
Centipede HW 4
Firing Lasers

Centipede HW4 Overall Description

● Add a laser when user presses SPACE KEY. After it creates an
instance of laser, it needs to appear just above the top edge of
the player.

● Lasers that have been created move up by speed each frame.
● When a laser is fully off screen, it should be removed from the

world.
● Only one laser can be on screen at a time, so when pressing

space, make sure there isn't already a laser before firing
● The final product should look like this: ZIP | JAR

http://www.tinocs.com/java/greenfoot/CentipedeDay4Demo.zip
http://www.tinocs.com/java/greenfoot/CentipedeDay4.jar

Laser Firing Logic
// in the Player act method

if(space is pressed){

 //check there is any laser in custom world

//if there is no laser, then create an instance of laser

//add the laser to the world above the top edge of the player
}

Getting A List Of Actors
There are many methods in greenfoot that return a List of objects. In order to use a List, first you need
to import java.util.List at the top of your code, just below import greenfoot.*
import greenfoot.*;

import java.util.List;

public class SomeClass extends Actor {

...

}

You might notice that the methods always say they return java.util.List<A> and be wondering what the
A is. The A inside the <> refers to the type of objects in the list. For example, List<Car> is a list
containing Car objects. In order to make a variable that stores a List, you can say something like:

List<Car> cars = methodThatReturnsAListOfCars();

Using a List
You can see the full List API to see what methods are available.
Here is a short summary of the most useful methods:
List API
List<E> (E is the class of the objects in the list)
Methods:
public int size() Returns the number of items in the list
public E get(int i) Returns the item at index i

Let's say you wanted to get a reference to the Player from the Centipede class. You could do this:
public class Centipede extends Actor {

public void act() {

// call getObjects on the world, to get a List of Player objects

List<Player> players = getWorld().getObjects(Player.class);

// Get the item at index 0 (this assumes there is exactly 1 player)

Player play = players.get(0); // will crash if there is no player

}

}

https://docs.oracle.com/javase/8/docs/api/java/util/List.html

Centipede HW4 Detail Directions
● Right-click Actor and choose New subclass
● Name the class Laser and select the laser image you want
● Open your Player class

○ In the act() function, when user presses SPACE, create an instance of Laser class and
add to your custom World above the top edge of the player
■ Only one laser can be on screen at once, so only fire if there is no laser in the

world.
■ You can use getObjects(java.lang.Class<A> cls) to get a List of objects of a

given type that are in the world
● Open your Laser class

○ Give the Laser an instance variable for the speed of the laser
○ In the act() function, move laser up by the speed (You can choose whether to use

setLocation or move as long as it moves up.

Note: How to detect keyboard presses, Look at the Intro Java Greenfoot Notes

● Submit your code to this submission form.

https://www.greenfoot.org/files/javadoc/greenfoot/World.html#getObjects-java.lang.Class-
http://www.tinocs.com/java_lessons/?page_id=30
https://form.jotform.com/80710810619149

HW 4 Checkpoint (Optional Self-check in 2021)
1. Declare a subclass of World named LaserWorld.
2. Declare a private instance variable named accuracy that holds a decimal

value.
3. Define a default constructor for LaserWorld that creates a width 300, height

400 world with cell size 1 that is unbounded. Initialize accuracy to 0.
4. Create a public getter and setter for accuracy.
5. Create a public instance method named getLasers() that returns a list of

Laser objects in the world.
6. Override the act() method of the world to do the following:

a. When the spacebar is down, if there are not more than 5 lasers in the
world already, add a laser centered horizontally in the world with its
bottom edge even with the bottom edge of the world.

java.util.List API
List<E> (E is the class of the objects in the list)
Methods:
public int size() Returns the number of items in the list
public E get(int i) Returns the item at index i

