, 510

? (question mark), 79–80, 291
; (semicolon), 222–223
<=> (sort) operator, 475–478
/* symbol, 510
~ (tilde), 72, 106, 115
! character, 364
./ character, 289–290,
317–318

$_ variable, 472
== operator, 461

A
a\ command, 224
.a file extension, 471
-a option, 364
absolute paths, 75–76, 90,
101–102

addition (+) operator, 515
+ (addition) operator, 472
Advanced Technology
Attachment (ATA), 59

algorithms, 273, 306
for cursor placement,
356–358

input validation, 358–359
alias, 306
alias command, 301–302, 305,
328, 626

alphanumeric fields, sorting,
473–475

American National Standards
Institute (ANSI), 59

a.out file, 410, 507
Apache server, 478–479
applets, 572, 588, 603
applications

creating in C, 506–527
developing file-processing,
226–234

program development
cycle, 273–278

prototyping, 277
archive files, 420–423
arguments

command, 14, 15

defined, 29
passing to functions,
360–361, 392, 521–522

arithmetic operators,
286–288, 306, 514–515

arrays, 284, 465–466, 483
.asc file extension, 471
ASCII character set, 112,
113, 130

ASCII files, 112, 158
assemblers, 507, 536
assembly language, 506, 536
asterisk (*) character,
79–80, 291

AT&T Bell Labs, 5–6, 506
authentication, 5, 669

defined, 29
SSH and, 12

automatic variables, 514, 536
awk command, 176–179,
207–210, 214, 626
displaying records with,
333–334

printing output with,
231–232, 258, 259

Awk programming language,
176–178, 231
vs. Perl, 467–471

B
B language, 506
-b option, 364
back quote operator, 286
background, desktop, 578,
585, 601–602, 609–610

683

backup files, 420–423
.bak file extension, 471
Bash shell, 8, 9, 278

command-line editing
in, 22

command prompt
formatting, 73–74

defined, 29
features of, 279
login script, 346–348
logout script, 346–348
running script in, 233
viewing files in, 370

BASH variable, 281
.bash_profile file, 346–348
.bashrc file, 67, 302, 306,
346–348

BASH_VERSION
variable, 281

BEGIN keyword, 469
Bell Labs, 5–6, 506
Berkeley Software Distribution
(BSD), 6, 29, 654

/bin directory, 64
binaries, 64, 90
binary digits (bits), 112, 130
binary files, 112–113, 130
bitmaps, 130
bits, 112, 130
block special files, 64, 90, 158
body tags, 479–480, 483
Boolean operators, 352–353,
364, 372–373

Boolean tests, 352–353,
372–373

/boot directory, 64
/boot partition, 61–62, 90
boot.log file, 665
bootstrap loader, 64, 90
Bourne shell, 8, 29, 233
branch instructions, 292, 306
bytes, 112, 130

C
C compiler, 517–518
.C file extension, 471
.c file extension, 471, 507
C functions, 520–523,
533–534, 545–546

C language, 6–7, 275, 536. See
also C programming

C library, 509, 536
C loops, 518–519
-c option, 364
C programming

vs. C++ programming,
530–533

character constants, 512
comments, 510
creating programs,
507–509, 542–545

data types, 511–512
debugging, 528
declaring variables,
513–514

defining functions,
520–523

identifiers, 513
if statements, 518–519
introduction to, 506–527
keywords, 508–509
loops in, 518–519
make utility, 524–527
math operators, 514–515
preprocessor directive,
510–511

printf() function, 516–517
program format, 509–510
scanf() function, 529–530
strings, 512–513
working with files,
523–524

C shell, 8, 29, 278
C++ language, 275, 536
C++ programming

C functions and, 533–534

creating programs,
531–533, 556–558

introduction to, 530–531
cal command, 16–17, 19–20,
28, 40–41, 626

caret (^) character, 244–245
case logic, 298–299, 305, 306,
324–325, 331–332

case sensitivity, 14, 29
cat command, 26, 28, 47,
50–51, 167–168, 179,
193–195, 201, 214, 626

cc command, 517
.cc file extension, 471
cd command, 75, 89,
100–101, 626

CDPATH variable, 281
CDs, mounting, 71, 98–99
CGI (Common Gateway
Interface), 481–484

.cgi file extension, 471
CGI scripts, 482
char data type, 511, 512
character constants, 512
character special files, 64,
90, 158

character translation, 254–255
character translations,
224–225

[chars], 291
child directories, 58, 90
chmod command, 84–86, 89,
173, 214, 275–276, 319, 626

classes, 531, 536
clear command, 18, 28, 43,
355–356, 626

client/server architecture, 3–4
clients, 3, 29, 566
cmp utility, 417, 447
colon (:), 119
comm command, 214,
220–221, 235, 246–247, 626

684 Index

command line, 15, 29
for ordinary users, 24–25
for system administrators, 24

command-line editing,
22–23, 44–45

command-line history, 23, 45
command-line prompt, using
and configuring, 72–74

command mode, 115,
130, 137

command prompts, 24,
73, 73–74

command_name, 15
commands. See also specific
commands
defined, 29
differences in, between
versions, 656–657

Emacs, 123–125, 638–639
line-oriented, 119–120
man pages reference
for, 18–21

multiple, 23, 45, 46,
144–145, 241–242

redirecting output of, 245
running faster, 355
screen-oriented, 119
syntax guide, 625–639
undoing, in vi editor, 118
using, 8, 14–23
vi editor, 637–638
for viewing files, 26

comments
adding, 261–262
in C, 510
in C++, 532
using, 277–278

Common Gateway Interface.
See CGI (Common Gate-
way Interface)

communications utilities, 403
compiled files, 113–114

compilers, 274–275, 306,
505, 507
C, 517–518
installing, 507

compiling, 130
configuration files, 66–68
configuration variables,
279–283, 306

console, 66
constants, 463, 484, 512
control strings, 516, 536
control structures. See logic
structures

Coordinated Universal Time
(UTC), 16

core files, 410, 431, 439–440
cp command, 81, 89,
164–165, 179, 191–192,
405–406, 627

