
ICSI 311 Assignment 3 – Start the Parser

This assignment is extremely important – (nearly) every assignment after this one uses this one!

If you have bugs or missing features in this, you will need to fix them before you can continue on to

new assignments. This is very typical in software development outside of school.

You must submit .java files. Any other file type will be ignored. Especially “.class” files.

You must not zip or otherwise compress your assignment. Blackboard will allow you to submit

multiple files.

You must submit buildable .java files for credit.

This assignment must have five new source files (Parser.java, Node.java, IntegerNode.java,

FloatNode.java, MathOpNode.java) as well as your first three source files (Basic.java, Token.java,

Lexer.java).

The parser will take the collection of tokens from the lexer and build them into a tree of AST nodes. To

start this process, make an abstract Node class. Add an abstract ToString override. Now create an

IntegerNode class that derives from Node. It must hold an integer number in a private member and

have a read-only accessor. Create a similar class for floating point numbers called FloatNode.java. Both

of these classes should have appropriate constructors and ToString() overrides.

Create a new class called MathOpNode that also derives from Node. MathOpNode must have an enum

indicating which math operation (add, subtract, multiply, divide) the class represents. The enum must

be read-only. The class must have two references (left and right) to the Nodes that will represent the

operands. These references must also be read-only and an appropriate constructor and ToString() must

be created.

Reading all of this, you might think that we can just transform the tokens into these nodes. This would

work, to some degree, but the order of operations would be incorrect. Consider 3 * 5 + 2. The tokens

would be INTEGER TIMES INTEGER PLUS INTEGER. That would give us MathNode(*,3,MathNode(+,5,2))

which would yield 21, not 17.

Create a Parser class (does not derive from anything). It must have a constructor that accepts your

collection of Tokens. Create a public parse method (no parameters, returns “Node”). Parse must call

expression (it will do more later). You must creating some helper methods as matchAndRemove() as

described in lecture.

 The classic grammar for mathematical expressions (to handle order of operations) looks like this:

EXPRESSION = TERM { (plus or minus) TERM}

TERM = FACTOR { (times or divide) FACTOR}

FACTOR = {-} number or lparen EXPRESSION rparen

Turn each of these (expression, term, factor) into a method of Parser. Use matchAndRemove to test for

the presence of a token. Each of these methods should return a class derived from Node. Factor will

return a FloatNode or an IntegerNode OR the return value from the EXPRESSION. Note the unary minus

in factor – that is important to bind the negative sign more tightly than the minus operation. Also note

that the curly braces are “0 or more times”. Think about how 3*4*5 should be processed with these

rules. Hint – use recursion and a helper method. Also think carefully about how to process “number”,

since we have two different possible nodes (FloatNode or IntegerNode). Depending on how you

implemented your lexer, factor may or may not need to deal with negating the number.

Make sure that you test your code. Change your main to call parse on the parser. Right now, it will only

process a single line. Print your AST by using the “ToString” that you created. Use several different

mathematical expressions and be sure that order of operations is respected. Your lexer can create

tokens that your parser cannot handle yet. That is OK.

Rubric Poor OK Good Great

Comments None/Excessive
(0)

“What” not
“Why”, few (5)

Some “what” comments or
missing some (7)

Anything not obvious has reasoning
(10)

Variable/Function
naming

Single letters
everywhere (0)

Lots of
abbreviations (5)

Full words most of the time (8) Full words, descriptive (10)

Create the AST
classes

None (0) Classes missing
(5)

All classes present, some
methods missing (10)

All classes and methods (20)

Parser class None (0) Constructor or private member
(5)

Constructor and private member
(10)

Helper Method(s) None(0) At least 1 (5)

Factor Method None (0) Significantly Attempted (10) Correct (15)

Expression Method None (0) Significantly Attempted (10) Correct (15)

Term Method None (0) Significantly Attempted (10) Correct (15)

