1 a. 104 b. 7C c. 10001 e. 11 f. 21 g. 122 h. 18 2. APL Dec, A=65, P=80, L=76 Hex, A=4, P=50, L=4C Octal A=101, P=120, L=114 Binary A=1000001, P=1010000,L=1001100 3. ASCII Hex Binary Complement 60 < 3C 111100 000011 90 z 5A 1011010 0100101 108 l 6C 1101100 0010011 4. Ones Complement Twos Complement Sign Magnitude Offset 11111100 11111101 10000011 100000011 11011010 11011011 10100101 100100101 11101100 11101101 10010011 100010011 5. a. light blueish green b. yellow c. white d greenish yellow e. blueish purple f. white g.they would be a lighter shade of the same color 6. a. 2^15 or 16 bits b. 32,769 c. 2^29 or 30 bits d. 536,870,913 e.2^20 or 1,048,576 f. 2^21 or 2,097,152 g. 2^34 or 35 bits 7 a. 300 billion b. 5 billion times per second c. 50 billion times per second d. hertz = cycles per second; so 60GHz e. 3GHz 8. A B C ((AB)+C')+(BC) 0 0 0 1 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1 9. sum= A XOR B carry-in(C)=AB 10. (c or carry-in)AB=A'+B' sum= A XOR B = A' XOR B' 11. These operations represent the range of values for three integers that can represent 2^3 discreet, distinct values. This would allow representation of a any data set requiring 8 or less values, such as the octal # system. In the case of the octal # system we would be able to count and due simple arithmetic operations as long as our outcomes never exceeded 8 in value. We could represent 8 different students in a class, an alphabet with 8 letters, etc.