.cpp file extension, 471
cron file, 666
crontab utility, 667–668
csh/tchs shell, 278
Ctrl+s option, 127
Ctrl+z option, 121
cua devices, 66
curly brackets {}, 509–510
cursor

moving, in vi editor,
116–117, 138–139

placing, 356–358
cut command, 170–171, 179,
196–199, 201–203, 214,
258, 627

D
-d option, 364
daemons, 506, 536
.dat file extension, 471
data

input validation, 358–359,
365, 389–391

raw, 158
reentry, 385–389

data types
arrays, 465–466
constants, 463
hashes, 467
identifying, 463–467
numbers, 464
scalars, 463–464
specifying, in C, 511–512
strings, 464–465
variables, 463

databases, relational, 175, 181
date command, 15–16, 28,
40, 627

dd command, 122, 405–406,
436–437

debugging, 273, 306
C programs, 528
shell scripts, 300–301,
326–328

decision logic, 293–295, 306
decrement (--) operator,
515, 536

default shells, 345–346
defining operators,
285–286, 306

delete commands, vi editor,
117–118, 139–141

design process, 340–344
desktops, 568–569, 572

configuring X Windows,
578–580

defined, 588
GNOME, 572–580,
594–596

KDE, 585–586, 606–611
/dev/console file, 65
/dev directory, 64–66, 67
/dev/fdn file, 65
/dev/modem file, 65
/dev/mouse file, 65
/dev/sdxn file, 65
/dev/stn file, 65

Index 685

/dev/ttyn file, 65
/dev/ttysn file, 65
device special files, 64–66, 67,
90, 158

df utility, 407–408, 437–438
diamond operator (<>), 470,
472, 473, 484

diff command, 214, 221–222,
235, 247–249, 627

directories, 90
/bin directory, 64
/boot directory, 64
changing, 75
creating, 80, 105–107, 190
defined, 58
/dev directory, 64–66, 67
dot and dot dot addressing,
76–77, 102, 627

duplicates, 165
/etc directory, 66–68
/home directory, 68, 72
/lib directory, 68
listing contents of, 77–79,
102–103

/media directory, 69
/mnt directory, 68
navigating, 75–80, 101–102
pathnames, 72
paths, 74–76
/proc directory, 69
removing, 81, 163–164,
190–191

/root directory, 69
root hierarchy, 63–70
/sbin directory, 69
/tmp directory, 69
/usr directory, 69
/var directory, 70

disk files, accessing, in Perl,
471–473

disk usage, 407–410
division (/) operator, 515
do-while loops, 519

documents. See also files
spell checking, 416–417,
446–447

dollar sign ($), 24, 284
domain names, 11–12, 29
dot addressing, 76–77,
102, 627

dot dot addressing, 76–77,
102, 627

double data type, 511, 512
du utility, 408–409, 438–439
dump utility, 420–422
duplicate date, ensuring
against, 358–359, 389–391

duplicate lines, removing,
218–220, 246

duplicates directory, 165
DVDs, mounting, 71

E
e-mail, sending, 423–424,
450–451

-e option, 364
echo statements, 385, 627
editors, 114, 130, 131

Emacs, 114, 123–128,
148–153

introduction to, 111
line, 114
modal, 114–115
screen, 114
sed, 223–224, 250–254
text, 114
using, 114
vi, 114–123, 136–148,
186–187

emacs command, 627
Emacs editor

commands, 123–125,
638–639

copying, 127, 150–151
cutting and pasting, 127,
150–151

deleting text in, 127, 150

file creation in,
125–127, 148

help, 128
introduction to, 111
macros, 123
navigating, 127, 149–150
reformatting, 128, 152–153
searches, 127–128,
151–152

using, 114, 123–128,
148–153

embedded codes, 418–419
empty files, creating, 188
encryption, 12, 551–556
END keyword, 469
Enhanced IDE (EIDE), 59, 90
ENV variable, 281
environment variables,
279–283, 306, 313

-eq option, 364
error redirection, 161,
187–188

error_log file, 666
errors

fatal run-time, 275
logic, 275
syntax, 275, 528

eSATA drives, 59
/etc directory, 47–48, 66–68
/etc/inittab, 594
EUID variable, 281
evaluating operators, 286, 306
ex mode, 115, 130
Exceed X server, 566
execute permissions, 82
executable program files
(executables), 64, 83, 90,
113–114, 130, 536
chmod command and,
275–276

creating, in C, 508
EXINIT variable, 281
exit command, 28, 627
exit status, 350, 364

686 Index

export command, 289, 305,
315–317, 628

expressions, evaluating,
349–353, 370–375

.exrc file, 121, 348
extended file systems (ext/ext
fs), 54–56, 90–91

extents, 54–55, 91
external hard drives, 59

F
-f option, 364
fatal run-time errors, 275
FCEDIT variable, 281
Fedora, 2, 565, 641–642

installing, 642–646
terminal window in, 14

fields
extracting, from files,
170–171

sorting, in Perl, 473–478
FIGNORE variable, 281
file conversions, 405–406
file encryption, 551–556
file extensions, 471
file formats, 405–406
file permissions, configuring,
82–88, 108–109

file pointers, 523
file processing, 160–161,
201–206, 213
introduction to, 157–160
manipulation commands,
214–215, 223–225

selection commands, 214,
215–223

transformation commands,
214–215, 223–225

file-processing application
creating programmer and
project files, 229–231

designing a, 226–234
file record layouts, 227–229

implementing with shell
script, 232–233

output formatting,
231–232

record design, 226, 227
running shell script,
233–234

file-processing utilities,
401–402, 405–406

file record layouts, 227–229
file structures, 158–160
file systems

command-line prompt
and, 72–74

comparisons among, 57–58
defined, 91
extended, 54–56
introduction to, 53–58
mounting, 63, 70–72
navigating, 75–80, 102
partitions, 59–63
pathnames, 72
physical, 54
root hierarchy, 63–70
structure of, 54–55, 58
supported by UNIX/
Linux systems, 56–58

UNIX (ufs), 54
viewing available, 98
virtual, 69

file tests, 372
File Transfer Protocol (FTP),
5, 29

file types, 158
filehandles, 471–473, 484
files, 54, 91

adding text from other,
120–121

archiving, 420–423
ASCII text, 112, 158
backing up, 420–423
binary, 112–113, 130
block special, 158
character special files, 158
closing, 523

combining, 167–170,
193–196, 547–548

comparing, 221–222,
246–249, 417, 447

compiling, 113–114
configuration, 66–68
copying, 81, 106–107, 144,
164–165, 436–437

core, 410, 439–440
creating, 162–163

in Emacs, 125–127,
125–127, 148

in vi editor,
115–116, 136

deleting, 81–82, 163,
189–190

device, 64–66, 67, 158
displaying contents of,
242–243

empty, 188
executable, 64, 83, 90,
113–114, 130, 508, 536

extracting fields from,
170–171

finding, 166–167
flat ASCII, 158–159
formatting, 256
garbage, 410, 431, 439–440
header, 511, 536
hidden, 79, 91, 103–104
information storage in, 112
input/output, 524,
546–547

