
ICSI 311 Assignment 4 – Expand the Parser

If you have bugs or missing features in this, you will need to fix them before you can continue on to

new assignments. This is very typical in software development outside of school.

You must submit .java files. Any other file type will be ignored. Especially “.class” files.

You must not zip or otherwise compress your assignment. Blackboard will allow you to submit

multiple files.

You must submit buildable .java files for credit.

You will submit your existing files (Parser.java, Node.java, IntegerNode.java, FloatNode.java,

MathOpNode.java,Basic.java, Token.java, Lexer.java) as well as your new files (VariableNode.java,

PrintNode.java, AssignmentNode.java,StatementNode.java, StatementsNode.java).

We are going to build on the parser that we created last assignment to add some more useful

capabilities and start the process of turning it into a programming language parser.

Create some new AST nodes:

 StatementNode – derives from Node. All statements (like Print, Assignment) should derive from

StatementNode.

 VariableNode – holds a variable name

 PrintNode – holds a list of Node (the things to print)

 AssignmentNode – holds a variable node and a Node (which will be the assigned value)

 StatementsNode – holds a list of StatementNode (the statements, right now either a print or an

assignment)

For all of these, follow the usual rules: private read-only members, appropriate constructor(s),

accessors, ToString().

Start by changing Factor() to accept an IDENTIFIER (i.e. a variable) as well as a number or an expression

in parenthesis. When the identifier is found, create a VariableNode and return it.

Parse() right now only works on expressions. We need to introduce more methods to make our parser

able to accept a programming language. Change Parse() to call Statements() instead of Expression().

Create a Statements() method; it should accept any number of statements. Statements() should call

Statement() until Statement() fails (returns NULL). Create a Statement() method to handle a single

statement and return its node or NULL. A single statement, for now, can consist of EITHER a print

statement or an assignment. Your Statements() method must take the Node generated by Statement (if

it is not NULL) and add it to the Statements AST node.

Create a PrintStatement method which accepts a print statement and creates a PrintNode or returns

NULL:

PRINT printList

Create a PrintList method which accepts a print list. A print list consists of a comma separated list of

expressions. You will need to add comma to your lexer.

Finally, an assignment statement is of the form:

VARIABLE EQUALS expression

You have already written the Expression parser. Create an Assignment() parser method that accepts an

assignment and returns an AssignmentNode or returns NULL. You will need to add the equals sign to

parts of your lexer (you already have it for >= and <=).

Rubric Poor OK Good Great

Comments None/Excessive
(0)

“What” not
“Why”, few (5)

Some “what” comments or
missing some (7)

Anything not obvious has reasoning
(10)

Variable/Function
naming

Single letters
everywhere (0)

Lots of
abbreviations (5)

Full words most of the time (8) Full words, descriptive (10)

Create the new AST
classes

None (0) Classes missing
(5)

All classes present, some
methods missing (10)

All classes and methods (20)

Factor accepts
variables

None (0) Attempted (5) Correct (10)

Statements None(0) Attempted (5) Correct (10)

PrintStatement None(0) Attempted (5) Correct (10)

PrintList None(0) Attempted (5) Correct (10)

Statement None(0) Attempted (5) Correct (10)

Assignment None(0) Attempted (5) Correct (10)

