Centipede HW 4

Firing Lasers



Centipede HW4 Overall Description

Add a laser when user presses SPACE KEY. After it creates an
instance of laser, it needs to appear just above the top edge of
the player.

Lasers that have been created move up by speed each frame.
When a laser is fully off screen, it should be removed from the
world.

Only one laser can be on screen at a time, so when pressing
space, make sure there isn't already a laser before firing

The final product should look like this: ZIP | JAR



http://www.tinocs.com/java/greenfoot/CentipedeDay4Demo.zip
http://www.tinocs.com/java/greenfoot/CentipedeDay4.jar

Laser Firing Logic

// in the Player act method
1f (space 1s pressed) {
//check there is any laser in custom world
//if there i1s no laser, then create an instance of laser

//add the laser to the world above the top edge of the player



Getting A List Of Actors

There are many methods in greenfoot that return a List of objects. In order to use a List, first you need
to import java.util.List at the top of your code, just below import greenfoot.*

import greenfoot.*;
import java.util.List;

public class SomeClass extends Actor {

You might notice that the methods always say they return java.util.List<A> and be wondering what the
Ais. The Ainside the <> refers to the type of objects in the list. For example, List<Car> is a list
containing Car objects. In order to make a variable that stores a List, you can say something like:

List<Car> cars = methodThatReturnsAListOfCars() ;



Using a List

You can see the full List AP| to see what methods are available.
Here is a short summary of the most useful methods:

List API

List<E> (E is the class of the objects in the 1list)

Methods:

public int size() Returns the number of items in the list
public E get (int 1) Returns the item at index 1

Let's say you wanted to get a reference to the Player from the Centipede class. You could do this:
public class Centipede extends Actor {
public void act () {
// call getObjects on the world, to get a List of Player objects
List<Player> players = getWorld() .getObjects (Player.class);
// Get the item at index 0 (this assumes there is exactly 1 player)

Player play = players.get(0); // will crash if there is no player


https://docs.oracle.com/javase/8/docs/api/java/util/List.html

Centipede HW4 Detail Directions

® Right-click Actor and choose New subclass
® Name the class Laser and select the laser image you want
® Open your Player class
o Inthe act() function, when user presses SPACE, create an instance of Laser class and
add to your custom World above the top edge of the player
m Only one laser can be on screen at once, so only fire if there is no laser in the
world.
m You can use getObjects(java.lang.Class<A> cls) to get a List of objects of a
given type that are in the world
® Open your Laser class
O Give the Laser an instance variable for the speed of the laser
o In the act() function, move laser up by the speed (You can choose whether to use
setLocation or move as long as it moves up.

Note: How to detect keyboard presses, Look at the Intro Java Greenfoot Notes

® Submit your code to this submission form.



https://www.greenfoot.org/files/javadoc/greenfoot/World.html#getObjects-java.lang.Class-
http://www.tinocs.com/java_lessons/?page_id=30
https://form.jotform.com/80710810619149

HW 4 Checkpoint (Optional Self-check in 2021)

1.

o &

Declare a subclass of World named LaserWorld.

Declare a private instance variable named accuracy that holds a decimal

value.

Define a default constructor for LaserWorld that creates a width 300, height

400 world with cell size 1 that is unbounded. Initialize accuracy to 0.

Create a public getter and setter for accuracy.

Create a public instance method named getLasers() that returns a list of

Laser objects in the world.

Override the act() method of the world to do the following:

a. When the spacebar is down, if there are not more than 5 lasers in the
world already, add a laser centered horizontally in the world with its
bottom edge even with the bottom edge of the world.

java.util.List API

List<E> (E is the class of the objects in the list)

Methods:

public int size() Returns the number of items in the list
public E get(int i) Returns the item at index i