joining, 174–175, 206–207,
264–265

linking with keys, 227–229
listing, 102–103
making executable,
275–276

manipulating, 161–172
modes, 275–276
moving, 166
opening, 523
pattern searching. See
pattern searches

printing, 122–123

Index 687

reformatting, 128
regular, 158
restoring, 422–423
saving, in vi editor, 120,
143–144

script. See script files
securing, 668
sorting, 171–172, 199–200
source code, 273–275, 506,
507, 524–527

temporary, 69
testing, 352
testing for end of, 524
text, 112
viewing contents of, 26,
47–49, 51

working with, in C,
523–524

Filesystem Hierarchy Standard
(FHS), 69

find command, 166–167, 179,
193, 410, 439–440, 628

firewall security, 38
fixed-length records, 159,
181, 198–199

flat ASCII files, 158–159, 181
float data type, 511, 512
floppy disks, 71
flowcharting, 340–343, 365
folders, securing, 668
for loops, 295–296, 305,
321–322, 518–519, 544–545

format specifiers, 517
formatting

awk command, 207–210
output, 231–232, 353–354,
378, 516–517

pr command, 256
text, 418–420

forward slash (/), 72, 118
free command, 412–413,
442–443

fstab file, 66, 68

FUNCNAME variable, 282
function calls, 509, 536
function overloading, 530,
536, 559–560

function prototypes, 521
functions, 536. See also specific
functions
arguments, 521–522
C, 507, 520–523, 533–534,
545–546

defining, 520–521
program, 472–473
return values, 522–523
shell, 359–362, 391–394

fuser command, 628

G
g++ command, 535
garbage files, 410, 431,
439–440

gcc command, 517–518, 535
-ge option, 364
glob characters, 291, 307. See
also wildcards

glob patterns, 291, 307
GNOME. See GNU Network
Object Model Environment
(GNOME)

GNU Network Object
Model Environment
(GNOME), 13,
568–569, 588
Applications menu,
597–598

components, 571–574
Computer menu, 597–598
interacting with X Window
System, 571–580

logging out of, 606
Nautilus, 577–578,
598–601

Panel, 575–580, 603–605
shutting down from, 580

window components,
572–574, 594–596

Window Menu button,
574–575

GNU Project, 568, 588
Google, 1
graphical user interfaces
(GUIs), 8, 29, 214

greater-than sign (>), 26
Greenwich Mean Time
(GMT), 16

grep command, 214, 216–218,
235, 242–245, 330,
378–380, 628

groff command, 418–420,
448–449

group files, 67
group id (GID), 84, 91
GROUPS variable, 282
-gt option, 364
.gz file extension, 471

H
hard disk interfaces, 59
hard disk usage, 407–410
hard drive, partitioning, 59–63
hard drives, external, 59
hardware platforms, 657–658
hashes, 467, 484
head command, 26, 28, 49,
214, 242–243, 244, 628

head tags, 479, 484
header files, 511, 536
hidden files, 79, 91, 103–104
high-level languages,
273–275, 307. See also specific
languages

high-performance file system
(HPFS), 56

HISTCMD variable, 282
HISTFILE variable, 282
HISTFILESIZE variable, 282
history command, 628

688 Index

HISTSIZE variable, 282
/home directory, 68, 72
/home partition, 62, 90
HOME variable, 281
host computers, 3. See also
servers

HOSTFILE variable, 282
HOSTTYPE variable, 282
hot fixes, 54, 91
HTML editors, 479
hyperlinks, 478, 484
Hypertext Markup Language
(HTML), 478–481, 484

I
icons, 572, 580, 588, 603
identifiers, 513, 536
if-else statements, 543
if statements, 293–295, 305,
319–320, 357
in C, 518–519
modifying, 375–376

ifconfig utility, 425, 451–452
IFS variable, 281
In command, 68
#include directive, 510–511
increment (++) operator,
515, 536

info pages, 21
information nodes (inodes),
63, 91

inittab files, 67
inline sort block, 476, 484
inodes. See information nodes
(inodes)

input redirection, 161
input validation, 358–359,
365, 389–391

INPUTRC variable, 282
insert mode, 114–115,
130, 137

int data type, 511, 512

integer tests, 350–351,
370–371

Integrated Drive Electronics
(IDE), 59, 91

International Organization
for Standardization
(ISO), 56

Internet, 3
Internet Protocol (IP),
425, 431

Internet Protocol (IP)
address, 11–12, 29, 425,
431, 451

interpreted languages, 458
interpreters, 275, 307
ispell utility, 416–417,
446–447

J
join command, 174–175, 180,
206–207, 214, 629

Journaled File System
(JFS), 56

journaling, 54, 91

K
KDE desktop, 569, 588,
606–611
configuring, 585–586
interacting with X Window
System, 580–586

Kicker, 583–584
Konqueror, 581–583
shutting down, 586

Kerberos authentication, 669
Kernel mode, 6, 30
kernels, 6, 30
Kernigham, Brian, 506
key fields, 226, 227–229
keys, 172, 175, 181
keywords, 508–509, 537
Kicker, 580, 583–584, 588,
608–609

kill command, 415–416, 441,
445–446, 629

Knopper, Klaus, 641
Knoppix, 2, 39, 565, 641–642,
646–651

Konqueror, 581–583, 589,
607–608

Konqueror I/O/(KIO)
plugins, 581, 589

Korn shell, 8, 30, 278
ksh/zsh shell, 278

L
last command, 629
layered components, 6–7
-le option, 364
less command, 26, 28, 48–49,
215–216, 332–333, 629

let command, 287–288, 305,
315, 629

/lib directory, 68
library files, 68
line editors, 114, 130
line numbering, 121–122,
145–146

line-oriented commands, 119,
131, 142–143

line wrap, 152
LINEND variable, 281
lines, counting, 249–250
linkers, 508, 537
Linux. See also UNIX/Linux
systems
distributions, 7–8
introduction to, 1–2, 5, 7–8
runlevels, 570–571
versions of, 2, 653–659

ln command, 629
localhost, 479, 484
.log file extension, 471
log files, 70, 665–666
log in process, 5, 10–11,
13–14, 30

Index 689

log out process, 23
logic errors, 275
logic structures, 226, 236,
272, 291–299, 307
decision logic, 293–295
executing at command
line, 296, 297

looping logic, 295–297
nesting, 294–295
in Perl, 467–468
sequential logic, 292–293

logical AND, 364
logical negation (!), 364
logical OR operator, 473
login scripts, 307

Bash shell, 346–348
customizing, 301–302

login.defs file, 67
LOGNAME variable, 281
logout command, 28, 627
logout script, Bash shell,
346–348

logs, 54
loopbacks, 479, 484
looping logic, 295–297, 307

C loops, 518–519
case logic, 298–299
executing at command
line, 296, 297

for loops, 295–296, 305,
321–322, 518–519,
544–545

in Perl, 467–468
while loops, 36, 297–298,
322–324, 357–358,
376–377, 467–468, 519

wildcards with, 296
lowercase letters, converting
to uppercase, 225,
353–354, 378

lpr (line print) command,
122–123, 629

ls (list) command, 77–79, 89,
102–103, 103–104, 629

lspci command, 630
-lt option, 364

M
Mac OS X, 622–623
machine language, 112, 131
MACHTYPE variable, 282
macros, 123, 131
mail utility, 423–424,
450–451, 667–668

MAIL variable, 281
MAILCHECK variable, 281
maillog file, 666
MAILPATH variable, 282
MAILWARNING
variable, 282

main() function, 509–510, 537
mainframes, 3–4, 30
make utility, 505
make utility, 524–527, 535,
548–550

makefile, 525–527, 537
man command, 28, 630
man pages, 18–21, 30, 43–44

displaying, 419–420,
448–449

manipulation commands,
214–215, 223–225, 236

Massachusetts Institute of
Technology (MIT), 565

math operators, 514–515
/media directory, 69
memory usage, 412–413,
442–443

memory, virtual, 61
menu creation, 299–300
messages file, 666
metacharacters, 244–245
methods, 531, 537

Microsoft DOS, 6
Microsoft Windows, 6

accessing, through
Samba, 429

accessing UNIX/Linux
from, 616–618

minus (-) character, 385–389
miscellaneous utilities, 405
mkdir command, 80, 89,
105, 630

mknod command, 66
/mnt directory, 68
modal editors, 114–115, 131
modes, file, 275–276
modulus (%) operator, 515
more command, 26, 28, 48,
215, 243, 258–259, 630

motd file, 67
mount command, 70–72, 89,
98, 429, 630

mounting file systems, 63,
68, 91

msdos, 56
multiplication (*) operator, 515
Multipurpose Internet Mail
Extensions (MIME),
403, 431

multiuser systems, 5, 30
multitasking systems, 5, 30
mv command, 166, 180,
192, 630

N
-n option, 364
named pipes, 65
names, function, 360
Nautilus, 577–578, 589,
598–601

-ne option, 364
nesting, 307
netstat utility, 427,
453–454, 668

690 Index

network connections
configuring, 425
testing, 426

Network File System (NFS),
56, 428–429, 431

network paths, 426–427
network utilities, 403
networking utilities, 424–427,
451–454

networks, 30
client/server, 3–4
operating systems for, 3–4
peer-to-peer, 4, 30
resource sharing on,
428–429

server-based, 4, 31
nonnumeric fields, 227
nonprinting characters, 112
notes file, 50–51
nroff command, 418
NT file system (NTFS), 56
null character, 537
null device, 66
numbers, 464
numeric fields, 227, 475–478,
493–494

numeric relational operators,
461–462

O
-o option, 364
object code, 507, 537
object-oriented programming,
531, 537

objects, 531, 537
octal permission format,
85–86

OLDPWD variable, 282
open source software,
586–587, 589

OpenOffice.org, 586–587
openSSH, 12
openSUSE, 2

operands, 285–286, 307
operating systems (OSs), 30.
See also Linux; UNIX
introduction to, 2–4
PC, 2–3
server, 3–4, 31

operators
arithmetic, 286–288, 306,
514–515

Boolean, 352–353, 364,
372–373

defining, 285–286
diamond, 470, 472,
473, 484

evaluating, 286
numeric relational,
461–462

Perl, 461–462
redirection, 288–291. See
also redirection operators

relational, 286–288, 307
shell, 272, 285–288, 307
string relational, 461–462

OPTARG variable, 282
OPTERR variable, 283
OPTIND variable, 282
options, 14, 15, 30
ordinary users, 24, 24–25,
30, 73

OSTYPE variable, 283
output, formatting, 231–232,
353–354, 378, 516–517

output redirection operator
(>), 26, 30, 49–50, 162, 188

P
Panel, 575–577, 578–580,
589, 603–605

parent directories, 58, 91
partition tables, 59–60
partitions, 59–63, 91

/boot, 61–62
/home, 62
inodes and, 63

restoring, 422–423
root, 60–61
setting up, 60–62
swap, 61
/usr, 62
/var, 62

passwd command, 28, 630
passwd file, 67
passwords

changing, 25, 46
choosing, 10–11
log in process and, 13–14
security, 663–664

paste command, 168–170,
180, 195–196, 203, 214,
258, 630

patches, security, 666–667
PATH variable, 276, 281,
289–291, 307, 317–318

pathnames, 72, 75, 91
paths, 74–76

absolute, 75–76, 101–102
relative, 75–76, 101–102

pattern searches
in Awk, 467–468
in Emacs, 127–128,
151–152

grep command, 216–218
in Perl, 467–468
using Awk, 176–178
in vi editor, 118–119,
141–152

peer-to-peer networks, 4, 30
period (.), 116
peripheral devices, 59, 91
Perl (Practical Extraction and
Report Language), 484
vs. Awk program, 467–471
CGI and, 481–483
creating Web page with,
478–481, 495–496,
499–502

data types, 463–467

Index 691

disk file access in,
471–473, 490–491,
492–493

displaying file contents
with, 489–490

introduction to, 458–463
sorting in, 473–478,
491–494

spaceship operator,
494–495

viewing Web pages,
497–499

permissions, 82–88, 91,
108–109

personal computers (PCs),
2–3, 30

physical file systems, 54, 92
PID (process id), 413
ping utility, 426, 452
pipe operator (|), 215–216,
236, 241–242
with translate utility, 354

pipes, named, 65
port 23, 614
portability, 5, 30
Portable Operating System
Interface for UNIX
(POSIX), 6, 31

porting software, 565, 589
pound (#) symbol, 24,
277, 510

PPID variable, 281
pr command, 214, 225, 235,
256, 631

preprocessor directive,
510–511, 537

preprocessors, 507, 537
printcap file, 67
printenv command, 279–280,
305, 313, 631

printf function, 231–232, 236,
516–517, 535, 631

printing
pr command, 225
text files, 122–123, 147

/proc directory, 69
Proc file system, 56
process id (PID), 413, 431
processes

killing, 415–416, 445–446
managing, 413–416
monitoring, 414–415,
444–445

running in background,
414, 444

profile file, 67
program development cycle,
273–278, 307, 340
flowcharting, 340–343
writing pseudocode,
343–344

program files, 113–114
program functions, 472–473
programmer files, creating,
229–231, 257

programmer number
field, 227

programming languages
C, 6–7, 275, 506–527, 536
C++, 236, 275, 530–534
high-level, 273–275
Perl, 458–463

programming, object-
oriented, 531

programming shell, 278–279
programming utilities, 404
programs. See also applications

creating in C, 506–527
running in background,
414, 444

project files
creating, 229–231,
257–258

selecting fields from,
260–261

PROMPT_COMMAND
variable, 283

prototypes, 277, 307, 521
ps command, 414–415,
444–445, 631, 668

PS1 variable, 73, 99–100,
100–101, 281

PS2 variable, 281
PS3 variable, 281
PS4 variable, 281
pseudocode, 343–344, 365
pstree command, 668
PuTTY utility, 616
pwd command, 74–75, 89,
100, 631

PWD variable, 283

Q
question mark (?), 79–80, 291

R
-r option, 364
RANDOM variable, 283
raw data, 158
rc file, 67
read permissions, 82, 83
record design, 226, 227
record layout, 227, 227–229
records

deleting, 354, 380–384
fixed-length, 159, 198–199
formatting output,
353–354

variable-length, 158–159,
197–198

Red Hat Enterprise Linux,
2, 565

redirection operators, 26, 30,
49, 49–50, 161, 162, 188,
215–216, 288–291, 307, 413

regular expressions, 244
regular files, 158, 181

692 Index

ReiserFS, 57
relational databases, 175, 181
relational operators,
286–288, 307

relative paths, 75–76, 92,
101–102

remote access, 622–623
remote procedure calls
(RPCs), 428, 431

repeat command, 116–117,
137–138

REPLY variable, 283
resource sharing, 428–429
restore command, 422–423
return values, 522–523
RGB color codes, 480–481
Ritchie, Dennis, 6, 506
rm command, 81–82, 90, 163,
180, 189–190, 301, 631

rm -r command, 163–164
rmdir command, 81, 90,
163–164, 180, 190, 631

root, 24, 31
/root directory, 69
root (/) file system, 60–61, 76

creating, 60–61
hierarchy, 63–70

root file system directory, 58,
60–61, 76, 92

root hierarchy, 63–70
root partitions. See root (/)
file system

routines, 475–478, 484
runlevels, 570–571, 589

S
-s option, 364
Samba utility, 429, 431
SATA drives, 59
/sbin directory, 69
scalability, 565, 589
scalars, 463–464, 484

scanf() function, 529–530, 535,
550–551

scope, of variables, 514, 537
screen, clearing, 355–356,
384–385

screen editors, 114, 131
screen-oriented commands,
119, 131

screensavers, 578, 585,
602–603, 609–610

script files, 113–114
adding comments to,
261–262

creating, 172–174,
204–205, 252–253,
263–264

making executable,
205–206

running, 233–234
test command with,
375–377

using, to implement
application, 232–233

search and replace, 119–120,
142–143

secure file, 666
Secure Shell (SSH), 10–13,
31, 38–39, 615–616
accessing remote computer
with, 622–623

connecting via, 622
enabling, 619–621

security
automatic monitoring,
667–668

defining and publishing
security policy, 662–663

file, 82–88, 668
firewall, 38
fixes and patches, 666–667
folder, 668
hardening, 662–668
Kerberos
authentication, 669

log files, 665–666

network, 4
password, 663–664
physical system, 662
unnecessary services and,
664–665

security utilities, 403–404
sed command, 214, 223–224,
236, 250–254, 354, 631

selection commands, 214,
215–223, 236
comm command, 220–221
diff command, 221–222
grep command, 216–218
pipe operator and,
215–216

uniq command, 218–220
wc command, 222–223

semicolon (;), 45
sequential logic, 292–293,
307, 318–319

Serial ATA drives, 59
server-based networks, 4, 31
Server Message Block (SMB)
protocol, 429

server operating systems,
3–4, 31

servers, 3, 31
Web servers, 478–479
X server, 566

service command, 428–429
services, unnecessary, 664–665
set command, 288–289,
305, 631

set group ID (SGID) bit
permissions, 87–88, 92

set user id (SUID) bit
permissions, 87, 92

sh command, 233–234, 236,
263, 300–301, 305,
326–328, 631

shared library images, 68, 92

Index 693

shell functions, 359–362, 365,
391–394
arguments for,
360–361, 392

creating, 391–392
creating, inside shell
scripts, 361–362, 393

defining, from command
line, 360–361

executing, 393–394
shell operators, 272,
285–288, 307

shell script programming
application preview,
272–273

clearing screen, 355–356
cursor placement, 356–358
customizing login scripts,
301–302

debugging, 300–301,
326–328

formatting record output,
353–354

input validation, 358–359
introduction to, 271
logic structures, 291–299
login and logout scripts,
346–348

menu creation, 299–300
program design and
analysis, 340–344

program development
cycle, 273–278

redirection operators,
288–291

setting shell, 344–346
shell for, 278–279
shell functions, 359–362
shell operators, 285–288
test command, 348–353
troubleshooting, 362–363
variables, 279–284
vi editor defaults, 348
wildcards in, 291

shell scripts, 181
advantages of, 272
creating, 172–174,
265–267

creating functions in,
361–362, 393

running, 233–234,
276–277

running faster, 355
troubleshooting, 362–363
using, 232–233, 275–277

SHELL variable, 281
shell variables, 272, 279,
283–284, 307
exporting, 289, 315–317
setting, 384–385

shells, 6. See also specific shells
choosing, 8–9
default, 345–346
defined, 31
introduction to, 8–10
programming, 278–279
setting, 344–346
switching between, 9–10

SHLVL variable, 283
slash character (/), 58
Small Computer System
Interface (SCSI), 59, 92

software components,
layered, 6–7

sort command, 171–172
sort command, 180, 199–200,
203–204, 215, 632

sort operator (<=>), 475–478
sort statement, 473–475
sorting key, 172, 181
source code files, 506,
507, 537

source code management
utilities, 404

source directory, verifying,
374–375

source files, 273–275, 308,
524–527

spaces, 76
spaceship operator, 475–478,
484, 494–495

special characters, vi editor,
118–119

special variables, in Perl, 472
spell checking, 416–417,
446–447

SSH client, 618–619
ssh command, 39
SSH Communications
Security, 615–616

Standard Operating System
9660, 56

startx command, 569,
588, 632

statements, 293, 308
STDERR filehandle, 471
stderr (standard error),
160–161, 181

STDIN filehandle, 471
stdin (standard input),
160–161, 181

stdio.h file, 511, 537
STDOUT filehandle, 471
stdout (standard output),
160–161, 181

sticky bit permissions, 87, 92
string option (test
command), 364

string relational operators,
461–462

string searches, 118, 127–128
string tests, 351, 371
string variables, 284
strings, 308, 464–465

control, 516
using, in C, 512–513

subdirectories, 58, 92
subroutines, 475–478, 484
subtraction (-) operator, 515
superblocks, 63, 92
superusers, 24, 31

694 Index

SUSE Linux, 2, 565
Swap file system, 57
swap partitions, 61, 92
/* symbol, 510
symbolic links, 68, 92
symbolic names, 272, 308
syntax, command, 14–15, 31
syntax errors, 275, 308, 528
system administrators

command line of, 24, 73
defined, 31
role of, 24–25
user permissions and, 84

system calendar, 16–17
system devices, /dev directory
and, 64–66

system monitoring, 667–668
system performance,
monitoring, 410–413

system status utilities, 402,
410–413, 437–438

SystemV (SysV), 6, 31, 654

T
-t option, 71
tags, 478–481, 484
tail command, 26, 29,
214, 632

talk command, 423
TCP/IP protocol, 653
TCP port 23, 614
Telnet

configuring, 617–618
connecting via, 5, 10–12,
31, 36–38, 614–615, 622

enabling, 619–621
starting session, 618

Telnet client, 618–619
temporary files, 69, 302–303
temporary mounts, 68
TERM variable, 283
termcap file, 47–48, 67

terminal windows, 8, 14, 31,
299–300, 623

terminals, 5, 31, 614
test command, 348–353, 632

Boolean tests, 352–353
evaluating expressions
with, 370–375

file tests, 352
options, 364
relational integer tests
with, 350–351

with script files, 375–377
string tests, 351

text
adding to files, 120–121
copying, 120–121, 122,
127, 150–151

cutting and pasting, 122,
127, 147, 150–151

deleting
in Emacs, 127, 150
in vi editor, 117–118,
139–141

formatting, 418–420
inserting, with vi editor,
116, 137–138

searches, 119–120,
127–128, 142–143

text editors. See editors
text files, 112, 131

printing, 122–123
spell checking, 416–417,
446–447

text wrap, 480
Thompson, Ken, 506
tilde (~), 72, 106, 115
time stamp, changing,
188–189

TIMEFORMAT
variable, 283

TMOUT variable, 283
/tmp directory, 69
top command, 411, 413,
440–442, 443, 633, 667–668

Torvalds, Linus, 7
touch command, 162–163,
180, 188–189, 633

tput clear command, 305
tput cols command, 305
tput command, 299–300,
325–326, 633

tput cup command, 305
tput rmso command, 305
tput smso command, 305
tr command, 215, 224–225,
236, 254–255, 353–354, 633
formatting output
with, 378

with grep command,
378–380

traceroute utility, 426–427,
452–453

transformation commands,
214–215, 223–225, 236

translate utility (tr), 353–354,
378–380

trap command, 302–303,
306, 633

tree structure, 58
troff command, 418
tty command, 633
ttyS1 devices, 66
TZ variable, 281

U
UID variable, 283
umask command, 86, 90, 633
umount command, 72, 90,
99, 633

uMs/DOS, 57
Unicode, 112, 131
uniq command, 214, 218–220,
236, 246, 633

Universal Disk Format
(UDF), 57

Universal Serial Bus (USB)
connectors, 59

Index 695

UNIX
concepts, 6–7
history of, 5–6
introduction to, 1–2, 5
Linux and, 7–8
versions of, 653–659

UNIX file system (ufs), 54,
57, 92

UNIX/Linux systems
accessing, 10–13, 36–39,
613–623
from attached
terminal, 614

from Microsoft
Windows, 616–618

using SSH, 615–616
using Telnet, 614–615

file systems in, 53–58
logging in to, 13–14
logging out of, 23, 606
using, to access another
system, 618–622

UNIX/Linux utilities. See
utilities

UNIX/Linux variants,
653–659

uppercase letters, converting
to lowercase, 225,
353–354, 378

uptime command, 411–412
User Manager tool, 345, 346
User mode, 6, 31
user names

choosing, 10–11, 25
log in process and, 13–14
root, 24

user permissions, configuring,
82–88, 108–109

users
information about, using
who command, 18

ordinary, 24–25, 30
superusers, 24, 31

/usr directory, 69
/usr partitions, 62, 90

utilities, 62, 92. See also specific
utilities
for backing up, 420–423
by category, 634–637
classification of, 401–405
communications, 403
file-processing, 401–402,
405–406

formatting, 418–420
introduction to, 400
mail, 423–424
managing processes with,
413–416

miscellaneous, 405
networking, 424–427,
451–454

programming, 404
security, 403–404
source code management
utilities, 404

system status, 402, 410–413

V
validation, input,
358–359, 365

/var directory, 70
/var partition, 62, 90
variable-length records,
158–159, 181, 197–198

variables, 279–284, 463, 484
arrays, 465–466
assigning values to,
313–315

automatic, 514, 536
configuration, 279–283
declaring, in C, 511–514
environment, 279–283
scalar, 463–464
scope of, 514, 537
shell, 279, 282–284, 289
special, 472
string, 284, 464–465
viewing contents of,
313–315

versions, 653–659
vi editor

adding text from other
files, 120–121

canceling session, 123
changing display, 121–122
commands, 637–638
copying, 122, 144
creating script files with,
204–205

cutting and pasting,
122, 147

deleting text in, 117–118,
139–141

exiting, 120, 121, 143–144
file creation in,
115–116, 136

help, 123, 148
inserting text, 116,
137–138

introduction to, 111
moving cursor, 116–117,
138–139

pattern searches, 118–119,
141–152

printing text files,
122–123, 147

repeat command, 116
saving files, 120, 143–144
search and replace,
119–120, 142–143

setting defaults for, 348
undoing commands, 118
using, 114–123, 136–148,
186–187

virtual file systems, 69, 92
virtual memory, 61, 92
virtual storage, 54, 93
vmstat command, 668

W
w command, 42, 634
-w option, 364
warn statement, 473

696 Index

wc command, 214, 222–223,
236, 249–250, 634

Web pages
creating, with Perl,
478–481, 495–496,
499–502

viewing, 497–499
Web servers, 478–479, 484
whatis command, 21–22, 29,
43, 634

whereis command, 634
while loops, 297–298, 306,
322–324, 357–358
in C, 519
modifying, 376–377
Perl, 467–468

who command, 18, 29, 41–43,
49, 634

wildcards, 79–80, 93, 105,
165, 291, 297

window components,
572–574

Window Managers,
567–568, 589

Window Menu button,
574–575

word wrap, 152–153
workspaces, 589, 596–597
write permissions, 82, 83

X
X client, 566, 589
-x option, 364
X server, 566
X-Win32, 566
X-Win32 Flash, 566
X Window System, 13, 589

clients and servers, 566
configuring desktop,
578–580

desktop, 568–569
interacting with, using
GNOME, 571–580

interacting with, using
KDE, 580–586

introduction to, 563–565
Nautilus, 577–578
starting, 569–571
Window Managers,
567–568

X11, 565, 589
XFree86, 565, 589
XFS, 57
Xorg.O.log file, 666

Y
YaST tool, 345–346
Ylönen,Tatu, 615
yy command, 122

Z
-z option, 364
.zip file extension, 471

Index 697

	Front Cover
	Title Page
	Copyright
	Table of Contents
	Preface
	CHAPTER ONE: The Essence of UNIX and Linux
	Understanding Operating Systems
	PC Operating Systems
	Server Operating Systems and Networks

	Introducing the UNIX and Linux Operating Systems
	A Brief History of UNIX
	UNIX Concepts
	Linux and UNIX

	Introducing UNIX/Linux Shells
	Choosing Your Shell
	Switching from Shell to Shell

	Choosing User Names and Passwords
	Connecting to UNIX/Linux Using Telnet or SSH
	Logging In to UNIX/Linux

	Using Commands
	The date Command
	The cal Command
	The who Command
	The clear Command
	The man Program
	The whatis Command
	Command-line Editing
	Multiple Command Entries
	The Command-line History
	Logging Out of UNIX/Linux

	Understanding the Role of the UNIX/Linux System Administrator
	The System Administrator's Command Line
	The Ordinary User's Command Line

	Changing Passwords
	Viewing Files Using the cat, more, less, head, and tail Commands
	Redirecting Output
	Chapter Summary
	Command Summary: Review of Chapter 1 Commands
	Key Terms
	Review Questions
	Hands-On Projects
	Discovery Exercises

	CHAPTER TWO: Exploring the UNIX/Linux File Systems and File Security
	Understanding UNIX/Linux File Systems
	Understanding the Standard Tree Structure

	Using UNIX/Linux Partitions
	Setting Up Hard Disk Partitions
	Using Inodes

	Exploring the Root Hierarchy
	The /bin Directory
	The /boot Directory
	The /dev Directory
	The /etc Directory
	The /home Directory
	The /lib Directory
	The /mnt Directory
	The /media Directory
	The /proc Directory
	The /root Directory
	The /sbin Directory
	The /tmp Directory
	The /usr Directory
	The /var Directory

	Using the mount Command
	Using Paths, Pathnames, and Prompts
	Using and Configuring Your Command-Line Prompt
	The pwd Command

	Navigating the File System
	Using Dot and Dot Dot Addressing Techniques
	Listing Directory Contents
	Using Wildcards

	Creating and Removing Directories
	Copying and Deleting Files
	Configuring File Permissions for Security
	Chapter Summary
	Command Summary: Review of Chapter 2 Commands
	Key Terms
	Review Questions
	Hands-On Projects
	Discovery Exercise

	CHAPTER THREE: Masteri ng Ed itors
	Understanding UNIX/Linux Files
	ASCII Text Files
	Binary Files
	Executable Program Files

	Using Editors
	Using the vi Editor
	Creating a New File in the vi Editor
	Inserting Text
	Repeating a Change
	Moving the Cursor
	Deleting Text
	Undoing a Command
	Searching for a Pattern
	Searching and Replacing
	Saving a File and Exiting vi
	Adding Text from Another File
	Leaving vi Temporarily
	Changing Your DisplayWhile Editing
	Copying or Cutting and Pasting
	Printing Text Files
	Canceling an Editing Session
	Getting Help in vi

	Using the Emacs Editor
	Creating a New File in Emacs
	Navigating in Emacs
	Deleting Information
	Copying, Cutting, and Pasting Text
	Searching in Emacs
	Reformatting a File
	Getting Help in Emacs

	Chapter Summary
	Command Summary: Review of Chapter 3 Commands
	Key Terms
	Review Questions
	Hands-On Projects
	Discovery Exercises

	CHAPTER FOUR: UNIX/Linux File Processing
	UNIX and Linux File Processing
	Reviewing UNIX/Linux File Types
	Understanding File Structures

	Processing Files
	Using Input and Error Redirection

	Manipulating Files
	Creating Files
	Deleting Files
	Removing Directories
	Copying Files
	Moving Files
	Finding Files
	Combining Files
	Combining Files with the paste Command
	Extracting Fields Using the cut Command
	Sorting Files

	Creating Script Files
	Using the join Command on Two Files
	A Brief Introduction to the Awk Program
	Chapter Summary
	Command Summary: Review of Chapter 4 Commands
	Key Terms
	Review Questions
	Hands-On Projects
	Discovery Exercises

	CHAPTER FIVE: Advanced File Processing
	AdvancingYour File-Processing Skills
	Using the Selection Commands
	Using the Pipe Operator
	Using the grep Command
	Using the uniq Command
	Using the comm Command
	Using the diff Command
	Using the wc Command

	Using Manipulation and Transformation Commands
	Introducing the sed Command
	Translating Characters Using the tr Command
	Using the pr Command to Format Your Output

	Designing a New File-Processing Application
	Designing Records
	Linking Files with Keys
	Creating the Programmer and Project Files
	Formatting Output
	Using a Shell Script to Implement the Application
	Running a Shell Script
	Putting It All Together to Produce the Report
	Chapter Summary
	Command Summary: Review of Chapter 5 Commands
	Key Terms
	Review Questions
	Hands-On Projects
	Discovery Exercises

	CHAPTER SIX: Introduction to Shell Script Programming
	Previewing the Application
	The Program Development Cycle
	Using High-Level Languages
	Using UNIX/Linux Shell Scripts
	Prototyping an Application
	Using Comments

	The Programming Shell
	Variables
	Environment and ConfigurationVariables
	ShellVariables

	Shell Operators
	Defining Operators
	Evaluating Operators
	Arithmetic and Relational Operators

	Redirection Operators
	Exporting Shell Variables to the Environment
	Modifying the PATH Variable

	More About Wildcard Characters
	Shell Logic Structures
	Sequential Logic
	Decision Logic
	Looping Logic
	The While Loop
	Case Logic

	Using Shell Scripting to Create a Menu
	Debugging a Shell Script
	Customizing Your Personal Environment
	The trap Command
	Putting it All Together in an Application
	Chapter Summary
	Command Summary: Review of Chapter 6 Commands
	Key Terms
	Review Questions
	Hands-On Projects
	Discovery Exercises

	CHAPTER SEVEN: Advanced Shell Programming
	Understanding Program Design and Analysis
	Flowcharting
	Writing Pseudocode

	Ensuring the Correct Shell Runs the Script
	Setting the Default Shell
	Using Bash Login and Logout Scripts
	Setting Defaults for Using the vi Editor
	Using the test Command
	Performing Relational Integer Tests with the test Command
	Performing String Tests with the test Command
	Testing Files with the test Command
	Performing Boolean Tests with the test Command

	Formatting Record Output
	Deleting Phone Records
	Clearing the Screen
	Creating an Algorithm to Place the Cursor
	Protecting Against Entering Duplicate Data
	Using Shell Functions
	Defining a Function from the Command Line
	Creating Functions Inside Shell Scripts

	Troubleshooting a Shell Script
	Chapter Summary
	Command Summary: Review of Chapter 7 Commands
	Key Terms
	Review Questions
	Hands-On Projects
	Discovery Exercises

	CHAPTER EIGHT: Exploring the UNIX/Linux Utilities
	Understanding UNIX/Linux Utilities
	Classifying UNIX/Linux Utilities
	Using the dd Command
	Checking Hard Disk Usage
	Using the df Utility
	Using the du Utility
	Removing Garbage Files

	Using System Status Utilities
	Using the top Command
	Using the uptime Command
	Using the free Command
	Forwarding top and free Output

	Managing Processes
	Running Processes in the Background
	Monitoring Processes
	Killing Processes

	Checking the Spelling of a Document
	Comparing Files
	Formatting Text in UNIX/Linux
	Archiving and Backing Up Files
	Using the dump Command
	Using the restore Command

	Using mail to Send Mail
	Using Networking Utilities
	Using the ifconfig Utility
	Using the ping Utility
	Using the traceroute Utility
	Using the netstat Utility

	Sharing Resources Using Network File System
	Accessing MicrosoftWindows Systems Through Samba
	Chapter Summary
	Command Summary: Review of Chapter 8 Commands
	Key Terms
	Review Questions
	Hands-On Projects
	Discovery Exercises

	CHAPTER NINE: Perl and CGI Programming
	Introduction to Perl
	Identifying Data Types
	Variables and Constants
	Scalars
	Numbers
	Strings
	Arrays
	Hashes

	Perl Versus the Awk Program
	How Perl Accesses Disk Files
	Using Perl to Sort
	Using Perl to Sort Alphanumeric Fields
	Using Perl to Sort Numeric Fields

	Setting Up a Web Page
	Creating a SimpleWeb Page
	CGI Overview
	Chapter Summary
	Command Summary: Review of Chapter 9 Commands
	Key Terms
	Review Questions
	Hands-On Projects
	Discovery Exercises

	CHAPTER TEN: Developing UNIX/Linux Applications in C and C++
	Introducing C Programming
	Creating a C Program
	C Keywords
	The C Library
	Program Format
	Including Comments
	Using the Preprocessor #include Directive
	Specifying Data Types
	Character Constants
	Using Strings
	Including Identifiers
	Declaring Variables
	Understanding the Scope of Variables
	Using Math Operators
	Generating Formatted Output with pr intfi)
	Using the C Compiler
	Using the if Statement
	Using C Loops
	Defining Functions
	Using Function Arguments
	Using Function ReturnValues
	Working with Files in C
	Using the make Utility to Maintain Program Source Files

	DebuggingYour Program
	Creating a C Program to Accept Input
	Introducing C++ Programming
	Creating a Simple C++ Program
	Creating a C++ Program That Reads a Text File
	How C++ Enhances C Functions
	Chapter Summary
	Command Summary: Review of Chapter 10 Commands
	Key Terms
	Review Questions
	Hands-On Projects
	Discovery Exercises

	CHAPTER ELEVEN: The X Window System
	What Is the XWindow System?
	XWindow Clients and Servers
	Using Window Managers
	Using a Desktop
	Using GNOME
	Using KDE

	Starting the XWindow System
	Configuring Linux to Automatically Start the XWindow System

	Interacting with the XWindow System Using GNOME
	Interacting with Windows
	More About the Window Menu Button
	Interacting with the Panel

	Using Nautilus
	Configuring the Desktop
	Changing the Background
	Changing the Screensaver
	Configuring the Panel
	Adding a Menu to the Panel
	Adding a New Panel

	Shutting Down from the GNOME Desktop
	Interacting with the XWindow System Using KDE
	Interacting with Konqueror
	Interacting with Kicker
	Configuring the KDE Desktop
	Changing the Background in KDE
	Configuring the Screensaver
	Configuring Additional Desktops
	Shutting Down from the KDE Desktop

	OpenOffice.org and Open Source Software
	Chapter Summary
	Command Summary: Review of Chapter 11 Commands
	Key Terms
	Review Questions
	Hands-On Projects
	Discovery Exercises

	APPENDIX A: HOW TO ACCESS A UNIX/LINUX OPERATING SYSTEM
	Accessing UNIX/Linux Computers from an Attached Terminal
	Using Telnet
	Using SSH
	Accessing a UNIX/Linux System from a MicrosoftWindows Computer
	Configuring the Telnet Service
	Starting a Telnet Session

	Using a UNIX/Linux Computer to Provide Access or to Access Another Computer
	Where Is My Telnet or SSH Client Program?
	Enabling Telnet and SSH
	Connecting via Telnet or SSH

	Using Mac OS X and SSH to Access a Remote Computer
	Enabling Remote Login as a Service and Through the Firewall
	Using SSH via a TerminalWindow

	APPENDIX B: SYNTAX GUIDE TO UNIX/LINUX COMMANDS
	APPENDIX C: HOW TO INSTALL FEDORA AND HOW TO USE THE KNOPPIX CD
	How to Install Fedora
	Preparing for Installation
	Installing Fedora

	Using the Knoppix CD
	System Requirements for the Knoppix CD
	Loading the Knoppix CD
	Saving Your Files on Removable Media
	Useful KnoppixTips

	APPENDIX D: UNIX/LINUX VARIANTS
	PopularVersions of UNIX/Linux
	UNIX/Linux Command Differences
	UNIX/Linux Hardware Platforms

	Choosing a UNIX/LinuxVariant

	APPENDIX E: UNIX/LINUX SECURITY: NETWORK AND INTERNET CONNECTIVITY
	Security Hardening
	Implementing Physical System Security
	Defining and Publishing the Security Policy
	Ensuring Password Security
	Managing Unnecessary Services
	Viewing Log Files on a Regular Basis
	Keeping Up with Security Fixes and Patches
	Monitoring Your System Automatically
	Securing Your Folders and Files

	Using Kerberos Authentication

	Glossary
	Index

